mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
0ee7c3e25d
- Simplify the bio_end_page usage in the buffered IO code. - Support reading inline data at nonzero offsets for erofs. - Fix some typos and bad grammar. - Convert kmap_atomic usage in the inline data read path. - Add some extra inline data input checking. - Fix a memory corruption bug stemming from iomap_swapfile_activate trying to activate more pages than mm was expecting. - Pass errnos through the page writeback code so that writeback errors are reported correctly instead of being munged to EIO. - Replace iomap_apply with a open-coded iterator loops to reduce the number of indirect calls by a third to a half. - Refactor the fsdax code to use iomap iterators instead of the open-coded iomap_apply code that it had before. - Format file range iomap tracepoint data in hexadecimal and standardize the names used in the pretty-print string. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwC0ACgkQ+H93GTRK tOtVOQ//Zu9ul2ZmPARMV8xyAfopnLpmggREOthFbPkDZ3z3ZgRpPxlbAvWEEKnj VDNLFNj204rDojuxP/YSdxgiawLod7dYfXIwwft8R8oI7MdgVQhpvimUi5bkz/Od X5pmFDe84INfFvEztOgC+sPk1RI/ToQLgrcIffWMWfF2iyVkNVMCD5MMe6LoH1la 9GbVCfPx6Y2Nffaa8EuAEgaCo7FMPc81bvQG4qpeqXyX8qql/r5n4YENhkn3n4qa zI4F2lgqwbelFkamZOYNDjtLt13lb7Ze0PoFOpmTZUqlyybqhRxDvJ+OxZn8W6zH 20pxWx/RCXhCp/sS6DRcYyf7WKoIfdGDkxed7aSuhJ+VKKtBtsjMoy7dh5IY5RJa 8L1DMat6xtea8Glx04SF7Vib0n/An9oHOTzLEWxsUlRaPhW68uVpKgXuGLTAf+dc ztJhlQ9pLX0D2NmgGlkXN8d4F1XEH2BgyIrtF6UNtMbyIlCREHM9HELJs6JzKl6U a4ivJXyaq8o/hlXr8IMWUOTVubS0i+hgvvQjnVJmcSTJxhH10mPPJLnNsGX6heD9 SlnnXRbD03iqsbMJP/R431VKooryOSKBc86IEECkuMz3RUfw75DGAnLtETnT1rsA 71rSVf5NaCGZ2hV4du6jv53TS7yrPpqkxJHyDWD1WP4xGPbO1XA= =iVns -----END PGP SIGNATURE----- Merge tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull iomap updates from Darrick Wong: "The most notable externally visible change for this cycle is the addition of support for reads to inline tail fragments of files, which was requested by the erofs developers; and a correction for a kernel memory corruption bug if the sysadmin tries to activate a swapfile with more pages than the swapfile header suggests. We also now report writeback completion errors to the file mapping correctly, instead of munging all errors into EIO. Internally, the bulk of the changes are Christoph's patchset to reduce the indirect function call count by a third to a half by converting iomap iteration from a loop pattern to a generator/consumer pattern. As an added bonus, fsdax no longer open-codes iomap apply loops. Summary: - Simplify the bio_end_page usage in the buffered IO code. - Support reading inline data at nonzero offsets for erofs. - Fix some typos and bad grammar. - Convert kmap_atomic usage in the inline data read path. - Add some extra inline data input checking. - Fix a memory corruption bug stemming from iomap_swapfile_activate trying to activate more pages than mm was expecting. - Pass errnos through the page writeback code so that writeback errors are reported correctly instead of being munged to EIO. - Replace iomap_apply with a open-coded iterator loops to reduce the number of indirect calls by a third to a half. - Refactor the fsdax code to use iomap iterators instead of the open-coded iomap_apply code that it had before. - Format file range iomap tracepoint data in hexadecimal and standardize the names used in the pretty-print string" * tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (41 commits) iomap: standardize tracepoint formatting and storage mm/swap: consider max pages in iomap_swapfile_add_extent iomap: move loop control code to iter.c iomap: constify iomap_iter_srcmap fsdax: switch the fault handlers to use iomap_iter fsdax: factor out a dax_fault_actor() helper fsdax: factor out helpers to simplify the dax fault code iomap: rework unshare flag iomap: pass an iomap_iter to various buffered I/O helpers iomap: remove iomap_apply fsdax: switch dax_iomap_rw to use iomap_iter iomap: switch iomap_swapfile_activate to use iomap_iter iomap: switch iomap_seek_data to use iomap_iter iomap: switch iomap_seek_hole to use iomap_iter iomap: switch iomap_bmap to use iomap_iter iomap: switch iomap_fiemap to use iomap_iter iomap: switch __iomap_dio_rw to use iomap_iter iomap: switch iomap_page_mkwrite to use iomap_iter iomap: switch iomap_zero_range to use iomap_iter iomap: switch iomap_file_unshare to use iomap_iter ...
