linux-stable/mm/shmem.c
Joe Perches 79d4d38a03 mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
Update the function to use sysfs_emit_at while neatening the uses of
sprintf and overwriting the last space char with a newline to avoid
possible output buffer overflow.

Miscellanea:

 - in shmem_enabled_show, the removal of the indirected use of fmt
   allows __printf verification

Link: https://lkml.kernel.org/r/b612a93825e5ea330cb68d2e8b516e9687a06cc6.1605376435.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:47 -08:00

4329 lines
111 KiB
C

/*
* Resizable virtual memory filesystem for Linux.
*
* Copyright (C) 2000 Linus Torvalds.
* 2000 Transmeta Corp.
* 2000-2001 Christoph Rohland
* 2000-2001 SAP AG
* 2002 Red Hat Inc.
* Copyright (C) 2002-2011 Hugh Dickins.
* Copyright (C) 2011 Google Inc.
* Copyright (C) 2002-2005 VERITAS Software Corporation.
* Copyright (C) 2004 Andi Kleen, SuSE Labs
*
* Extended attribute support for tmpfs:
* Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
* tiny-shmem:
* Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
*
* This file is released under the GPL.
*/
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/vfs.h>
#include <linux/mount.h>
#include <linux/ramfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/khugepaged.h>
#include <linux/hugetlb.h>
#include <linux/frontswap.h>
#include <linux/fs_parser.h>
#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
static struct vfsmount *shm_mnt;
#ifdef CONFIG_SHMEM
/*
* This virtual memory filesystem is heavily based on the ramfs. It
* extends ramfs by the ability to use swap and honor resource limits
* which makes it a completely usable filesystem.
*/
#include <linux/xattr.h>
#include <linux/exportfs.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/shmem_fs.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/percpu_counter.h>
#include <linux/falloc.h>
#include <linux/splice.h>
#include <linux/security.h>
#include <linux/swapops.h>
#include <linux/mempolicy.h>
#include <linux/namei.h>
#include <linux/ctype.h>
#include <linux/migrate.h>
#include <linux/highmem.h>
#include <linux/seq_file.h>
#include <linux/magic.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <uapi/linux/memfd.h>
#include <linux/userfaultfd_k.h>
#include <linux/rmap.h>
#include <linux/uuid.h>
#include <linux/uaccess.h>
#include "internal.h"
#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
/* Pretend that each entry is of this size in directory's i_size */
#define BOGO_DIRENT_SIZE 20
/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
#define SHORT_SYMLINK_LEN 128
/*
* shmem_fallocate communicates with shmem_fault or shmem_writepage via
* inode->i_private (with i_mutex making sure that it has only one user at
* a time): we would prefer not to enlarge the shmem inode just for that.
*/
struct shmem_falloc {
wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
pgoff_t start; /* start of range currently being fallocated */
pgoff_t next; /* the next page offset to be fallocated */
pgoff_t nr_falloced; /* how many new pages have been fallocated */
pgoff_t nr_unswapped; /* how often writepage refused to swap out */
};
struct shmem_options {
unsigned long long blocks;
unsigned long long inodes;
struct mempolicy *mpol;
kuid_t uid;
kgid_t gid;
umode_t mode;
bool full_inums;
int huge;
int seen;
#define SHMEM_SEEN_BLOCKS 1
#define SHMEM_SEEN_INODES 2
#define SHMEM_SEEN_HUGE 4
#define SHMEM_SEEN_INUMS 8
};
#ifdef CONFIG_TMPFS
static unsigned long shmem_default_max_blocks(void)
{
return totalram_pages() / 2;
}
static unsigned long shmem_default_max_inodes(void)
{
unsigned long nr_pages = totalram_pages();
return min(nr_pages - totalhigh_pages(), nr_pages / 2);
}
#endif
static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
static int shmem_replace_page(struct page **pagep, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index);
static int shmem_swapin_page(struct inode *inode, pgoff_t index,
struct page **pagep, enum sgp_type sgp,
gfp_t gfp, struct vm_area_struct *vma,
vm_fault_t *fault_type);
static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
struct page **pagep, enum sgp_type sgp,
gfp_t gfp, struct vm_area_struct *vma,
struct vm_fault *vmf, vm_fault_t *fault_type);
int shmem_getpage(struct inode *inode, pgoff_t index,
struct page **pagep, enum sgp_type sgp)
{
return shmem_getpage_gfp(inode, index, pagep, sgp,
mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
}
static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
/*
* shmem_file_setup pre-accounts the whole fixed size of a VM object,
* for shared memory and for shared anonymous (/dev/zero) mappings
* (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
* consistent with the pre-accounting of private mappings ...
*/
static inline int shmem_acct_size(unsigned long flags, loff_t size)
{
return (flags & VM_NORESERVE) ?
0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
}
static inline void shmem_unacct_size(unsigned long flags, loff_t size)
{
if (!(flags & VM_NORESERVE))
vm_unacct_memory(VM_ACCT(size));
}
static inline int shmem_reacct_size(unsigned long flags,
loff_t oldsize, loff_t newsize)
{
if (!(flags & VM_NORESERVE)) {
if (VM_ACCT(newsize) > VM_ACCT(oldsize))
return security_vm_enough_memory_mm(current->mm,
VM_ACCT(newsize) - VM_ACCT(oldsize));
else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
}
return 0;
}
/*
* ... whereas tmpfs objects are accounted incrementally as
* pages are allocated, in order to allow large sparse files.
* shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
* so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
*/
static inline int shmem_acct_block(unsigned long flags, long pages)
{
if (!(flags & VM_NORESERVE))
return 0;
return security_vm_enough_memory_mm(current->mm,
pages * VM_ACCT(PAGE_SIZE));
}
static inline void shmem_unacct_blocks(unsigned long flags, long pages)
{
if (flags & VM_NORESERVE)
vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
}
static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
if (shmem_acct_block(info->flags, pages))
return false;
if (sbinfo->max_blocks) {
if (percpu_counter_compare(&sbinfo->used_blocks,
sbinfo->max_blocks - pages) > 0)
goto unacct;
percpu_counter_add(&sbinfo->used_blocks, pages);
}
return true;
unacct:
shmem_unacct_blocks(info->flags, pages);
return false;
}
static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
if (sbinfo->max_blocks)
percpu_counter_sub(&sbinfo->used_blocks, pages);
shmem_unacct_blocks(info->flags, pages);
}
static const struct super_operations shmem_ops;
const struct address_space_operations shmem_aops;
static const struct file_operations shmem_file_operations;
static const struct inode_operations shmem_inode_operations;
static const struct inode_operations shmem_dir_inode_operations;
static const struct inode_operations shmem_special_inode_operations;
static const struct vm_operations_struct shmem_vm_ops;
static struct file_system_type shmem_fs_type;
bool vma_is_shmem(struct vm_area_struct *vma)
{
return vma->vm_ops == &shmem_vm_ops;
}
static LIST_HEAD(shmem_swaplist);
static DEFINE_MUTEX(shmem_swaplist_mutex);
/*
* shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
* produces a novel ino for the newly allocated inode.
*
* It may also be called when making a hard link to permit the space needed by
* each dentry. However, in that case, no new inode number is needed since that
* internally draws from another pool of inode numbers (currently global
* get_next_ino()). This case is indicated by passing NULL as inop.
*/
#define SHMEM_INO_BATCH 1024
static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
if (!(sb->s_flags & SB_KERNMOUNT)) {
spin_lock(&sbinfo->stat_lock);
if (sbinfo->max_inodes) {
if (!sbinfo->free_inodes) {
spin_unlock(&sbinfo->stat_lock);
return -ENOSPC;
}
sbinfo->free_inodes--;
}
if (inop) {
ino = sbinfo->next_ino++;
if (unlikely(is_zero_ino(ino)))
ino = sbinfo->next_ino++;
if (unlikely(!sbinfo->full_inums &&
ino > UINT_MAX)) {
/*
* Emulate get_next_ino uint wraparound for
* compatibility
*/
if (IS_ENABLED(CONFIG_64BIT))
pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
__func__, MINOR(sb->s_dev));
sbinfo->next_ino = 1;
ino = sbinfo->next_ino++;
}
*inop = ino;
}
spin_unlock(&sbinfo->stat_lock);
} else if (inop) {
/*
* __shmem_file_setup, one of our callers, is lock-free: it
* doesn't hold stat_lock in shmem_reserve_inode since
* max_inodes is always 0, and is called from potentially
* unknown contexts. As such, use a per-cpu batched allocator
* which doesn't require the per-sb stat_lock unless we are at
* the batch boundary.
*
* We don't need to worry about inode{32,64} since SB_KERNMOUNT
* shmem mounts are not exposed to userspace, so we don't need
* to worry about things like glibc compatibility.
*/
ino_t *next_ino;
next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
ino = *next_ino;
if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
spin_lock(&sbinfo->stat_lock);
ino = sbinfo->next_ino;
sbinfo->next_ino += SHMEM_INO_BATCH;
spin_unlock(&sbinfo->stat_lock);
if (unlikely(is_zero_ino(ino)))
ino++;
}
*inop = ino;
*next_ino = ++ino;
put_cpu();
}
return 0;
}
static void shmem_free_inode(struct super_block *sb)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (sbinfo->max_inodes) {
spin_lock(&sbinfo->stat_lock);
sbinfo->free_inodes++;
spin_unlock(&sbinfo->stat_lock);
}
}
/**
* shmem_recalc_inode - recalculate the block usage of an inode
* @inode: inode to recalc
*
* We have to calculate the free blocks since the mm can drop
* undirtied hole pages behind our back.
*
* But normally info->alloced == inode->i_mapping->nrpages + info->swapped
* So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
*
* It has to be called with the spinlock held.
*/
static void shmem_recalc_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
long freed;
freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
if (freed > 0) {
info->alloced -= freed;
inode->i_blocks -= freed * BLOCKS_PER_PAGE;
shmem_inode_unacct_blocks(inode, freed);
}
}
bool shmem_charge(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
unsigned long flags;
if (!shmem_inode_acct_block(inode, pages))
return false;
/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
inode->i_mapping->nrpages += pages;
spin_lock_irqsave(&info->lock, flags);
info->alloced += pages;
inode->i_blocks += pages * BLOCKS_PER_PAGE;
shmem_recalc_inode(inode);
spin_unlock_irqrestore(&info->lock, flags);
return true;
}
void shmem_uncharge(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
unsigned long flags;
/* nrpages adjustment done by __delete_from_page_cache() or caller */
spin_lock_irqsave(&info->lock, flags);
info->alloced -= pages;
inode->i_blocks -= pages * BLOCKS_PER_PAGE;
shmem_recalc_inode(inode);
spin_unlock_irqrestore(&info->lock, flags);
shmem_inode_unacct_blocks(inode, pages);
}
/*
* Replace item expected in xarray by a new item, while holding xa_lock.
*/
static int shmem_replace_entry(struct address_space *mapping,
pgoff_t index, void *expected, void *replacement)
{
XA_STATE(xas, &mapping->i_pages, index);
void *item;
VM_BUG_ON(!expected);
VM_BUG_ON(!replacement);
item = xas_load(&xas);
if (item != expected)
return -ENOENT;
xas_store(&xas, replacement);
return 0;
}
/*
* Sometimes, before we decide whether to proceed or to fail, we must check
* that an entry was not already brought back from swap by a racing thread.
*
* Checking page is not enough: by the time a SwapCache page is locked, it
* might be reused, and again be SwapCache, using the same swap as before.
*/
static bool shmem_confirm_swap(struct address_space *mapping,
pgoff_t index, swp_entry_t swap)
{
return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
}
/*
* Definitions for "huge tmpfs": tmpfs mounted with the huge= option
*
* SHMEM_HUGE_NEVER:
* disables huge pages for the mount;
* SHMEM_HUGE_ALWAYS:
* enables huge pages for the mount;
* SHMEM_HUGE_WITHIN_SIZE:
* only allocate huge pages if the page will be fully within i_size,
* also respect fadvise()/madvise() hints;
* SHMEM_HUGE_ADVISE:
* only allocate huge pages if requested with fadvise()/madvise();
*/
#define SHMEM_HUGE_NEVER 0
#define SHMEM_HUGE_ALWAYS 1
#define SHMEM_HUGE_WITHIN_SIZE 2
#define SHMEM_HUGE_ADVISE 3
/*
* Special values.
* Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
*
* SHMEM_HUGE_DENY:
* disables huge on shm_mnt and all mounts, for emergency use;
* SHMEM_HUGE_FORCE:
* enables huge on shm_mnt and all mounts, w/o needing option, for testing;
*
*/
#define SHMEM_HUGE_DENY (-1)
#define SHMEM_HUGE_FORCE (-2)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* ifdef here to avoid bloating shmem.o when not necessary */
static int shmem_huge __read_mostly;
#if defined(CONFIG_SYSFS)
static int shmem_parse_huge(const char *str)
{
if (!strcmp(str, "never"))
return SHMEM_HUGE_NEVER;
if (!strcmp(str, "always"))
return SHMEM_HUGE_ALWAYS;
if (!strcmp(str, "within_size"))
return SHMEM_HUGE_WITHIN_SIZE;
if (!strcmp(str, "advise"))
return SHMEM_HUGE_ADVISE;
if (!strcmp(str, "deny"))
return SHMEM_HUGE_DENY;
if (!strcmp(str, "force"))
return SHMEM_HUGE_FORCE;
return -EINVAL;
}
#endif
#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
static const char *shmem_format_huge(int huge)
{
switch (huge) {
case SHMEM_HUGE_NEVER:
return "never";
case SHMEM_HUGE_ALWAYS:
return "always";
case SHMEM_HUGE_WITHIN_SIZE:
return "within_size";
case SHMEM_HUGE_ADVISE:
return "advise";
case SHMEM_HUGE_DENY:
return "deny";
case SHMEM_HUGE_FORCE:
return "force";
default:
VM_BUG_ON(1);
return "bad_val";
}
}
#endif
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_split)
{
LIST_HEAD(list), *pos, *next;
LIST_HEAD(to_remove);
struct inode *inode;
struct shmem_inode_info *info;
struct page *page;
unsigned long batch = sc ? sc->nr_to_scan : 128;
int removed = 0, split = 0;
if (list_empty(&sbinfo->shrinklist))
return SHRINK_STOP;
spin_lock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &sbinfo->shrinklist) {
info = list_entry(pos, struct shmem_inode_info, shrinklist);
/* pin the inode */
inode = igrab(&info->vfs_inode);
/* inode is about to be evicted */
if (!inode) {
list_del_init(&info->shrinklist);
removed++;
goto next;
}
/* Check if there's anything to gain */
if (round_up(inode->i_size, PAGE_SIZE) ==
round_up(inode->i_size, HPAGE_PMD_SIZE)) {
list_move(&info->shrinklist, &to_remove);
removed++;
goto next;
}
list_move(&info->shrinklist, &list);
next:
if (!--batch)
break;
}
spin_unlock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &to_remove) {
info = list_entry(pos, struct shmem_inode_info, shrinklist);
inode = &info->vfs_inode;
list_del_init(&info->shrinklist);
iput(inode);
}
list_for_each_safe(pos, next, &list) {
int ret;
info = list_entry(pos, struct shmem_inode_info, shrinklist);
inode = &info->vfs_inode;
if (nr_to_split && split >= nr_to_split)
goto leave;
page = find_get_page(inode->i_mapping,
(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
if (!page)
goto drop;
/* No huge page at the end of the file: nothing to split */
if (!PageTransHuge(page)) {
put_page(page);
goto drop;
}
/*
* Leave the inode on the list if we failed to lock
* the page at this time.
*
* Waiting for the lock may lead to deadlock in the
* reclaim path.
*/
if (!trylock_page(page)) {
put_page(page);
goto leave;
}
ret = split_huge_page(page);
unlock_page(page);
put_page(page);
/* If split failed leave the inode on the list */
if (ret)
goto leave;
split++;
drop:
list_del_init(&info->shrinklist);
removed++;
leave:
iput(inode);
}
spin_lock(&sbinfo->shrinklist_lock);
list_splice_tail(&list, &sbinfo->shrinklist);
sbinfo->shrinklist_len -= removed;
spin_unlock(&sbinfo->shrinklist_lock);
return split;
}
static long shmem_unused_huge_scan(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (!READ_ONCE(sbinfo->shrinklist_len))
return SHRINK_STOP;
return shmem_unused_huge_shrink(sbinfo, sc, 0);
}
static long shmem_unused_huge_count(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
return READ_ONCE(sbinfo->shrinklist_len);
}
#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
#define shmem_huge SHMEM_HUGE_DENY
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_split)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
{
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
(shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
shmem_huge != SHMEM_HUGE_DENY)
return true;
return false;
}
/*
* Like add_to_page_cache_locked, but error if expected item has gone.
*/
static int shmem_add_to_page_cache(struct page *page,
struct address_space *mapping,
pgoff_t index, void *expected, gfp_t gfp,
struct mm_struct *charge_mm)
{
XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
unsigned long i = 0;
unsigned long nr = compound_nr(page);
int error;
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(index != round_down(index, nr), page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
VM_BUG_ON(expected && PageTransHuge(page));
page_ref_add(page, nr);
page->mapping = mapping;
page->index = index;
if (!PageSwapCache(page)) {
error = mem_cgroup_charge(page, charge_mm, gfp);
if (error) {
if (PageTransHuge(page)) {
count_vm_event(THP_FILE_FALLBACK);
count_vm_event(THP_FILE_FALLBACK_CHARGE);
}
goto error;
}
}
cgroup_throttle_swaprate(page, gfp);
do {
void *entry;
xas_lock_irq(&xas);
entry = xas_find_conflict(&xas);
if (entry != expected)
xas_set_err(&xas, -EEXIST);
xas_create_range(&xas);
if (xas_error(&xas))
goto unlock;
next:
xas_store(&xas, page);
if (++i < nr) {
xas_next(&xas);
goto next;
}
if (PageTransHuge(page)) {
count_vm_event(THP_FILE_ALLOC);
__inc_lruvec_page_state(page, NR_SHMEM_THPS);
}
mapping->nrpages += nr;
__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
__mod_lruvec_page_state(page, NR_SHMEM, nr);
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp));
if (xas_error(&xas)) {
error = xas_error(&xas);
goto error;
}
return 0;
error:
page->mapping = NULL;
page_ref_sub(page, nr);
return error;
}
/*
* Like delete_from_page_cache, but substitutes swap for page.
*/
static void shmem_delete_from_page_cache(struct page *page, void *radswap)
{
struct address_space *mapping = page->mapping;
int error;
VM_BUG_ON_PAGE(PageCompound(page), page);
xa_lock_irq(&mapping->i_pages);
error = shmem_replace_entry(mapping, page->index, page, radswap);
page->mapping = NULL;
mapping->nrpages--;
__dec_lruvec_page_state(page, NR_FILE_PAGES);
__dec_lruvec_page_state(page, NR_SHMEM);
xa_unlock_irq(&mapping->i_pages);
put_page(page);
BUG_ON(error);
}
/*
* Remove swap entry from page cache, free the swap and its page cache.
*/
static int shmem_free_swap(struct address_space *mapping,
pgoff_t index, void *radswap)
{
void *old;
old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
if (old != radswap)
return -ENOENT;
free_swap_and_cache(radix_to_swp_entry(radswap));
return 0;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given offsets are swapped out.
*
* This is safe to call without i_mutex or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_partial_swap_usage(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
unsigned long swapped = 0;
rcu_read_lock();
xas_for_each(&xas, page, end - 1) {
if (xas_retry(&xas, page))
continue;
if (xa_is_value(page))
swapped++;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
}
rcu_read_unlock();
return swapped << PAGE_SHIFT;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given vma is swapped out.
*
* This is safe to call without i_mutex or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_swap_usage(struct vm_area_struct *vma)
{
struct inode *inode = file_inode(vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
unsigned long swapped;
/* Be careful as we don't hold info->lock */
swapped = READ_ONCE(info->swapped);
/*
* The easier cases are when the shmem object has nothing in swap, or
* the vma maps it whole. Then we can simply use the stats that we
* already track.
*/
if (!swapped)
return 0;
if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
return swapped << PAGE_SHIFT;
/* Here comes the more involved part */
return shmem_partial_swap_usage(mapping,
linear_page_index(vma, vma->vm_start),
linear_page_index(vma, vma->vm_end));
}
/*
* SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
*/
void shmem_unlock_mapping(struct address_space *mapping)
{
struct pagevec pvec;
pgoff_t indices[PAGEVEC_SIZE];
pgoff_t index = 0;
pagevec_init(&pvec);
/*
* Minor point, but we might as well stop if someone else SHM_LOCKs it.
*/
while (!mapping_unevictable(mapping)) {
/*
* Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
* has finished, if it hits a row of PAGEVEC_SIZE swap entries.
*/
pvec.nr = find_get_entries(mapping, index,
PAGEVEC_SIZE, pvec.pages, indices);
if (!pvec.nr)
break;
index = indices[pvec.nr - 1] + 1;
pagevec_remove_exceptionals(&pvec);
check_move_unevictable_pages(&pvec);
pagevec_release(&pvec);
cond_resched();
}
}
/*
* Check whether a hole-punch or truncation needs to split a huge page,
* returning true if no split was required, or the split has been successful.
*
* Eviction (or truncation to 0 size) should never need to split a huge page;
* but in rare cases might do so, if shmem_undo_range() failed to trylock on
* head, and then succeeded to trylock on tail.
*
* A split can only succeed when there are no additional references on the
* huge page: so the split below relies upon find_get_entries() having stopped
* when it found a subpage of the huge page, without getting further references.
*/
static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
{
if (!PageTransCompound(page))
return true;
/* Just proceed to delete a huge page wholly within the range punched */
if (PageHead(page) &&
page->index >= start && page->index + HPAGE_PMD_NR <= end)
return true;
/* Try to split huge page, so we can truly punch the hole or truncate */
return split_huge_page(page) >= 0;
}
/*
* Remove range of pages and swap entries from page cache, and free them.
* If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
*/
static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
bool unfalloc)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
pgoff_t end = (lend + 1) >> PAGE_SHIFT;
unsigned int partial_start = lstart & (PAGE_SIZE - 1);
unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
struct pagevec pvec;
pgoff_t indices[PAGEVEC_SIZE];
long nr_swaps_freed = 0;
pgoff_t index;
int i;
if (lend == -1)
end = -1; /* unsigned, so actually very big */
pagevec_init(&pvec);
index = start;
while (index < end) {
pvec.nr = find_get_entries(mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE),
pvec.pages, indices);
if (!pvec.nr)
break;
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
index = indices[i];
if (index >= end)
break;
if (xa_is_value(page)) {
if (unfalloc)
continue;
nr_swaps_freed += !shmem_free_swap(mapping,
index, page);
continue;
}
VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
if (!trylock_page(page))
continue;
if ((!unfalloc || !PageUptodate(page)) &&
page_mapping(page) == mapping) {
VM_BUG_ON_PAGE(PageWriteback(page), page);
if (shmem_punch_compound(page, start, end))
truncate_inode_page(mapping, page);
}
unlock_page(page);
}
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
cond_resched();
index++;
}
if (partial_start) {
struct page *page = NULL;
shmem_getpage(inode, start - 1, &page, SGP_READ);
if (page) {
unsigned int top = PAGE_SIZE;
if (start > end) {
top = partial_end;
partial_end = 0;
}
zero_user_segment(page, partial_start, top);
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
}
if (partial_end) {
struct page *page = NULL;
shmem_getpage(inode, end, &page, SGP_READ);
if (page) {
zero_user_segment(page, 0, partial_end);
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
}
if (start >= end)
return;
index = start;
while (index < end) {
cond_resched();
pvec.nr = find_get_entries(mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE),
pvec.pages, indices);
if (!pvec.nr) {
/* If all gone or hole-punch or unfalloc, we're done */
if (index == start || end != -1)
break;
/* But if truncating, restart to make sure all gone */
index = start;
continue;
}
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
index = indices[i];
if (index >= end)
break;
if (xa_is_value(page)) {
if (unfalloc)
continue;
if (shmem_free_swap(mapping, index, page)) {
/* Swap was replaced by page: retry */
index--;
break;
}
nr_swaps_freed++;
continue;
}
lock_page(page);
if (!unfalloc || !PageUptodate(page)) {
if (page_mapping(page) != mapping) {
/* Page was replaced by swap: retry */
unlock_page(page);
index--;
break;
}
VM_BUG_ON_PAGE(PageWriteback(page), page);
if (shmem_punch_compound(page, start, end))
truncate_inode_page(mapping, page);
else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
/* Wipe the page and don't get stuck */
clear_highpage(page);
flush_dcache_page(page);
set_page_dirty(page);
if (index <
round_up(start, HPAGE_PMD_NR))
start = index + 1;
}
}
unlock_page(page);
}
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
index++;
}
spin_lock_irq(&info->lock);
info->swapped -= nr_swaps_freed;
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
}
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
shmem_undo_range(inode, lstart, lend, false);
inode->i_ctime = inode->i_mtime = current_time(inode);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
static int shmem_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = path->dentry->d_inode;
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
spin_lock_irq(&info->lock);
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
}
generic_fillattr(inode, stat);
if (is_huge_enabled(sb_info))
stat->blksize = HPAGE_PMD_SIZE;
return 0;
}
static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
int error;
error = setattr_prepare(dentry, attr);
if (error)
return error;
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
loff_t oldsize = inode->i_size;
loff_t newsize = attr->ia_size;
/* protected by i_mutex */
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
return -EPERM;
if (newsize != oldsize) {
error = shmem_reacct_size(SHMEM_I(inode)->flags,
oldsize, newsize);
if (error)
return error;
i_size_write(inode, newsize);
inode->i_ctime = inode->i_mtime = current_time(inode);
}
if (newsize <= oldsize) {
loff_t holebegin = round_up(newsize, PAGE_SIZE);
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
if (info->alloced)
shmem_truncate_range(inode,
newsize, (loff_t)-1);
/* unmap again to remove racily COWed private pages */
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
/*
* Part of the huge page can be beyond i_size: subject
* to shrink under memory pressure.