1716 lines
46 KiB
C
1716 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/dax.c - Direct Access filesystem code
|
|
* Copyright (c) 2013-2014 Intel Corporation
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/iomap.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/fs_dax.h>
|
|
|
|
static inline unsigned int pe_order(enum page_entry_size pe_size)
|
|
{
|
|
if (pe_size == PE_SIZE_PTE)
|
|
return PAGE_SHIFT - PAGE_SHIFT;
|
|
if (pe_size == PE_SIZE_PMD)
|
|
return PMD_SHIFT - PAGE_SHIFT;
|
|
if (pe_size == PE_SIZE_PUD)
|
|
return PUD_SHIFT - PAGE_SHIFT;
|
|
return ~0;
|
|
}
|
|
|
|
/* We choose 4096 entries - same as per-zone page wait tables */
|
|
#define DAX_WAIT_TABLE_BITS 12
|
|
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
|
|
|
|
/* The 'colour' (ie low bits) within a PMD of a page offset. */
|
|
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
|
|
#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
|
|
|
|
/* The order of a PMD entry */
|
|
#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
|
|
|
|
static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
|
|
|
|
static int __init init_dax_wait_table(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
|
|
init_waitqueue_head(wait_table + i);
|
|
return 0;
|
|
}
|
|
fs_initcall(init_dax_wait_table);
|
|
|
|
/*
|
|
* DAX pagecache entries use XArray value entries so they can't be mistaken
|
|
* for pages. We use one bit for locking, one bit for the entry size (PMD)
|
|
* and two more to tell us if the entry is a zero page or an empty entry that
|
|
* is just used for locking. In total four special bits.
|
|
*
|
|
* If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
|
|
* and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
|
|
* block allocation.
|
|
*/
|
|
#define DAX_SHIFT (4)
|
|
#define DAX_LOCKED (1UL << 0)
|
|
#define DAX_PMD (1UL << 1)
|
|
#define DAX_ZERO_PAGE (1UL << 2)
|
|
#define DAX_EMPTY (1UL << 3)
|
|
|
|
static unsigned long dax_to_pfn(void *entry)
|
|
{
|
|
return xa_to_value(entry) >> DAX_SHIFT;
|
|
}
|
|
|
|
static void *dax_make_entry(pfn_t pfn, unsigned long flags)
|
|
{
|
|
return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
|
|
}
|
|
|
|
static bool dax_is_locked(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_LOCKED;
|
|
}
|
|
|
|
static unsigned int dax_entry_order(void *entry)
|
|
{
|
|
if (xa_to_value(entry) & DAX_PMD)
|
|
return PMD_ORDER;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long dax_is_pmd_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_PMD;
|
|
}
|
|
|
|
static bool dax_is_pte_entry(void *entry)
|
|
{
|
|
return !(xa_to_value(entry) & DAX_PMD);
|
|
}
|
|
|
|
static int dax_is_zero_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_ZERO_PAGE;
|
|
}
|
|
|
|
static int dax_is_empty_entry(void *entry)
|
|
{
|
|
return xa_to_value(entry) & DAX_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* true if the entry that was found is of a smaller order than the entry
|
|
* we were looking for
|
|
*/
|
|
static bool dax_is_conflict(void *entry)
|
|
{
|
|
return entry == XA_RETRY_ENTRY;
|
|
}
|
|
|
|
/*
|
|
* DAX page cache entry locking
|
|
*/
|
|
struct exceptional_entry_key {
|
|
struct xarray *xa;
|
|
pgoff_t entry_start;
|
|
};
|
|
|
|
struct wait_exceptional_entry_queue {
|
|
wait_queue_entry_t wait;
|
|
struct exceptional_entry_key key;
|
|
};
|
|
|
|
/**
|
|
* enum dax_wake_mode: waitqueue wakeup behaviour
|
|
* @WAKE_ALL: wake all waiters in the waitqueue
|
|