*/
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
spin_lock(&sbinfo->shrinklist_lock);
/*
* _careful to defend against unlocked access to
* ->shrink_list in shmem_unused_huge_shrink()
*/
if (list_empty_careful(&info->shrinklist)) {
list_add_tail(&info->shrinklist,
&sbinfo->shrinklist);
sbinfo->shrinklist_len++;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
}
}
setattr_copy(inode, attr);
if (attr->ia_valid & ATTR_MODE)
error = posix_acl_chmod(inode, inode->i_mode);
return error;
}
static void shmem_evict_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
if (shmem_mapping(inode->i_mapping)) {
shmem_unacct_size(info->flags, inode->i_size);
inode->i_size = 0;
shmem_truncate_range(inode, 0, (loff_t)-1);
if (!list_empty(&info->shrinklist)) {
spin_lock(&sbinfo->shrinklist_lock);
if (!list_empty(&info->shrinklist)) {
list_del_init(&info->shrinklist);
sbinfo->shrinklist_len--;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
while (!list_empty(&info->swaplist)) {
/* Wait while shmem_unuse() is scanning this inode... */
wait_var_event(&info->stop_eviction,
!atomic_read(&info->stop_eviction));
mutex_lock(&shmem_swaplist_mutex);
/* ...but beware of the race if we peeked too early */
if (!atomic_read(&info->stop_eviction))
list_del_init(&info->swaplist);
mutex_unlock(&shmem_swaplist_mutex);
}
}
simple_xattrs_free(&info->xattrs);
WARN_ON(inode->i_blocks);
shmem_free_inode(inode->i_sb);
clear_inode(inode);
}
extern struct swap_info_struct *swap_info[];
static int shmem_find_swap_entries(struct address_space *mapping,
pgoff_t start, unsigned int nr_entries,
struct page **entries, pgoff_t *indices,
unsigned int type, bool frontswap)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
swp_entry_t entry;
unsigned int ret = 0;
if (!nr_entries)
return 0;
rcu_read_lock();
xas_for_each(&xas, page, ULONG_MAX) {
if (xas_retry(&xas, page))
continue;
if (!xa_is_value(page))
continue;
entry = radix_to_swp_entry(page);
if (swp_type(entry) != type)
continue;
if (frontswap &&
!frontswap_test(swap_info[type], swp_offset(entry)))
continue;
indices[ret] = xas.xa_index;
entries[ret] = page;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
if (++ret == nr_entries)
break;
}
rcu_read_unlock();
return ret;
}
/*
* Move the swapped pages for an inode to page cache. Returns the count
* of pages swapped in, or the error in case of failure.
*/
static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
pgoff_t *indices)
{
int i = 0;
int ret = 0;
int error = 0;
struct address_space *mapping = inode->i_mapping;
for (i = 0; i < pvec.nr; i++) {
struct page *page = pvec.pages[i];
if (!xa_is_value(page))
continue;
error = shmem_swapin_page(inode, indices[i],
&page, SGP_CACHE,
mapping_gfp_mask(mapping),
NULL, NULL);
if (error == 0) {
unlock_page(page);
put_page(page);
ret++;
}
if (error == -ENOMEM)
break;
error = 0;
}
return error ? error : ret;
}
/*
* If swap found in inode, free it and move page from swapcache to filecache.
*/
static int shmem_unuse_inode(struct inode *inode, unsigned int type,
bool frontswap, unsigned long *fs_pages_to_unuse)
{
struct address_space *mapping = inode->i_mapping;
pgoff_t start = 0;
struct pagevec pvec;
pgoff_t indices[PAGEVEC_SIZE];
bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
int ret = 0;
pagevec_init(&pvec);
do {
unsigned int nr_entries = PAGEVEC_SIZE;
if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
nr_entries = *fs_pages_to_unuse;
pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
pvec.pages, indices,
type, frontswap);
if (pvec.nr == 0) {
ret = 0;
break;
}
ret = shmem_unuse_swap_entries(inode, pvec, indices);
if (ret < 0)
break;
if (frontswap_partial) {
*fs_pages_to_unuse -= ret;
if (*fs_pages_to_unuse == 0) {
ret = FRONTSWAP_PAGES_UNUSED;
break;
}
}
start = indices[pvec.nr - 1];
} while (true);
return ret;
}
/*
* Read all the shared memory data that resides in the swap
* device 'type' back into memory, so the swap device can be
* unused.
*/
int shmem_unuse(unsigned int type, bool frontswap,
unsigned long *fs_pages_to_unuse)
{
struct shmem_inode_info *info, *next;
int error = 0;
if (list_empty(&shmem_swaplist))
return 0;
mutex_lock(&shmem_swaplist_mutex);
list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
if (!info->swapped) {
list_del_init(&info->swaplist);
continue;
}
/*
* Drop the swaplist mutex while searching the inode for swap;
* but before doing so, make sure shmem_evict_inode() will not
* remove placeholder inode from swaplist, nor let it be freed
* (igrab() would protect from unlink, but not from unmount).
*/
atomic_inc(&info->stop_eviction);
mutex_unlock(&shmem_swaplist_mutex);
error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
fs_pages_to_unuse);
cond_resched();
mutex_lock(&shmem_swaplist_mutex);
next = list_next_entry(info, swaplist);
if (!info->swapped)
list_del_init(&info->swaplist);
if (atomic_dec_and_test(&info->stop_eviction))
wake_up_var(&info->stop_eviction);
if (error)
break;
}
mutex_unlock(&shmem_swaplist_mutex);
return error;
}
/*
* Move the page from the page cache to the swap cache.
*/
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
{
struct shmem_inode_info *info;
struct address_space *mapping;
struct inode *inode;
swp_entry_t swap;
pgoff_t index;
VM_BUG_ON_PAGE(PageCompound(page), page);
BUG_ON(!PageLocked(page));
mapping = page->mapping;
index = page->index;
inode = mapping->host;
info = SHMEM_I(inode);
if (info->flags & VM_LOCKED)
goto redirty;
if (!total_swap_pages)
goto redirty;
/*
* Our capabilities prevent regular writeback or sync from ever calling
* shmem_writepage; but a stacking filesystem might use ->writepage of
* its underlying filesystem, in which case tmpfs should write out to
* swap only in response to memory pressure, and not for the writeback
* threads or sync.
*/
if (!wbc->for_reclaim) {
WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
goto redirty;
}
/*
* This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
* value into swapfile.c, the only way we can correctly account for a
* fallocated page arriving here is now to initialize it and write it.
*
* That's okay for a page already fallocated earlier, but if we have
* not yet completed the fallocation, then (a) we want to keep track
* of this page in case we have to undo it, and (b) it may not be a
* good idea to continue anyway, once we're pushing into swap. So
* reactivate the page, and let shmem_fallocate() quit when too many.
*/
if (!PageUptodate(page)) {
if (inode->i_private) {
struct shmem_falloc *shmem_falloc;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
!shmem_falloc->waitq &&
index >= shmem_falloc->start &&
index < shmem_falloc->next)
shmem_falloc->nr_unswapped++;
else
shmem_falloc = NULL;
spin_unlock(&inode->i_lock);
if (shmem_falloc)
goto redirty;
}
clear_highpage(page);
flush_dcache_page(page);
SetPageUptodate(page);
}
swap = get_swap_page(page);
if (!swap.val)
goto redirty;
/*
* Add inode to shmem_unuse()'s list of swapped-out inodes,
* if it's not already there. Do it now before the page is
* moved to swap cache, when its pagelock no longer protects
* the inode from eviction. But don't unlock the mutex until
* we've incremented swapped, because shmem_unuse_inode() will
* prune a !swapped inode from the swaplist under this mutex.
*/
mutex_lock(&shmem_swaplist_mutex);
if (list_empty(&info->swaplist))
list_add(&info->swaplist, &shmem_swaplist);
if (add_to_swap_cache(page, swap,
__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
NULL) == 0) {
spin_lock_irq(&info->lock);
shmem_recalc_inode(inode);
info->swapped++;
spin_unlock_irq(&info->lock);
swap_shmem_alloc(swap);
shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
mutex_unlock(&shmem_swaplist_mutex);
BUG_ON(page_mapped(page));
swap_writepage(page, wbc);
return 0;
}
mutex_unlock(&shmem_swaplist_mutex);
put_swap_page(page, swap);
redirty:
set_page_dirty(page);
if (wbc->for_reclaim)
return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
unlock_page(page);
return 0;
}
#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
char buffer[64];
if (!mpol || mpol->mode == MPOL_DEFAULT)
return; /* show nothing */
mpol_to_str(buffer, sizeof(buffer), mpol);
seq_printf(seq, ",mpol=%s", buffer);
}
static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
struct mempolicy *mpol = NULL;
if (sbinfo->mpol) {
spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
mpol = sbinfo->mpol;
mpol_get(mpol);
spin_unlock(&sbinfo->stat_lock);
}
return mpol;
}
#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
}
static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
return NULL;
}
#endif /* CONFIG_NUMA && CONFIG_TMPFS */
#ifndef CONFIG_NUMA
#define vm_policy vm_private_data
#endif
static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
struct shmem_inode_info *info, pgoff_t index)
{
/* Create a pseudo vma that just contains the policy */
vma_init(vma, NULL);
/* Bias interleave by inode number to distribute better across nodes */
vma->vm_pgoff = index + info->vfs_inode.i_ino;
vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
}
static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
{
/* Drop reference taken by mpol_shared_policy_lookup() */
mpol_cond_put(vma->vm_policy);
}
static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct vm_area_struct pvma;
struct page *page;
struct vm_fault vmf;
shmem_pseudo_vma_init(&pvma, info, index);
vmf.vma = &pvma;
vmf.address = 0;
page = swap_cluster_readahead(swap, gfp, &vmf);
shmem_pseudo_vma_destroy(&pvma);
return page;
}
static struct page *shmem_alloc_hugepage(gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct vm_area_struct pvma;
struct address_space *mapping = info->vfs_inode.i_mapping;
pgoff_t hindex;
struct page *page;
hindex = round_down(index, HPAGE_PMD_NR);
if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
XA_PRESENT))
return NULL;
shmem_pseudo_vma_init(&pvma, info, hindex);
page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
shmem_pseudo_vma_destroy(&pvma);
if (page)
prep_transhuge_page(page);
else
count_vm_event(THP_FILE_FALLBACK);
return page;
}
static struct page *shmem_alloc_page(gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct vm_area_struct pvma;
struct page *page;
shmem_pseudo_vma_init(&pvma, info, index);
page = alloc_page_vma(gfp, &pvma, 0);
shmem_pseudo_vma_destroy(&pvma);
return page;
}
static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
struct inode *inode,
pgoff_t index, bool huge)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct page *page;
int nr;
int err = -ENOSPC;
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
huge = false;
nr = huge ? HPAGE_PMD_NR : 1;
if (!shmem_inode_acct_block(inode, nr))
goto failed;
if (huge)
page = shmem_alloc_hugepage(gfp, info, index);
else
page = shmem_alloc_page(gfp, info, index);
if (page) {
__SetPageLocked(page);
__SetPageSwapBacked(page);
return page;
}
err = -ENOMEM;
shmem_inode_unacct_blocks(inode, nr);
failed:
return ERR_PTR(err);
}
/*
* When a page is moved from swapcache to shmem filecache (either by the
* usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
* shmem_unuse_inode()), it may have been read in earlier from swap, in
* ignorance of the mapping it belongs to. If that mapping has special
* constraints (like the gma500 GEM driver, which requires RAM below 4GB),
* we may need to copy to a suitable page before moving to filecache.
*
* In a future release, this may well be extended to respect cpuset and
* NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
* but for now it is a simple matter of zone.
*/
static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
{
return page_zonenum(page) > gfp_zone(gfp);
}
static int shmem_replace_page(struct page **pagep, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct page *oldpage, *newpage;
struct address_space *swap_mapping;
swp_entry_t entry;
pgoff_t swap_index;
int error;
oldpage = *pagep;
entry.val = page_private(oldpage);
swap_index = swp_offset(entry);
swap_mapping = page_mapping(oldpage);
/*
* We have arrived here because our zones are constrained, so don't
* limit chance of success by further cpuset and node constraints.
*/
gfp &= ~GFP_CONSTRAINT_MASK;
newpage = shmem_alloc_page(gfp, info, index);
if (!newpage)
return -ENOMEM;
get_page(newpage);
copy_highpage(newpage, oldpage);
flush_dcache_page(newpage);
__SetPageLocked(newpage);
__SetPageSwapBacked(newpage);
SetPageUptodate(newpage);
set_page_private(newpage, entry.val);
SetPageSwapCache(newpage);
/*
* Our caller will very soon move newpage out of swapcache, but it's
* a nice clean interface for us to replace oldpage by newpage there.
*/
xa_lock_irq(&swap_mapping->i_pages);
error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
if (!error) {
mem_cgroup_migrate(oldpage, newpage);
__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
}
xa_unlock_irq(&swap_mapping->i_pages);
if (unlikely(error)) {
/*
* Is this possible? I think not, now that our callers check
* both PageSwapCache and page_private after getting page lock;
* but be defensive. Reverse old to newpage for clear and free.
*/
oldpage = newpage;
} else {
lru_cache_add(newpage);
*pagep = newpage;
}
ClearPageSwapCache(oldpage);
set_page_private(oldpage, 0);
unlock_page(oldpage);
put_page(oldpage);
put_page(oldpage);
return error;
}
/*
* Swap in the page pointed to by *pagep.
* Caller has to make sure that *pagep contains a valid swapped page.
* Returns 0 and the page in pagep if success. On failure, returns the
* error code and NULL in *pagep.
*/
static int shmem_swapin_page(struct inode *inode, pgoff_t index,
struct page **pagep, enum sgp_type sgp,
gfp_t gfp, struct vm_area_struct *vma,
vm_fault_t *fault_type)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
struct page *page;
swp_entry_t swap;
int error;
VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
swap = radix_to_swp_entry(*pagep);
*pagep = NULL;
/* Look it up and read it in.. */
page = lookup_swap_cache(swap, NULL, 0);
if (!page) {
/* Or update major stats only when swapin succeeds?? */
if (fault_type) {
*fault_type |= VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(charge_mm, PGMAJFAULT);
}
/* Here we actually start the io */
page = shmem_swapin(swap, gfp, info, index);
if (!page) {
error = -ENOMEM;
goto failed;
}
}
/* We have to do this with page locked to prevent races */
lock_page(page);
if (!PageSwapCache(page) || page_private(page) != swap.val ||
!shmem_confirm_swap(mapping, index, swap)) {
error = -EEXIST;
goto unlock;
}
if (!PageUptodate(page)) {
error = -EIO;
goto failed;
}
wait_on_page_writeback(page);
/*
* Some architectures may have to restore extra metadata to the
* physical page after reading from swap.
*/
arch_swap_restore(swap, page);
if (shmem_should_replace_page(page, gfp)) {
error = shmem_replace_page(&page, gfp, info, index);
if (error)
goto failed;
}
error = shmem_add_to_page_cache(page, mapping, index,
swp_to_radix_entry(swap), gfp,
charge_mm);
if (error)
goto failed;
spin_lock_irq(&info->lock);
info->swapped--;
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
if (sgp == SGP_WRITE)
mark_page_accessed(page);
delete_from_swap_cache(page);
set_page_dirty(page);
swap_free(swap);
*pagep = page;
return 0;
failed:
if (!shmem_confirm_swap(mapping, index, swap))
error = -EEXIST;
unlock:
if (page) {
unlock_page(page);
put_page(page);
}
return error;
}
/*
* shmem_getpage_gfp - find page in cache, or get from swap, or allocate
*
* If we allocate a new one we do not mark it dirty. That's up to the
* vm. If we swap it in we mark it dirty since we also free the swap
* entry since a page cannot live in both the swap and page cache.
*
* vmf and fault_type are only supplied by shmem_fault:
* otherwise they are NULL.
*/
static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
struct page **pagep, enum sgp_type sgp, gfp_t gfp,
struct vm_area_struct *vma, struct vm_fault *vmf,
vm_fault_t *fault_type)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo;
struct mm_struct *charge_mm;
struct page *page;
enum sgp_type sgp_huge = sgp;
pgoff_t hindex = index;
int error;
int once = 0;
int alloced = 0;
if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
return -EFBIG;
if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
sgp = SGP_CACHE;
repeat:
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
return -EINVAL;
}
sbinfo = SHMEM_SB(inode->i_sb);
charge_mm = vma ? vma->vm_mm : current->mm;
page = find_lock_entry(mapping, index);
if (xa_is_value(page)) {
error = shmem_swapin_page(inode, index, &page,
sgp, gfp, vma, fault_type);
if (error == -EEXIST)
goto repeat;
*pagep = page;
return error;
}
if (page)
hindex = page->index;
if (page && sgp == SGP_WRITE)
mark_page_accessed(page);
/* fallocated page? */
if (page && !PageUptodate(page)) {
if (sgp != SGP_READ)
goto clear;
unlock_page(page);
put_page(page);
page = NULL;
hindex = index;
}
if (page || sgp == SGP_READ)
goto out;
/*
* Fast cache lookup did not find it:
* bring it back from swap or allocate.
*/
if (vma && userfaultfd_missing(vma)) {
*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
return 0;
}
/* shmem_symlink() */
if (!shmem_mapping(mapping))
goto alloc_nohuge;
if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
goto alloc_nohuge;
if (shmem_huge == SHMEM_HUGE_FORCE)
goto alloc_huge;
switch (sbinfo->huge) {
case SHMEM_HUGE_NEVER:
goto alloc_nohuge;
case SHMEM_HUGE_WITHIN_SIZE: {
loff_t i_size;
pgoff_t off;
off = round_up(index, HPAGE_PMD_NR);
i_size = round_up(i_size_read(inode), PAGE_SIZE);
if (i_size >= HPAGE_PMD_SIZE &&
i_size >> PAGE_SHIFT >= off)
goto alloc_huge;
fallthrough;
}
case SHMEM_HUGE_ADVISE:
if (sgp_huge == SGP_HUGE)
goto alloc_huge;
/* TODO: implement fadvise() hints */
goto alloc_nohuge;
}
alloc_huge:
page = shmem_alloc_and_acct_page(gfp, inode, index, true);
if (IS_ERR(page)) {
alloc_nohuge:
page = shmem_alloc_and_acct_page(gfp, inode,
index, false);
}
if (IS_ERR(page)) {
int retry = 5;
error = PTR_ERR(page);
page = NULL;
if (error != -ENOSPC)
goto unlock;
/*
* Try to reclaim some space by splitting a huge page
* beyond i_size on the filesystem.
*/
while (retry--) {
int ret;
ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
if (ret == SHRINK_STOP)
break;
if (ret)
goto alloc_nohuge;
}
goto unlock;
}
if (PageTransHuge(page))
hindex = round_down(index, HPAGE_PMD_NR);
else
hindex = index;
if (sgp == SGP_WRITE)
__SetPageReferenced(page);
error = shmem_add_to_page_cache(page, mapping, hindex,
NULL, gfp & GFP_RECLAIM_MASK,
charge_mm);
if (error)
goto unacct;
lru_cache_add(page);
spin_lock_irq(&info->lock);
info->alloced += compound_nr(page);
inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
alloced = true;
if (PageTransHuge(page) &&
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
hindex + HPAGE_PMD_NR - 1) {
/*
* Part of the huge page is beyond i_size: subject
* to shrink under memory pressure.
*/
spin_lock(&sbinfo->shrinklist_lock);
/*
* _careful to defend against unlocked access to
* ->shrink_list in shmem_unused_huge_shrink()
*/
if (list_empty_careful(&info->shrinklist)) {
list_add_tail(&info->shrinklist,
&sbinfo->shrinklist);
sbinfo->shrinklist_len++;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
/*
* Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
*/
if (sgp == SGP_FALLOC)
sgp = SGP_WRITE;
clear:
/*
* Let SGP_WRITE caller clear ends if write does not fill page;
* but SGP_FALLOC on a page fallocated earlier must initialize
* it now, lest undo on failure cancel our earlier guarantee.
*/
if (sgp != SGP_WRITE && !PageUptodate(page)) {
int i;
for (i = 0; i < compound_nr(page); i++) {
clear_highpage(page + i);
flush_dcache_page(page + i);
}
SetPageUptodate(page);
}
/* Perhaps the file has been truncated since we checked */
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
if (alloced) {
ClearPageDirty(page);
delete_from_page_cache(page);
spin_lock_irq(&info->lock);
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
}
error = -EINVAL;
goto unlock;
}
out:
*pagep = page + index - hindex;
return 0;
/*
* Error recovery.
*/
unacct:
shmem_inode_unacct_blocks(inode, compound_nr(page));
if (PageTransHuge(page)) {
unlock_page(page);
put_page(page);
goto alloc_nohuge;
}
unlock:
if (page) {
unlock_page(page);
put_page(page);
}
if (error == -ENOSPC && !once++) {
spin_lock_irq(&info->lock);
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
goto repeat;
}
if (error == -EEXIST)
goto repeat;
return error;
}
/*
* This is like autoremove_wake_function, but it removes the wait queue
* entry unconditionally - even if something else had already woken the
* target.
*/
static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
list_del_init(&wait->entry);
return ret;
}
static vm_fault_t shmem_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct inode *inode = file_inode(vma->vm_file);
gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
enum sgp_type sgp;
int err;
vm_fault_t ret = VM_FAULT_LOCKED;
/*
* Trinity finds that probing a hole which tmpfs is punching can
* prevent the hole-punch from ever completing: which in turn
* locks writers out with its hold on i_mutex. So refrain from
* faulting pages into the hole while it's being punched. Although
* shmem_undo_range() does remove the additions, it may be unable to
* keep up, as each new page needs its own unmap_mapping_range() call,
* and the i_mmap tree grows ever slower to scan if new vmas are added.
*
* It does not matter if we sometimes reach this check just before the
* hole-punch begins, so that one fault then races with the punch:
* we just need to make racing faults a rare case.
*
* The implementation below would be much simpler if we just used a
* standard mutex or completion: but we cannot take i_mutex in fault,
* and bloating every shmem inode for this unlikely case would be sad.