* @WAKE_NEXT: wake only the first waiter in the waitqueue
|
|
*/
|
|
enum dax_wake_mode {
|
|
WAKE_ALL,
|
|
WAKE_NEXT,
|
|
};
|
|
|
|
static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
|
|
void *entry, struct exceptional_entry_key *key)
|
|
{
|
|
unsigned long hash;
|
|
unsigned long index = xas->xa_index;
|
|
|
|
/*
|
|
* If 'entry' is a PMD, align the 'index' that we use for the wait
|
|
* queue to the start of that PMD. This ensures that all offsets in
|
|
* the range covered by the PMD map to the same bit lock.
|
|
*/
|
|
if (dax_is_pmd_entry(entry))
|
|
index &= ~PG_PMD_COLOUR;
|
|
key->xa = xas->xa;
|
|
key->entry_start = index;
|
|
|
|
hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
|
|
return wait_table + hash;
|
|
}
|
|
|
|
static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
|
|
unsigned int mode, int sync, void *keyp)
|
|
{
|
|
struct exceptional_entry_key *key = keyp;
|
|
struct wait_exceptional_entry_queue *ewait =
|
|
container_of(wait, struct wait_exceptional_entry_queue, wait);
|
|
|
|
if (key->xa != ewait->key.xa ||
|
|
key->entry_start != ewait->key.entry_start)
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, NULL);
|
|
}
|
|
|
|
/*
|
|
* @entry may no longer be the entry at the index in the mapping.
|
|
* The important information it's conveying is whether the entry at
|
|
* this index used to be a PMD entry.
|
|
*/
|
|
static void dax_wake_entry(struct xa_state *xas, void *entry,
|
|
enum dax_wake_mode mode)
|
|
{
|
|
struct exceptional_entry_key key;
|
|
wait_queue_head_t *wq;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &key);
|
|
|
|
/*
|
|
* Checking for locked entry and prepare_to_wait_exclusive() happens
|
|
* under the i_pages lock, ditto for entry handling in our callers.
|
|
* So at this point all tasks that could have seen our entry locked
|
|
* must be in the waitqueue and the following check will see them.
|
|
*/
|
|
if (waitqueue_active(wq))
|
|
__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
|
|
}
|
|
|
|
/*
|
|
* Look up entry in page cache, wait for it to become unlocked if it
|
|
* is a DAX entry and return it. The caller must subsequently call
|
|
* put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
|
|
* if it did. The entry returned may have a larger order than @order.
|
|
* If @order is larger than the order of the entry found in i_pages, this
|
|
* function returns a dax_is_conflict entry.
|
|
*
|
|
* Must be called with the i_pages lock held.
|
|
*/
|
|
static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
|
|
{
|
|
void *entry;
|
|
struct wait_exceptional_entry_queue ewait;
|
|
wait_queue_head_t *wq;
|
|
|
|
init_wait(&ewait.wait);
|
|
ewait.wait.func = wake_exceptional_entry_func;
|
|
|
|
for (;;) {
|
|
entry = xas_find_conflict(xas);
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
return entry;
|
|
if (dax_entry_order(entry) < order)
|
|
return XA_RETRY_ENTRY;
|
|
if (!dax_is_locked(entry))
|
|
return entry;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &ewait.key);
|
|
prepare_to_wait_exclusive(wq, &ewait.wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
xas_unlock_irq(xas);
|
|
xas_reset(xas);
|
|
schedule();
|
|
finish_wait(wq, &ewait.wait);
|
|
xas_lock_irq(xas);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The only thing keeping the address space around is the i_pages lock
|
|
* (it's cycled in clear_inode() after removing the entries from i_pages)
|
|
* After we call xas_unlock_irq(), we cannot touch xas->xa.