*/
if (unlikely(inode->i_private)) {
struct shmem_falloc *shmem_falloc;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
shmem_falloc->waitq &&
vmf->pgoff >= shmem_falloc->start &&
vmf->pgoff < shmem_falloc->next) {
struct file *fpin;
wait_queue_head_t *shmem_falloc_waitq;
DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
ret = VM_FAULT_NOPAGE;
fpin = maybe_unlock_mmap_for_io(vmf, NULL);
if (fpin)
ret = VM_FAULT_RETRY;
shmem_falloc_waitq = shmem_falloc->waitq;
prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->i_lock);
schedule();
/*
* shmem_falloc_waitq points into the shmem_fallocate()
* stack of the hole-punching task: shmem_falloc_waitq
* is usually invalid by the time we reach here, but
* finish_wait() does not dereference it in that case;
* though i_lock needed lest racing with wake_up_all().
*/
spin_lock(&inode->i_lock);
finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
spin_unlock(&inode->i_lock);
if (fpin)
fput(fpin);
return ret;
}
spin_unlock(&inode->i_lock);
}
sgp = SGP_CACHE;
if ((vma->vm_flags & VM_NOHUGEPAGE) ||
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
sgp = SGP_NOHUGE;
else if (vma->vm_flags & VM_HUGEPAGE)
sgp = SGP_HUGE;
err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
gfp, vma, vmf, &ret);
if (err)
return vmf_error(err);
return ret;
}
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long uaddr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *,
unsigned long, unsigned long, unsigned long, unsigned long);
unsigned long addr;
unsigned long offset;
unsigned long inflated_len;
unsigned long inflated_addr;
unsigned long inflated_offset;
if (len > TASK_SIZE)
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
addr = get_area(file, uaddr, len, pgoff, flags);
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
return addr;
if (IS_ERR_VALUE(addr))
return addr;
if (addr & ~PAGE_MASK)
return addr;
if (addr > TASK_SIZE - len)
return addr;
if (shmem_huge == SHMEM_HUGE_DENY)
return addr;
if (len < HPAGE_PMD_SIZE)
return addr;
if (flags & MAP_FIXED)
return addr;
/*
* Our priority is to support MAP_SHARED mapped hugely;
* and support MAP_PRIVATE mapped hugely too, until it is COWed.
* But if caller specified an address hint and we allocated area there
* successfully, respect that as before.
*/
if (uaddr == addr)
return addr;
if (shmem_huge != SHMEM_HUGE_FORCE) {
struct super_block *sb;
if (file) {
VM_BUG_ON(file->f_op != &shmem_file_operations);
sb = file_inode(file)->i_sb;
} else {
/*
* Called directly from mm/mmap.c, or drivers/char/mem.c
* for "/dev/zero", to create a shared anonymous object.
*/
if (IS_ERR(shm_mnt))
return addr;
sb = shm_mnt->mnt_sb;
}
if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
return addr;
}
offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
return addr;
if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
return addr;
inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
if (inflated_len > TASK_SIZE)
return addr;
if (inflated_len < len)
return addr;
inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
if (IS_ERR_VALUE(inflated_addr))
return addr;
if (inflated_addr & ~PAGE_MASK)
return addr;
inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
inflated_addr += offset - inflated_offset;
if (inflated_offset > offset)
inflated_addr += HPAGE_PMD_SIZE;
if (inflated_addr > TASK_SIZE - len)
return addr;
return inflated_addr;
}
#ifdef CONFIG_NUMA
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
{
struct inode *inode = file_inode(vma->vm_file);
return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
}
static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr)
{
struct inode *inode = file_inode(vma->vm_file);
pgoff_t index;
index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
}
#endif
int shmem_lock(struct file *file, int lock, struct user_struct *user)
{
struct inode *inode = file_inode(file);
struct shmem_inode_info *info = SHMEM_I(inode);
int retval = -ENOMEM;
/*
* What serializes the accesses to info->flags?
* ipc_lock_object() when called from shmctl_do_lock(),
* no serialization needed when called from shm_destroy().
*/
if (lock && !(info->flags & VM_LOCKED)) {
if (!user_shm_lock(inode->i_size, user))
goto out_nomem;
info->flags |= VM_LOCKED;
mapping_set_unevictable(file->f_mapping);
}
if (!lock && (info->flags & VM_LOCKED) && user) {
user_shm_unlock(inode->i_size, user);
info->flags &= ~VM_LOCKED;
mapping_clear_unevictable(file->f_mapping);
}
retval = 0;
out_nomem:
return retval;
}
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct shmem_inode_info *info = SHMEM_I(file_inode(file));
if (info->seals & F_SEAL_FUTURE_WRITE) {
/*
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
* "future write" seal active.
*/
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
return -EPERM;
/*
* Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
* MAP_SHARED and read-only, take care to not allow mprotect to
* revert protections on such mappings. Do this only for shared
* mappings. For private mappings, don't need to mask
* VM_MAYWRITE as we still want them to be COW-writable.
*/
if (vma->vm_flags & VM_SHARED)
vma->vm_flags &= ~(VM_MAYWRITE);
}
/* arm64 - allow memory tagging on RAM-based files */
vma->vm_flags |= VM_MTE_ALLOWED;
file_accessed(file);
vma->vm_ops = &shmem_vm_ops;
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
(vma->vm_end & HPAGE_PMD_MASK)) {
khugepaged_enter(vma, vma->vm_flags);
}
return 0;
}
static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
struct inode *inode;
struct shmem_inode_info *info;
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
if (shmem_reserve_inode(sb, &ino))
return NULL;
inode = new_inode(sb);
if (inode) {
inode->i_ino = ino;
inode_init_owner(inode, dir, mode);
inode->i_blocks = 0;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inode->i_generation = prandom_u32();
info = SHMEM_I(inode);
memset(info, 0, (char *)inode - (char *)info);
spin_lock_init(&info->lock);
atomic_set(&info->stop_eviction, 0);
info->seals = F_SEAL_SEAL;
info->flags = flags & VM_NORESERVE;
INIT_LIST_HEAD(&info->shrinklist);
INIT_LIST_HEAD(&info->swaplist);
simple_xattrs_init(&info->xattrs);
cache_no_acl(inode);
switch (mode & S_IFMT) {
default:
inode->i_op = &shmem_special_inode_operations;
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_inode_operations;
inode->i_fop = &shmem_file_operations;
mpol_shared_policy_init(&info->policy,
shmem_get_sbmpol(sbinfo));
break;
case S_IFDIR:
inc_nlink(inode);
/* Some things misbehave if size == 0 on a directory */
inode->i_size = 2 * BOGO_DIRENT_SIZE;
inode->i_op = &shmem_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
break;
case S_IFLNK:
/*
* Must not load anything in the rbtree,
* mpol_free_shared_policy will not be called.
*/
mpol_shared_policy_init(&info->policy, NULL);
break;
}
lockdep_annotate_inode_mutex_key(inode);
} else
shmem_free_inode(sb);
return inode;
}
static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
bool zeropage,
struct page **pagep)
{
struct inode *inode = file_inode(dst_vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
gfp_t gfp = mapping_gfp_mask(mapping);
pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
spinlock_t *ptl;
void *page_kaddr;
struct page *page;
pte_t _dst_pte, *dst_pte;
int ret;
pgoff_t offset, max_off;
ret = -ENOMEM;
if (!shmem_inode_acct_block(inode, 1))
goto out;
if (!*pagep) {
page = shmem_alloc_page(gfp, info, pgoff);
if (!page)
goto out_unacct_blocks;
if (!zeropage) { /* mcopy_atomic */
page_kaddr = kmap_atomic(page);
ret = copy_from_user(page_kaddr,
(const void __user *)src_addr,
PAGE_SIZE);
kunmap_atomic(page_kaddr);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
*pagep = page;
shmem_inode_unacct_blocks(inode, 1);
/* don't free the page */
return -ENOENT;
}
} else { /* mfill_zeropage_atomic */
clear_highpage(page);
}
} else {
page = *pagep;
*pagep = NULL;
}
VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
__SetPageLocked(page);
__SetPageSwapBacked(page);
__SetPageUptodate(page);
ret = -EFAULT;
offset = linear_page_index(dst_vma, dst_addr);
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(offset >= max_off))
goto out_release;
ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
gfp & GFP_RECLAIM_MASK, dst_mm);
if (ret)
goto out_release;
_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
if (dst_vma->vm_flags & VM_WRITE)
_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
else {
/*
* We don't set the pte dirty if the vma has no
* VM_WRITE permission, so mark the page dirty or it
* could be freed from under us. We could do it
* unconditionally before unlock_page(), but doing it
* only if VM_WRITE is not set is faster.
*/
set_page_dirty(page);
}
dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
ret = -EFAULT;
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(offset >= max_off))
goto out_release_unlock;
ret = -EEXIST;
if (!pte_none(*dst_pte))
goto out_release_unlock;
lru_cache_add(page);
spin_lock_irq(&info->lock);
info->alloced++;
inode->i_blocks += BLOCKS_PER_PAGE;
shmem_recalc_inode(inode);
spin_unlock_irq(&info->lock);
inc_mm_counter(dst_mm, mm_counter_file(page));
page_add_file_rmap(page, false);
set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
pte_unmap_unlock(dst_pte, ptl);
unlock_page(page);
ret = 0;
out:
return ret;
out_release_unlock:
pte_unmap_unlock(dst_pte, ptl);
ClearPageDirty(page);
delete_from_page_cache(page);
out_release:
unlock_page(page);
put_page(page);
out_unacct_blocks:
shmem_inode_unacct_blocks(inode, 1);
goto out;
}
int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
struct page **pagep)
{
return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
dst_addr, src_addr, false, pagep);
}
int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr)
{
struct page *page = NULL;
return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
dst_addr, 0, true, &page);
}
#ifdef CONFIG_TMPFS
static const struct inode_operations shmem_symlink_inode_operations;
static const struct inode_operations shmem_short_symlink_operations;
#ifdef CONFIG_TMPFS_XATTR
static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
#else
#define shmem_initxattrs NULL
#endif
static int
shmem_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t index = pos >> PAGE_SHIFT;
/* i_mutex is held by caller */
if (unlikely(info->seals & (F_SEAL_GROW |
F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
return -EPERM;
if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
return -EPERM;
}
return shmem_getpage(inode, index, pagep, SGP_WRITE);
}
static int
shmem_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
if (pos + copied > inode->i_size)
i_size_write(inode, pos + copied);
if (!PageUptodate(page)) {
struct page *head = compound_head(page);
if (PageTransCompound(page)) {
int i;
for (i = 0; i < HPAGE_PMD_NR; i++) {
if (head + i == page)
continue;
clear_highpage(head + i);
flush_dcache_page(head + i);
}
}
if (copied < PAGE_SIZE) {
unsigned from = pos & (PAGE_SIZE - 1);
zero_user_segments(page, 0, from,
from + copied, PAGE_SIZE);
}
SetPageUptodate(head);
}
set_page_dirty(page);
unlock_page(page);
put_page(page);
return copied;
}
static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
pgoff_t index;
unsigned long offset;
enum sgp_type sgp = SGP_READ;
int error = 0;
ssize_t retval = 0;
loff_t *ppos = &iocb->ki_pos;
/*
* Might this read be for a stacking filesystem? Then when reading
* holes of a sparse file, we actually need to allocate those pages,
* and even mark them dirty, so it cannot exceed the max_blocks limit.
*/
if (!iter_is_iovec(to))
sgp = SGP_CACHE;
index = *ppos >> PAGE_SHIFT;
offset = *ppos & ~PAGE_MASK;
for (;;) {
struct page *page = NULL;
pgoff_t end_index;
unsigned long nr, ret;
loff_t i_size = i_size_read(inode);
end_index = i_size >> PAGE_SHIFT;
if (index > end_index)
break;
if (index == end_index) {
nr = i_size & ~PAGE_MASK;
if (nr <= offset)
break;
}
error = shmem_getpage(inode, index, &page, sgp);
if (error) {
if (error == -EINVAL)
error = 0;
break;
}
if (page) {
if (sgp == SGP_CACHE)
set_page_dirty(page);
unlock_page(page);
}
/*
* We must evaluate after, since reads (unlike writes)
* are called without i_mutex protection against truncate
*/
nr = PAGE_SIZE;
i_size = i_size_read(inode);
end_index = i_size >> PAGE_SHIFT;
if (index == end_index) {
nr = i_size & ~PAGE_MASK;
if (nr <= offset) {
if (page)
put_page(page);
break;
}
}
nr -= offset;
if (page) {
/*
* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
/*
* Mark the page accessed if we read the beginning.