|
|
*/
|
|
static void wait_entry_unlocked(struct xa_state *xas, void *entry)
|
|
{
|
|
struct wait_exceptional_entry_queue ewait;
|
|
wait_queue_head_t *wq;
|
|
|
|
init_wait(&ewait.wait);
|
|
ewait.wait.func = wake_exceptional_entry_func;
|
|
|
|
wq = dax_entry_waitqueue(xas, entry, &ewait.key);
|
|
/*
|
|
* Unlike get_unlocked_entry() there is no guarantee that this
|
|
* path ever successfully retrieves an unlocked entry before an
|
|
* inode dies. Perform a non-exclusive wait in case this path
|
|
* never successfully performs its own wake up.
|
|
*/
|
|
prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
|
|
xas_unlock_irq(xas);
|
|
schedule();
|
|
finish_wait(wq, &ewait.wait);
|
|
}
|
|
|
|
static void put_unlocked_entry(struct xa_state *xas, void *entry,
|
|
enum dax_wake_mode mode)
|
|
{
|
|
if (entry && !dax_is_conflict(entry))
|
|
dax_wake_entry(xas, entry, mode);
|
|
}
|
|
|
|
/*
|
|
* We used the xa_state to get the entry, but then we locked the entry and
|
|
* dropped the xa_lock, so we know the xa_state is stale and must be reset
|
|
* before use.
|
|
*/
|
|
static void dax_unlock_entry(struct xa_state *xas, void *entry)
|
|
{
|
|
void *old;
|
|
|
|
BUG_ON(dax_is_locked(entry));
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
old = xas_store(xas, entry);
|
|
xas_unlock_irq(xas);
|
|
BUG_ON(!dax_is_locked(old));
|
|
dax_wake_entry(xas, entry, WAKE_NEXT);
|
|
}
|
|
|
|
/*
|
|
* Return: The entry stored at this location before it was locked.
|
|
*/
|
|
static void *dax_lock_entry(struct xa_state *xas, void *entry)
|
|
{
|
|
unsigned long v = xa_to_value(entry);
|
|
return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
|
|
}
|
|
|
|
static unsigned long dax_entry_size(void *entry)
|
|
{
|
|
if (dax_is_zero_entry(entry))
|
|
return 0;
|
|
else if (dax_is_empty_entry(entry))
|
|
return 0;
|
|
else if (dax_is_pmd_entry(entry))
|
|
return PMD_SIZE;
|
|
else
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static unsigned long dax_end_pfn(void *entry)
|
|
{
|
|
return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Iterate through all mapped pfns represented by an entry, i.e. skip
|
|
* 'empty' and 'zero' entries.
|
|
*/
|
|
#define for_each_mapped_pfn(entry, pfn) \
|
|
for (pfn = dax_to_pfn(entry); \
|
|
pfn < dax_end_pfn(entry); pfn++)
|
|
|
|
/*
|
|
* TODO: for reflink+dax we need a way to associate a single page with
|
|
* multiple address_space instances at different linear_page_index()
|
|
* offsets.
|
|
*/
|
|
static void dax_associate_entry(void *entry, struct address_space *mapping,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
unsigned long size = dax_entry_size(entry), pfn, index;
|
|
int i = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
index = linear_page_index(vma, address & ~(size - 1));
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(page->mapping);
|
|
page->mapping = mapping;
|
|
page->index = index + i++;
|
|
}
|
|
}
|
|
|
|
static void dax_disassociate_entry(void *entry, struct address_space *mapping,
|
|
bool trunc)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
|
|
WARN_ON_ONCE(page->mapping && page->mapping != mapping);
|
|
page->mapping = NULL;
|
|
page->index = 0;
|
|
}
|
|
}
|
|
|
|
static struct page *dax_busy_page(void *entry)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (page_ref_count(page) > 1)
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
|
|
* @page: The page whose entry we want to lock
|
|
*
|
|
* Context: Process context.