*/
if (!offset)
mark_page_accessed(page);
} else {
page = ZERO_PAGE(0);
get_page(page);
}
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*/
ret = copy_page_to_iter(page, offset, nr, to);
retval += ret;
offset += ret;
index += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
put_page(page);
if (!iov_iter_count(to))
break;
if (ret < nr) {
error = -EFAULT;
break;
}
cond_resched();
}
*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
file_accessed(file);
return retval ? retval : error;
}
/*
* llseek SEEK_DATA or SEEK_HOLE through the page cache.
*/
static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
pgoff_t index, pgoff_t end, int whence)
{
struct page *page;
struct pagevec pvec;
pgoff_t indices[PAGEVEC_SIZE];
bool done = false;
int i;
pagevec_init(&pvec);
pvec.nr = 1; /* start small: we may be there already */
while (!done) {
pvec.nr = find_get_entries(mapping, index,
pvec.nr, pvec.pages, indices);
if (!pvec.nr) {
if (whence == SEEK_DATA)
index = end;
break;
}
for (i = 0; i < pvec.nr; i++, index++) {
if (index < indices[i]) {
if (whence == SEEK_HOLE) {
done = true;
break;
}
index = indices[i];
}
page = pvec.pages[i];
if (page && !xa_is_value(page)) {
if (!PageUptodate(page))
page = NULL;
}
if (index >= end ||
(page && whence == SEEK_DATA) ||
(!page && whence == SEEK_HOLE)) {
done = true;
break;
}
}
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
pvec.nr = PAGEVEC_SIZE;
cond_resched();
}
return index;
}
static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
{
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
pgoff_t start, end;
loff_t new_offset;
if (whence != SEEK_DATA && whence != SEEK_HOLE)
return generic_file_llseek_size(file, offset, whence,
MAX_LFS_FILESIZE, i_size_read(inode));
inode_lock(inode);
/* We're holding i_mutex so we can access i_size directly */
if (offset < 0 || offset >= inode->i_size)
offset = -ENXIO;
else {
start = offset >> PAGE_SHIFT;
end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
new_offset = shmem_seek_hole_data(mapping, start, end, whence);
new_offset <<= PAGE_SHIFT;
if (new_offset > offset) {
if (new_offset < inode->i_size)
offset = new_offset;
else if (whence == SEEK_DATA)
offset = -ENXIO;
else
offset = inode->i_size;
}
}
if (offset >= 0)
offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
inode_unlock(inode);
return offset;
}
static long shmem_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_falloc shmem_falloc;
pgoff_t start, index, end;
int error;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
inode_lock(inode);
if (mode & FALLOC_FL_PUNCH_HOLE) {
struct address_space *mapping = file->f_mapping;
loff_t unmap_start = round_up(offset, PAGE_SIZE);
loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
/* protected by i_mutex */
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
error = -EPERM;
goto out;
}
shmem_falloc.waitq = &shmem_falloc_waitq;
shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
shmem_truncate_range(inode, offset, offset + len - 1);
/* No need to unmap again: hole-punching leaves COWed pages */
spin_lock(&inode->i_lock);
inode->i_private = NULL;
wake_up_all(&shmem_falloc_waitq);
WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
spin_unlock(&inode->i_lock);
error = 0;
goto out;
}
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
error = inode_newsize_ok(inode, offset + len);
if (error)
goto out;
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
error = -EPERM;
goto out;
}
start = offset >> PAGE_SHIFT;
end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Try to avoid a swapstorm if len is impossible to satisfy */
if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
error = -ENOSPC;
goto out;
}
shmem_falloc.waitq = NULL;
shmem_falloc.start = start;
shmem_falloc.next = start;
shmem_falloc.nr_falloced = 0;
shmem_falloc.nr_unswapped = 0;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
for (index = start; index < end; index++) {
struct page *page;
/*
* Good, the fallocate(2) manpage permits EINTR: we may have
* been interrupted because we are using up too much memory.
*/
if (signal_pending(current))
error = -EINTR;
else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
error = -ENOMEM;
else
error = shmem_getpage(inode, index, &page, SGP_FALLOC);
if (error) {
/* Remove the !PageUptodate pages we added */
if (index > start) {
shmem_undo_range(inode,
(loff_t)start << PAGE_SHIFT,
((loff_t)index << PAGE_SHIFT) - 1, true);
}
goto undone;
}
/*
* Inform shmem_writepage() how far we have reached.
* No need for lock or barrier: we have the page lock.
*/
shmem_falloc.next++;
if (!PageUptodate(page))
shmem_falloc.nr_falloced++;
/*
* If !PageUptodate, leave it that way so that freeable pages
* can be recognized if we need to rollback on error later.
* But set_page_dirty so that memory pressure will swap rather
* than free the pages we are allocating (and SGP_CACHE pages
* might still be clean: we now need to mark those dirty too).
*/
set_page_dirty(page);
unlock_page(page);
put_page(page);
cond_resched();
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
i_size_write(inode, offset + len);
inode->i_ctime = current_time(inode);
undone:
spin_lock(&inode->i_lock);
inode->i_private = NULL;
spin_unlock(&inode->i_lock);
out:
inode_unlock(inode);
return error;
}
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
buf->f_type = TMPFS_MAGIC;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
if (sbinfo->max_blocks) {
buf->f_blocks = sbinfo->max_blocks;
buf->f_bavail =
buf->f_bfree = sbinfo->max_blocks -
percpu_counter_sum(&sbinfo->used_blocks);
}
if (sbinfo->max_inodes) {
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_inodes;
}
/* else leave those fields 0 like simple_statfs */
return 0;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int
shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
int error = -ENOSPC;
inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
if (inode) {
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
error = security_inode_init_security(inode, dir,
&dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = 0;
dir->i_size += BOGO_DIRENT_SIZE;
dir->i_ctime = dir->i_mtime = current_time(dir);
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
}
return error;
out_iput:
iput(inode);
return error;
}
static int
shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct inode *inode;
int error = -ENOSPC;
inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
if (inode) {
error = security_inode_init_security(inode, dir,
NULL,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
d_tmpfile(dentry, inode);
}
return error;
out_iput:
iput(inode);
return error;
}
static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int error;
if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
return error;
inc_nlink(dir);
return 0;
}
static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
}
/*
* Link a file..
*/
static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
int ret = 0;
/*
* No ordinary (disk based) filesystem counts links as inodes;
* but each new link needs a new dentry, pinning lowmem, and
* tmpfs dentries cannot be pruned until they are unlinked.
* But if an O_TMPFILE file is linked into the tmpfs, the
* first link must skip that, to get the accounting right.
*/
if (inode->i_nlink) {
ret = shmem_reserve_inode(inode->i_sb, NULL);
if (ret)
goto out;
}
dir->i_size += BOGO_DIRENT_SIZE;
inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
inc_nlink(inode);
ihold(inode); /* New dentry reference */
dget(dentry); /* Extra pinning count for the created dentry */
d_instantiate(dentry, inode);
out:
return ret;
}
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
shmem_free_inode(inode->i_sb);
dir->i_size -= BOGO_DIRENT_SIZE;
inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
drop_nlink(inode);
dput(dentry); /* Undo the count from "create" - this does all the work */
return 0;
}
static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
{
if (!simple_empty(dentry))
return -ENOTEMPTY;
drop_nlink(d_inode(dentry));
drop_nlink(dir);
return shmem_unlink(dir, dentry);
}
static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
{
bool old_is_dir = d_is_dir(old_dentry);
bool new_is_dir = d_is_dir(new_dentry);
if (old_dir != new_dir && old_is_dir != new_is_dir) {
if (old_is_dir) {
drop_nlink(old_dir);
inc_nlink(new_dir);
} else {
drop_nlink(new_dir);
inc_nlink(old_dir);
}
}
old_dir->i_ctime = old_dir->i_mtime =
new_dir->i_ctime = new_dir->i_mtime =
d_inode(old_dentry)->i_ctime =
d_inode(new_dentry)->i_ctime = current_time(old_dir);
return 0;
}
static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
{
struct dentry *whiteout;
int error;
whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
if (!whiteout)
return -ENOMEM;
error = shmem_mknod(old_dir, whiteout,
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
dput(whiteout);
if (error)
return error;
/*
* Cheat and hash the whiteout while the old dentry is still in
* place, instead of playing games with FS_RENAME_DOES_D_MOVE.
*
* d_lookup() will consistently find one of them at this point,
* not sure which one, but that isn't even important.
*/
d_rehash(whiteout);
return 0;
}
/*
* The VFS layer already does all the dentry stuff for rename,
* we just have to decrement the usage count for the target if
* it exists so that the VFS layer correctly free's it when it
* gets overwritten.
*/
static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
{
struct inode *inode = d_inode(old_dentry);
int they_are_dirs = S_ISDIR(inode->i_mode);
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
if (flags & RENAME_EXCHANGE)
return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
if (!simple_empty(new_dentry))
return -ENOTEMPTY;
if (flags & RENAME_WHITEOUT) {
int error;
error = shmem_whiteout(old_dir, old_dentry);
if (error)
return error;
}
if (d_really_is_positive(new_dentry)) {
(void) shmem_unlink(new_dir, new_dentry);
if (they_are_dirs) {
drop_nlink(d_inode(new_dentry));
drop_nlink(old_dir);
}
} else if (they_are_dirs) {
drop_nlink(old_dir);
inc_nlink(new_dir);
}
old_dir->i_size -= BOGO_DIRENT_SIZE;
new_dir->i_size += BOGO_DIRENT_SIZE;
old_dir->i_ctime = old_dir->i_mtime =
new_dir->i_ctime = new_dir->i_mtime =
inode->i_ctime = current_time(old_dir);
return 0;
}
static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
{
int error;
int len;
struct inode *inode;
struct page *page;
len = strlen(symname) + 1;
if (len > PAGE_SIZE)
return -ENAMETOOLONG;
inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
VM_NORESERVE);
if (!inode)
return -ENOSPC;
error = security_inode_init_security(inode, dir, &dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP) {
iput(inode);
return error;
}
inode->i_size = len-1;
if (len <= SHORT_SYMLINK_LEN) {
inode->i_link = kmemdup(symname, len, GFP_KERNEL);
if (!inode->i_link) {
iput(inode);
return -ENOMEM;
}
inode->i_op = &shmem_short_symlink_operations;
} else {
inode_nohighmem(inode);
error = shmem_getpage(inode, 0, &page, SGP_WRITE);
if (error) {
iput(inode);
return error;
}
inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_symlink_inode_operations;
memcpy(page_address(page), symname, len);
SetPageUptodate(page);
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
dir->i_size += BOGO_DIRENT_SIZE;
dir->i_ctime = dir->i_mtime = current_time(dir);
d_instantiate(dentry, inode);
dget(dentry);
return 0;
}
static void shmem_put_link(void *arg)
{
mark_page_accessed(arg);
put_page(arg);
}
static const char *shmem_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct page *page = NULL;
int error;
if (!dentry) {
page = find_get_page(inode->i_mapping, 0);
if (!page)
return ERR_PTR(-ECHILD);
if (!PageUptodate(page)) {
put_page(page);
return ERR_PTR(-ECHILD);
}
} else {
error = shmem_getpage(inode, 0, &page, SGP_READ);
if (error)
return ERR_PTR(error);
unlock_page(page);
}
set_delayed_call(done, shmem_put_link, page);
return page_address(page);
}
#ifdef CONFIG_TMPFS_XATTR
/*
* Superblocks without xattr inode operations may get some security.* xattr
* support from the LSM "for free". As soon as we have any other xattrs
* like ACLs, we also need to implement the security.* handlers at
* filesystem level, though.
*/
/*
* Callback for security_inode_init_security() for acquiring xattrs.