|
|
* Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
|
|
* not be locked.
|
|
*/
|
|
dax_entry_t dax_lock_page(struct page *page)
|
|
{
|
|
XA_STATE(xas, NULL, 0);
|
|
void *entry;
|
|
|
|
/* Ensure page->mapping isn't freed while we look at it */
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
struct address_space *mapping = READ_ONCE(page->mapping);
|
|
|
|
entry = NULL;
|
|
if (!mapping || !dax_mapping(mapping))
|
|
break;
|
|
|
|
/*
|
|
* In the device-dax case there's no need to lock, a
|
|
* struct dev_pagemap pin is sufficient to keep the
|
|
* inode alive, and we assume we have dev_pagemap pin
|
|
* otherwise we would not have a valid pfn_to_page()
|
|
* translation.
|
|
*/
|
|
entry = (void *)~0UL;
|
|
if (S_ISCHR(mapping->host->i_mode))
|
|
break;
|
|
|
|
xas.xa = &mapping->i_pages;
|
|
xas_lock_irq(&xas);
|
|
if (mapping != page->mapping) {
|
|
xas_unlock_irq(&xas);
|
|
continue;
|
|
}
|
|
xas_set(&xas, page->index);
|
|
entry = xas_load(&xas);
|
|
if (dax_is_locked(entry)) {
|
|
rcu_read_unlock();
|
|
wait_entry_unlocked(&xas, entry);
|
|
rcu_read_lock();
|
|
continue;
|
|
}
|
|
dax_lock_entry(&xas, entry);
|
|
xas_unlock_irq(&xas);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
return (dax_entry_t)entry;
|
|
}
|
|
|
|
void dax_unlock_page(struct page *page, dax_entry_t cookie)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
XA_STATE(xas, &mapping->i_pages, page->index);
|
|
|
|
if (S_ISCHR(mapping->host->i_mode))
|
|
return;
|
|
|
|
dax_unlock_entry(&xas, (void *)cookie);
|
|
}
|
|
|
|
/*
|
|
* Find page cache entry at given index. If it is a DAX entry, return it
|
|
* with the entry locked. If the page cache doesn't contain an entry at
|
|
* that index, add a locked empty entry.
|
|
*
|
|
* When requesting an entry with size DAX_PMD, grab_mapping_entry() will
|
|
* either return that locked entry or will return VM_FAULT_FALLBACK.
|
|
* This will happen if there are any PTE entries within the PMD range
|
|
* that we are requesting.
|
|
*
|
|
* We always favor PTE entries over PMD entries. There isn't a flow where we
|
|
* evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
|
|
* insertion will fail if it finds any PTE entries already in the tree, and a
|
|
* PTE insertion will cause an existing PMD entry to be unmapped and
|
|
* downgraded to PTE entries. This happens for both PMD zero pages as
|
|
* well as PMD empty entries.
|
|
*
|
|
* The exception to this downgrade path is for PMD entries that have
|
|
* real storage backing them. We will leave these real PMD entries in
|
|
* the tree, and PTE writes will simply dirty the entire PMD entry.
|
|
*
|
|
* Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
|
|
* persistent memory the benefit is doubtful. We can add that later if we can
|
|
* show it helps.
|
|
*
|
|
* On error, this function does not return an ERR_PTR. Instead it returns
|
|
* a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
|
|
* overlap with xarray value entries.
|
|
*/
|
|
static void *grab_mapping_entry(struct xa_state *xas,
|
|
struct address_space *mapping, unsigned int order)
|
|
{
|
|
unsigned long index = xas->xa_index;
|
|
bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
|
|
void *entry;
|
|
|
|
retry:
|
|
pmd_downgrade = false;
|
|
xas_lock_irq(xas);
|
|
entry = get_unlocked_entry(xas, order);
|
|
|
|
if (entry) {
|
|
if (dax_is_conflict(entry))
|
|
goto fallback;
|
|
if (!xa_is_value(entry)) {
|
|
xas_set_err(xas, -EIO);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (order == 0) {
|
|
if (dax_is_pmd_entry(entry) &&
|
|
(dax_is_zero_entry(entry) ||
|
|
dax_is_empty_entry(entry))) {
|
|
pmd_downgrade = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pmd_downgrade) {
|
|
/*
|
|
* Make sure 'entry' remains valid while we drop
|
|
* the i_pages lock.
|
|
*/
|
|
dax_lock_entry(xas, entry);
|
|
|
|
/*
|
|
* Besides huge zero pages the only other thing that gets
|
|
* downgraded are empty entries which don't need to be
|
|
* unmapped.
|
|
*/
|
|
if (dax_is_zero_entry(entry)) {
|
|
xas_unlock_irq(xas);
|
|
unmap_mapping_pages(mapping,
|
|
xas->xa_index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
}
|
|
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
xas_store(xas, NULL); /* undo the PMD join */
|
|
dax_wake_entry(xas, entry, WAKE_ALL);
|
|
mapping->nrpages -= PG_PMD_NR;
|
|
entry = NULL;
|
|
xas_set(xas, index);
|
|
}
|
|
|
|
if (entry) {
|
|
dax_lock_entry(xas, entry);
|
|
} else {
|
|
unsigned long flags = DAX_EMPTY;
|
|
|
|
if (order > 0)
|
|
flags |= DAX_PMD;
|
|
entry = dax_make_entry(pfn_to_pfn_t(0), flags);
|
|
dax_lock_entry(xas, entry);
|
|
if (xas_error(xas))
|
|
goto out_unlock;
|
|
mapping->nrpages += 1UL << order;
|
|
}
|
|
|
|
out_unlock:
|
|
xas_unlock_irq(xas);
|
|
if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
|
|
goto retry;
|
|
if (xas->xa_node == XA_ERROR(-ENOMEM))
|
|
return xa_mk_internal(VM_FAULT_OOM);
|
|
if (xas_error(xas))
|
|
return xa_mk_internal(VM_FAULT_SIGBUS);
|
|
return entry;
|
|
fallback:
|
|
xas_unlock_irq(xas);
|
|
return xa_mk_internal(VM_FAULT_FALLBACK);
|
|
}
|
|
|
|
/**
|
|
* dax_layout_busy_page_range - find first pinned page in @mapping
|
|
* @mapping: address space to scan for a page with ref count > 1
|
|
* @start: Starting offset. Page containing 'start' is included.
|
|
* @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
|
|
* pages from 'start' till the end of file are included.
|
|
*
|
|
* DAX requires ZONE_DEVICE mapped pages. These pages are never
|
|
* 'onlined' to the page allocator so they are considered idle when
|
|
* page->count == 1. A filesystem uses this interface to determine if
|
|
* any page in the mapping is busy, i.e. for DMA, or other
|
|
* get_user_pages() usages.
|
|
*
|
|
* It is expected that the filesystem is holding locks to block the
|
|
* establishment of new mappings in this address_space. I.e. it expects
|
|
* to be able to run unmap_mapping_range() and subsequently not race
|
|
* mapping_mapped() becoming true.
|
|
*/
|
|
struct page *dax_layout_busy_page_range(struct address_space *mapping,
|
|
loff_t start, loff_t end)
|
|
{
|
|
void *entry;
|
|
unsigned int scanned = 0;
|
|
struct page *page = NULL;
|
|
pgoff_t start_idx = start >> PAGE_SHIFT;
|
|
pgoff_t end_idx;
|
|
XA_STATE(xas, &mapping->i_pages, start_idx);
|
|
|
|
/*
|
|
* In the 'limited' case get_user_pages() for dax is disabled.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return NULL;
|
|
|
|
if (!dax_mapping(mapping) || !mapping_mapped(mapping))
|
|
return NULL;
|
|
|
|
/* If end == LLONG_MAX, all pages from start to till end of file */
|
|
if (end == LLONG_MAX)
|
|
end_idx = ULONG_MAX;
|
|
else
|
|
end_idx = end >> PAGE_SHIFT;
|
|
/*
|
|
* If we race get_user_pages_fast() here either we'll see the
|
|
* elevated page count in the iteration and wait, or
|
|
* get_user_pages_fast() will see that the page it took a reference
|
|
* against is no longer mapped in the page tables and bail to the
|
|
* get_user_pages() slow path. The slow path is protected by
|
|
* pte_lock() and pmd_lock(). New references are not taken without
|
|
* holding those locks, and unmap_mapping_pages() will not zero the
|
|
* pte or pmd without holding the respective lock, so we are
|
|
* guaranteed to either see new references or prevent new
|
|
* references from being established.