*/
static int shmem_initxattrs(struct inode *inode,
const struct xattr *xattr_array,
void *fs_info)
{
struct shmem_inode_info *info = SHMEM_I(inode);
const struct xattr *xattr;
struct simple_xattr *new_xattr;
size_t len;
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
if (!new_xattr)
return -ENOMEM;
len = strlen(xattr->name) + 1;
new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
GFP_KERNEL);
if (!new_xattr->name) {
kvfree(new_xattr);
return -ENOMEM;
}
memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN);
memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
xattr->name, len);
simple_xattr_list_add(&info->xattrs, new_xattr);
}
return 0;
}
static int shmem_xattr_handler_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(inode);
name = xattr_full_name(handler, name);
return simple_xattr_get(&info->xattrs, name, buffer, size);
}
static int shmem_xattr_handler_set(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct shmem_inode_info *info = SHMEM_I(inode);
name = xattr_full_name(handler, name);
return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
}
static const struct xattr_handler shmem_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler shmem_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler *shmem_xattr_handlers[] = {
#ifdef CONFIG_TMPFS_POSIX_ACL
&posix_acl_access_xattr_handler,
&posix_acl_default_xattr_handler,
#endif
&shmem_security_xattr_handler,
&shmem_trusted_xattr_handler,
NULL
};
static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
}
#endif /* CONFIG_TMPFS_XATTR */
static const struct inode_operations shmem_short_symlink_operations = {
.get_link = simple_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static const struct inode_operations shmem_symlink_inode_operations = {
.get_link = shmem_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static struct dentry *shmem_get_parent(struct dentry *child)
{
return ERR_PTR(-ESTALE);
}
static int shmem_match(struct inode *ino, void *vfh)
{
__u32 *fh = vfh;
__u64 inum = fh[2];
inum = (inum << 32) | fh[1];
return ino->i_ino == inum && fh[0] == ino->i_generation;
}
/* Find any alias of inode, but prefer a hashed alias */
static struct dentry *shmem_find_alias(struct inode *inode)
{
struct dentry *alias = d_find_alias(inode);
return alias ?: d_find_any_alias(inode);
}
static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct inode *inode;
struct dentry *dentry = NULL;
u64 inum;
if (fh_len < 3)
return NULL;
inum = fid->raw[2];
inum = (inum << 32) | fid->raw[1];
inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
shmem_match, fid->raw);
if (inode) {
dentry = shmem_find_alias(inode);
iput(inode);
}
return dentry;
}
static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
struct inode *parent)
{
if (*len < 3) {
*len = 3;
return FILEID_INVALID;
}
if (inode_unhashed(inode)) {
/* Unfortunately insert_inode_hash is not idempotent,
* so as we hash inodes here rather than at creation
* time, we need a lock to ensure we only try
* to do it once
*/
static DEFINE_SPINLOCK(lock);
spin_lock(&lock);
if (inode_unhashed(inode))
__insert_inode_hash(inode,
inode->i_ino + inode->i_generation);
spin_unlock(&lock);
}
fh[0] = inode->i_generation;
fh[1] = inode->i_ino;
fh[2] = ((__u64)inode->i_ino) >> 32;
*len = 3;
return 1;
}
static const struct export_operations shmem_export_ops = {
.get_parent = shmem_get_parent,
.encode_fh = shmem_encode_fh,
.fh_to_dentry = shmem_fh_to_dentry,
};
enum shmem_param {
Opt_gid,
Opt_huge,
Opt_mode,
Opt_mpol,
Opt_nr_blocks,
Opt_nr_inodes,
Opt_size,
Opt_uid,
Opt_inode32,
Opt_inode64,
};
static const struct constant_table shmem_param_enums_huge[] = {
{"never", SHMEM_HUGE_NEVER },
{"always", SHMEM_HUGE_ALWAYS },
{"within_size", SHMEM_HUGE_WITHIN_SIZE },
{"advise", SHMEM_HUGE_ADVISE },
{}
};
const struct fs_parameter_spec shmem_fs_parameters[] = {
fsparam_u32 ("gid", Opt_gid),
fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
fsparam_u32oct("mode", Opt_mode),
fsparam_string("mpol", Opt_mpol),
fsparam_string("nr_blocks", Opt_nr_blocks),
fsparam_string("nr_inodes", Opt_nr_inodes),
fsparam_string("size", Opt_size),
fsparam_u32 ("uid", Opt_uid),
fsparam_flag ("inode32", Opt_inode32),
fsparam_flag ("inode64", Opt_inode64),
{}
};
static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
{
struct shmem_options *ctx = fc->fs_private;
struct fs_parse_result result;
unsigned long long size;
char *rest;
int opt;
opt = fs_parse(fc, shmem_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_size:
size = memparse(param->string, &rest);
if (*rest == '%') {
size <<= PAGE_SHIFT;
size *= totalram_pages();
do_div(size, 100);
rest++;
}
if (*rest)
goto bad_value;
ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_blocks:
ctx->blocks = memparse(param->string, &rest);
if (*rest)
goto bad_value;
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_inodes:
ctx->inodes = memparse(param->string, &rest);
if (*rest)
goto bad_value;
ctx->seen |= SHMEM_SEEN_INODES;
break;
case Opt_mode:
ctx->mode = result.uint_32 & 07777;
break;
case Opt_uid:
ctx->uid = make_kuid(current_user_ns(), result.uint_32);
if (!uid_valid(ctx->uid))
goto bad_value;
break;
case Opt_gid:
ctx->gid = make_kgid(current_user_ns(), result.uint_32);
if (!gid_valid(ctx->gid))
goto bad_value;
break;
case Opt_huge:
ctx->huge = result.uint_32;
if (ctx->huge != SHMEM_HUGE_NEVER &&
!(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
has_transparent_hugepage()))
goto unsupported_parameter;
ctx->seen |= SHMEM_SEEN_HUGE;
break;
case Opt_mpol:
if (IS_ENABLED(CONFIG_NUMA)) {
mpol_put(ctx->mpol);
ctx->mpol = NULL;
if (mpol_parse_str(param->string, &ctx->mpol))
goto bad_value;
break;
}
goto unsupported_parameter;
case Opt_inode32:
ctx->full_inums = false;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
case Opt_inode64:
if (sizeof(ino_t) < 8) {
return invalfc(fc,
"Cannot use inode64 with <64bit inums in kernel\n");
}
ctx->full_inums = true;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
}
return 0;
unsupported_parameter:
return invalfc(fc, "Unsupported parameter '%s'", param->key);
bad_value:
return invalfc(fc, "Bad value for '%s'", param->key);
}
static int shmem_parse_options(struct fs_context *fc, void *data)
{
char *options = data;
if (options) {
int err = security_sb_eat_lsm_opts(options, &fc->security);
if (err)
return err;
}
while (options != NULL) {
char *this_char = options;
for (;;) {
/*
* NUL-terminate this option: unfortunately,
* mount options form a comma-separated list,
* but mpol's nodelist may also contain commas.
*/
options = strchr(options, ',');
if (options == NULL)
break;
options++;
if (!isdigit(*options)) {
options[-1] = '\0';
break;
}
}
if (*this_char) {
char *value = strchr(this_char,'=');
size_t len = 0;
int err;
if (value) {
*value++ = '\0';
len = strlen(value);
}
err = vfs_parse_fs_string(fc, this_char, value, len);
if (err < 0)
return err;
}
}
return 0;
}
/*
* Reconfigure a shmem filesystem.
*
* Note that we disallow change from limited->unlimited blocks/inodes while any
* are in use; but we must separately disallow unlimited->limited, because in
* that case we have no record of how much is already in use.
*/
static int shmem_reconfigure(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
unsigned long inodes;
const char *err;
spin_lock(&sbinfo->stat_lock);
inodes = sbinfo->max_inodes - sbinfo->free_inodes;
if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
if (!sbinfo->max_blocks) {
err = "Cannot retroactively limit size";
goto out;
}
if (percpu_counter_compare(&sbinfo->used_blocks,
ctx->blocks) > 0) {
err = "Too small a size for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
if (!sbinfo->max_inodes) {
err = "Cannot retroactively limit inodes";
goto out;
}
if (ctx->inodes < inodes) {
err = "Too few inodes for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
sbinfo->next_ino > UINT_MAX) {
err = "Current inum too high to switch to 32-bit inums";
goto out;
}
if (ctx->seen & SHMEM_SEEN_HUGE)
sbinfo->huge = ctx->huge;
if (ctx->seen & SHMEM_SEEN_INUMS)
sbinfo->full_inums = ctx->full_inums;
if (ctx->seen & SHMEM_SEEN_BLOCKS)
sbinfo->max_blocks = ctx->blocks;
if (ctx->seen & SHMEM_SEEN_INODES) {
sbinfo->max_inodes = ctx->inodes;
sbinfo->free_inodes = ctx->inodes - inodes;
}
/*
* Preserve previous mempolicy unless mpol remount option was specified.
*/
if (ctx->mpol) {
mpol_put(sbinfo->mpol);
sbinfo->mpol = ctx->mpol; /* transfers initial ref */
ctx->mpol = NULL;
}
spin_unlock(&sbinfo->stat_lock);
return 0;
out:
spin_unlock(&sbinfo->stat_lock);
return invalfc(fc, "%s", err);
}
static int shmem_show_options(struct seq_file *seq, struct dentry *root)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
if (sbinfo->max_blocks != shmem_default_max_blocks())
seq_printf(seq, ",size=%luk",
sbinfo->max_blocks << (PAGE_SHIFT - 10));
if (sbinfo->max_inodes != shmem_default_max_inodes())
seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
if (sbinfo->mode != (0777 | S_ISVTX))
seq_printf(seq, ",mode=%03ho", sbinfo->mode);
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
seq_printf(seq, ",uid=%u",
from_kuid_munged(&init_user_ns, sbinfo->uid));
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
seq_printf(seq, ",gid=%u",
from_kgid_munged(&init_user_ns, sbinfo->gid));
/*
* Showing inode{64,32} might be useful even if it's the system default,
* since then people don't have to resort to checking both here and
* /proc/config.gz to confirm 64-bit inums were successfully applied
* (which may not even exist if IKCONFIG_PROC isn't enabled).
*
* We hide it when inode64 isn't the default and we are using 32-bit
* inodes, since that probably just means the feature isn't even under
* consideration.
*
* As such:
*
* +-----------------+-----------------+
* | TMPFS_INODE64=y | TMPFS_INODE64=n |
* +------------------+-----------------+-----------------+
* | full_inums=true | show | show |
* | full_inums=false | show | hide |
* +------------------+-----------------+-----------------+
*
*/
if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
if (sbinfo->huge)
seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
#endif
shmem_show_mpol(seq, sbinfo->mpol);
return 0;
}
#endif /* CONFIG_TMPFS */
static void shmem_put_super(struct super_block *sb)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
free_percpu(sbinfo->ino_batch);
percpu_counter_destroy(&sbinfo->used_blocks);
mpol_put(sbinfo->mpol);
kfree(sbinfo);
sb->s_fs_info = NULL;
}
static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct inode *inode;
struct shmem_sb_info *sbinfo;
int err = -ENOMEM;
/* Round up to L1_CACHE_BYTES to resist false sharing */
sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
L1_CACHE_BYTES), GFP_KERNEL);
if (!sbinfo)
return -ENOMEM;
sb->s_fs_info = sbinfo;
#ifdef CONFIG_TMPFS
/*
* Per default we only allow half of the physical ram per
* tmpfs instance, limiting inodes to one per page of lowmem;
* but the internal instance is left unlimited.