|
|
*/
|
|
unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
|
|
|
|
xas_lock_irq(&xas);
|
|
xas_for_each(&xas, entry, end_idx) {
|
|
if (WARN_ON_ONCE(!xa_is_value(entry)))
|
|
continue;
|
|
if (unlikely(dax_is_locked(entry)))
|
|
entry = get_unlocked_entry(&xas, 0);
|
|
if (entry)
|
|
page = dax_busy_page(entry);
|
|
put_unlocked_entry(&xas, entry, WAKE_NEXT);
|
|
if (page)
|
|
break;
|
|
if (++scanned % XA_CHECK_SCHED)
|
|
continue;
|
|
|
|
xas_pause(&xas);
|
|
xas_unlock_irq(&xas);
|
|
cond_resched();
|
|
xas_lock_irq(&xas);
|
|
}
|
|
xas_unlock_irq(&xas);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
|
|
|
|
struct page *dax_layout_busy_page(struct address_space *mapping)
|
|
{
|
|
return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_layout_busy_page);
|
|
|
|
static int __dax_invalidate_entry(struct address_space *mapping,
|
|
pgoff_t index, bool trunc)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
int ret = 0;
|
|
void *entry;
|
|
|
|
xas_lock_irq(&xas);
|
|
entry = get_unlocked_entry(&xas, 0);
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
goto out;
|
|
if (!trunc &&
|
|
(xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
|
|
xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
|
|
goto out;
|
|
dax_disassociate_entry(entry, mapping, trunc);
|
|
xas_store(&xas, NULL);
|
|
mapping->nrpages -= 1UL << dax_entry_order(entry);
|
|
ret = 1;
|
|
out:
|
|
put_unlocked_entry(&xas, entry, WAKE_ALL);
|
|
xas_unlock_irq(&xas);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Delete DAX entry at @index from @mapping. Wait for it
|
|
* to be unlocked before deleting it.
|
|
*/
|
|
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
|
|
{
|
|
int ret = __dax_invalidate_entry(mapping, index, true);
|
|
|
|
/*
|
|
* This gets called from truncate / punch_hole path. As such, the caller
|
|
* must hold locks protecting against concurrent modifications of the
|
|
* page cache (usually fs-private i_mmap_sem for writing). Since the
|
|
* caller has seen a DAX entry for this index, we better find it
|
|
* at that index as well...
|
|
*/
|
|
WARN_ON_ONCE(!ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invalidate DAX entry if it is clean.
|
|
*/
|
|
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return __dax_invalidate_entry(mapping, index, false);
|
|
}
|
|
|
|
static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
|
|
sector_t sector, struct page *to, unsigned long vaddr)
|
|
{
|
|
void *vto, *kaddr;
|
|
pgoff_t pgoff;
|
|
long rc;
|
|
int id;
|
|
|
|
rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
|
|
id = dax_read_lock();
|
|
rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
|
|
if (rc < 0) {
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
vto = kmap_atomic(to);
|
|
copy_user_page(vto, (void __force *)kaddr, vaddr, to);
|
|
kunmap_atomic(vto);
|
|
dax_read_unlock(id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* By this point grab_mapping_entry() has ensured that we have a locked entry
|
|
* of the appropriate size so we don't have to worry about downgrading PMDs to
|
|
* PTEs. If we happen to be trying to insert a PTE and there is a PMD
|
|
* already in the tree, we will skip the insertion and just dirty the PMD as
|
|
* appropriate.