*/
if (!(sb->s_flags & SB_KERNMOUNT)) {
if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
ctx->blocks = shmem_default_max_blocks();
if (!(ctx->seen & SHMEM_SEEN_INODES))
ctx->inodes = shmem_default_max_inodes();
if (!(ctx->seen & SHMEM_SEEN_INUMS))
ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
} else {
sb->s_flags |= SB_NOUSER;
}
sb->s_export_op = &shmem_export_ops;
sb->s_flags |= SB_NOSEC;
#else
sb->s_flags |= SB_NOUSER;
#endif
sbinfo->max_blocks = ctx->blocks;
sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
if (sb->s_flags & SB_KERNMOUNT) {
sbinfo->ino_batch = alloc_percpu(ino_t);
if (!sbinfo->ino_batch)
goto failed;
}
sbinfo->uid = ctx->uid;
sbinfo->gid = ctx->gid;
sbinfo->full_inums = ctx->full_inums;
sbinfo->mode = ctx->mode;
sbinfo->huge = ctx->huge;
sbinfo->mpol = ctx->mpol;
ctx->mpol = NULL;
spin_lock_init(&sbinfo->stat_lock);
if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
goto failed;
spin_lock_init(&sbinfo->shrinklist_lock);
INIT_LIST_HEAD(&sbinfo->shrinklist);
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = TMPFS_MAGIC;
sb->s_op = &shmem_ops;
sb->s_time_gran = 1;
#ifdef CONFIG_TMPFS_XATTR
sb->s_xattr = shmem_xattr_handlers;
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
sb->s_flags |= SB_POSIXACL;
#endif
uuid_gen(&sb->s_uuid);
inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
if (!inode)
goto failed;
inode->i_uid = sbinfo->uid;
inode->i_gid = sbinfo->gid;
sb->s_root = d_make_root(inode);
if (!sb->s_root)
goto failed;
return 0;
failed:
shmem_put_super(sb);
return err;
}
static int shmem_get_tree(struct fs_context *fc)
{
return get_tree_nodev(fc, shmem_fill_super);
}
static void shmem_free_fc(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
if (ctx) {
mpol_put(ctx->mpol);
kfree(ctx);
}
}
static const struct fs_context_operations shmem_fs_context_ops = {
.free = shmem_free_fc,
.get_tree = shmem_get_tree,
#ifdef CONFIG_TMPFS
.parse_monolithic = shmem_parse_options,
.parse_param = shmem_parse_one,
.reconfigure = shmem_reconfigure,
#endif
};
static struct kmem_cache *shmem_inode_cachep;
static struct inode *shmem_alloc_inode(struct super_block *sb)
{
struct shmem_inode_info *info;
info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
if (!info)
return NULL;
return &info->vfs_inode;
}
static void shmem_free_in_core_inode(struct inode *inode)
{
if (S_ISLNK(inode->i_mode))
kfree(inode->i_link);
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
static void shmem_destroy_inode(struct inode *inode)
{
if (S_ISREG(inode->i_mode))
mpol_free_shared_policy(&SHMEM_I(inode)->policy);
}
static void shmem_init_inode(void *foo)
{
struct shmem_inode_info *info = foo;
inode_init_once(&info->vfs_inode);
}
static void shmem_init_inodecache(void)
{
shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
sizeof(struct shmem_inode_info),
0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
}
static void shmem_destroy_inodecache(void)
{
kmem_cache_destroy(shmem_inode_cachep);
}
const struct address_space_operations shmem_aops = {
.writepage = shmem_writepage,
.set_page_dirty = __set_page_dirty_no_writeback,
#ifdef CONFIG_TMPFS
.write_begin = shmem_write_begin,
.write_end = shmem_write_end,
#endif
#ifdef CONFIG_MIGRATION
.migratepage = migrate_page,
#endif
.error_remove_page = generic_error_remove_page,
};
EXPORT_SYMBOL(shmem_aops);
static const struct file_operations shmem_file_operations = {
.mmap = shmem_mmap,
.get_unmapped_area = shmem_get_unmapped_area,
#ifdef CONFIG_TMPFS
.llseek = shmem_file_llseek,
.read_iter = shmem_file_read_iter,
.write_iter = generic_file_write_iter,
.fsync = noop_fsync,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = shmem_fallocate,
#endif
};
static const struct inode_operations shmem_inode_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
.set_acl = simple_set_acl,
#endif
};
static const struct inode_operations shmem_dir_inode_operations = {
#ifdef CONFIG_TMPFS
.create = shmem_create,
.lookup = simple_lookup,
.link = shmem_link,
.unlink = shmem_unlink,
.symlink = shmem_symlink,
.mkdir = shmem_mkdir,
.rmdir = shmem_rmdir,
.mknod = shmem_mknod,
.rename = shmem_rename2,
.tmpfile = shmem_tmpfile,
#endif
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct inode_operations shmem_special_inode_operations = {
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct super_operations shmem_ops = {
.alloc_inode = shmem_alloc_inode,
.free_inode = shmem_free_in_core_inode,
.destroy_inode = shmem_destroy_inode,
#ifdef CONFIG_TMPFS
.statfs = shmem_statfs,
.show_options = shmem_show_options,
#endif
.evict_inode = shmem_evict_inode,
.drop_inode = generic_delete_inode,
.put_super = shmem_put_super,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
.nr_cached_objects = shmem_unused_huge_count,
.free_cached_objects = shmem_unused_huge_scan,
#endif
};
static const struct vm_operations_struct shmem_vm_ops = {
.fault = shmem_fault,
.map_pages = filemap_map_pages,
#ifdef CONFIG_NUMA
.set_policy = shmem_set_policy,
.get_policy = shmem_get_policy,
#endif
};
int shmem_init_fs_context(struct fs_context *fc)
{
struct shmem_options *ctx;
ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->mode = 0777 | S_ISVTX;
ctx->uid = current_fsuid();
ctx->gid = current_fsgid();
fc->fs_private = ctx;
fc->ops = &shmem_fs_context_ops;
return 0;
}
static struct file_system_type shmem_fs_type = {
.owner = THIS_MODULE,
.name = "tmpfs",
.init_fs_context = shmem_init_fs_context,
#ifdef CONFIG_TMPFS
.parameters = shmem_fs_parameters,
#endif
.kill_sb = kill_litter_super,
.fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
};
int __init shmem_init(void)
{
int error;
shmem_init_inodecache();
error = register_filesystem(&shmem_fs_type);
if (error) {
pr_err("Could not register tmpfs\n");
goto out2;
}
shm_mnt = kern_mount(&shmem_fs_type);
if (IS_ERR(shm_mnt)) {
error = PTR_ERR(shm_mnt);
pr_err("Could not kern_mount tmpfs\n");
goto out1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
else
shmem_huge = 0; /* just in case it was patched */
#endif
return 0;
out1:
unregister_filesystem(&shmem_fs_type);
out2:
shmem_destroy_inodecache();
shm_mnt = ERR_PTR(error);
return error;
}
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
static ssize_t shmem_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
static const int values[] = {
SHMEM_HUGE_ALWAYS,
SHMEM_HUGE_WITHIN_SIZE,
SHMEM_HUGE_ADVISE,
SHMEM_HUGE_NEVER,
SHMEM_HUGE_DENY,
SHMEM_HUGE_FORCE,
};
int len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(values); i++) {
len += sysfs_emit_at(buf, len,
shmem_huge == values[i] ? "%s[%s]" : "%s%s",
i ? " " : "",
shmem_format_huge(values[i]));
}
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static ssize_t shmem_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
char tmp[16];
int huge;
if (count + 1 > sizeof(tmp))
return -EINVAL;
memcpy(tmp, buf, count);
tmp[count] = '\0';
if (count && tmp[count - 1] == '\n')
tmp[count - 1] = '\0';
huge = shmem_parse_huge(tmp);
if (huge == -EINVAL)
return -EINVAL;
if (!has_transparent_hugepage() &&
huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
return -EINVAL;
shmem_huge = huge;
if (shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
return count;
}
struct kobj_attribute shmem_enabled_attr =
__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
bool shmem_huge_enabled(struct vm_area_struct *vma)
{
struct inode *inode = file_inode(vma->vm_file);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
loff_t i_size;
pgoff_t off;
if ((vma->vm_flags & VM_NOHUGEPAGE) ||
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
return false;
if (shmem_huge == SHMEM_HUGE_FORCE)
return true;
if (shmem_huge == SHMEM_HUGE_DENY)
return false;
switch (sbinfo->huge) {
case SHMEM_HUGE_NEVER:
return false;
case SHMEM_HUGE_ALWAYS:
return true;
case SHMEM_HUGE_WITHIN_SIZE:
off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
i_size = round_up(i_size_read(inode), PAGE_SIZE);
if (i_size >= HPAGE_PMD_SIZE &&
i_size >> PAGE_SHIFT >= off)
return true;
fallthrough;
case SHMEM_HUGE_ADVISE:
/* TODO: implement fadvise() hints */
return (vma->vm_flags & VM_HUGEPAGE);
default:
VM_BUG_ON(1);
return false;
}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#else /* !CONFIG_SHMEM */
/*
* tiny-shmem: simple shmemfs and tmpfs using ramfs code
*
* This is intended for small system where the benefits of the full
* shmem code (swap-backed and resource-limited) are outweighed by
* their complexity. On systems without swap this code should be
* effectively equivalent, but much lighter weight.
*/
static struct file_system_type shmem_fs_type = {
.name = "tmpfs",
.init_fs_context = ramfs_init_fs_context,
.parameters = ramfs_fs_parameters,
.kill_sb = kill_litter_super,
.fs_flags = FS_USERNS_MOUNT,
};
int __init shmem_init(void)
{
BUG_ON(register_filesystem(&shmem_fs_type) != 0);
shm_mnt = kern_mount(&shmem_fs_type);
BUG_ON(IS_ERR(shm_mnt));
return 0;
}
int shmem_unuse(unsigned int type, bool frontswap,
unsigned long *fs_pages_to_unuse)
{
return 0;
}
int shmem_lock(struct file *file, int lock, struct user_struct *user)
{
return 0;
}
void shmem_unlock_mapping(struct address_space *mapping)
{
}
#ifdef CONFIG_MMU
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
}
#endif
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
truncate_inode_pages_range(inode->i_mapping, lstart, lend);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
#define shmem_vm_ops generic_file_vm_ops
#define shmem_file_operations ramfs_file_operations
#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
#define shmem_acct_size(flags, size) 0
#define shmem_unacct_size(flags, size) do {} while (0)
#endif /* CONFIG_SHMEM */
/* common code */
static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
unsigned long flags, unsigned int i_flags)
{
struct inode *inode;
struct file *res;
if (IS_ERR(mnt))
return ERR_CAST(mnt);
if (size < 0 || size > MAX_LFS_FILESIZE)
return ERR_PTR(-EINVAL);
if (shmem_acct_size(flags, size))
return ERR_PTR(-ENOMEM);
inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
flags);
if (unlikely(!inode)) {
shmem_unacct_size(flags, size);
return ERR_PTR(-ENOSPC);
}
inode->i_flags |= i_flags;
inode->i_size = size;
clear_nlink(inode); /* It is unlinked */
res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
if (!IS_ERR(res))
res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
&shmem_file_operations);
if (IS_ERR(res))
iput(inode);
return res;
}
/**
* shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
* kernel internal. There will be NO LSM permission checks against the
* underlying inode. So users of this interface must do LSM checks at a
* higher layer. The users are the big_key and shm implementations. LSM
* checks are provided at the key or shm level rather than the inode.
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
}
/**
* shmem_file_setup - get an unlinked file living in tmpfs
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
* shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
* @mnt: the tmpfs mount where the file will be created
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
loff_t size, unsigned long flags)
{
return __shmem_file_setup(mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
/**
* shmem_zero_setup - setup a shared anonymous mapping
* @vma: the vma to be mmapped is prepared by do_mmap
*/
int shmem_zero_setup(struct vm_area_struct *vma)
{
struct file *file;
loff_t size = vma->vm_end - vma->vm_start;
/*
* Cloning a new file under mmap_lock leads to a lock ordering conflict
* between XFS directory reading and selinux: since this file is only
* accessible to the user through its mapping, use S_PRIVATE flag to
* bypass file security, in the same way as shmem_kernel_file_setup().
*/
file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
if (IS_ERR(file))
return PTR_ERR(file);
if (vma->vm_file)
fput(vma->vm_file);
vma->vm_file = file;
vma->vm_ops = &shmem_vm_ops;
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
(vma->vm_end & HPAGE_PMD_MASK)) {
khugepaged_enter(vma, vma->vm_flags);
}
return 0;
}
/**
* shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
* @mapping: the page's address_space
* @index: the page index
* @gfp: the page allocator flags to use if allocating
*
* This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
* with any new page allocations done using the specified allocation flags.
* But read_cache_page_gfp() uses the ->readpage() method: which does not
* suit tmpfs, since it may have pages in swapcache, and needs to find those
* for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
*
* i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
* with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
*/
struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp)
{
#ifdef CONFIG_SHMEM
struct inode *inode = mapping->host;
struct page *page;
int error;
BUG_ON(!shmem_mapping(mapping));
error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
gfp, NULL, NULL, NULL);
if (error)
page = ERR_PTR(error);
else
unlock_page(page);
return page;
#else
/*
* The tiny !SHMEM case uses ramfs without swap
*/
return read_cache_page_gfp(mapping, index, gfp);
#endif
}
EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);