|
|
*/
|
|
static void *dax_insert_entry(struct xa_state *xas,
|
|
struct address_space *mapping, struct vm_fault *vmf,
|
|
void *entry, pfn_t pfn, unsigned long flags, bool dirty)
|
|
{
|
|
void *new_entry = dax_make_entry(pfn, flags);
|
|
|
|
if (dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
|
|
if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
|
|
unsigned long index = xas->xa_index;
|
|
/* we are replacing a zero page with block mapping */
|
|
if (dax_is_pmd_entry(entry))
|
|
unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
else /* pte entry */
|
|
unmap_mapping_pages(mapping, index, 1, false);
|
|
}
|
|
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
|
|
void *old;
|
|
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
|
|
/*
|
|
* Only swap our new entry into the page cache if the current
|
|
* entry is a zero page or an empty entry. If a normal PTE or
|
|
* PMD entry is already in the cache, we leave it alone. This
|
|
* means that if we are trying to insert a PTE and the
|
|
* existing entry is a PMD, we will just leave the PMD in the
|
|
* tree and dirty it if necessary.
|
|
*/
|
|
old = dax_lock_entry(xas, new_entry);
|
|
WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
|
|
DAX_LOCKED));
|
|
entry = new_entry;
|
|
} else {
|
|
xas_load(xas); /* Walk the xa_state */
|
|
}
|
|
|
|
if (dirty)
|
|
xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
|
|
|
|
xas_unlock_irq(xas);
|
|
return entry;
|
|
}
|
|
|
|
static inline
|
|
unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long address;
|
|
|
|
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
|
|
return address;
|
|
}
|
|
|
|
/* Walk all mappings of a given index of a file and writeprotect them */
|
|
static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
|
|
unsigned long pfn)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
pte_t pte, *ptep = NULL;
|
|
pmd_t *pmdp = NULL;
|
|
spinlock_t *ptl;
|
|
|
|
i_mmap_lock_read(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
|
|
struct mmu_notifier_range range;
|
|
unsigned long address;
|
|
|
|
cond_resched();
|
|
|
|
if (!(vma->vm_flags & VM_SHARED))
|
|
continue;
|
|
|
|
address = pgoff_address(index, vma);
|
|
|
|
/*
|
|
* follow_invalidate_pte() will use the range to call
|
|
* mmu_notifier_invalidate_range_start() on our behalf before
|
|
* taking any lock.
|
|
*/
|
|
if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
|
|
&pmdp, &ptl))
|
|
continue;
|
|
|
|
/*
|
|
* No need to call mmu_notifier_invalidate_range() as we are
|
|
* downgrading page table protection not changing it to point
|
|
* to a new page.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
if (pmdp) {
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
pmd_t pmd;
|
|
|
|
if (pfn != pmd_pfn(*pmdp))
|
|
goto unlock_pmd;
|
|
if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
|
|
goto unlock_pmd;
|
|
|
|
flush_cache_page(vma, address, pfn);
|
|
pmd = pmdp_invalidate(vma, address, pmdp);
|
|
pmd = pmd_wrprotect(pmd);
|
|
pmd = pmd_mkclean(pmd);
|
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
|
|
unlock_pmd:
|
|
#endif
|
|
spin_unlock(ptl);
|
|
} else {
|
|
if (pfn != pte_pfn(*ptep))
|
|
goto unlock_pte;
|
|
if (!pte_dirty(*ptep) && !pte_write(*ptep))
|
|
goto unlock_pte;
|
|
|
|
flush_cache_page(vma, address, pfn);
|
|
pte = ptep_clear_flush(vma, address, ptep);
|
|
pte = pte_wrprotect(pte);
|
|
pte = pte_mkclean(pte);
|
|
set_pte_at(vma->vm_mm, address, ptep, pte);
|
|
unlock_pte:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
}
|
|
i_mmap_unlock_read(mapping);
|
|
}
|
|
|
|
static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
|
|
struct address_space *mapping, void *entry)
|
|
{
|
|
unsigned long pfn, index, count;
|
|
long ret = 0;
|
|
|
|
/*
|
|
* A page got tagged dirty in DAX mapping? Something is seriously
|
|
* wrong.
|
|
*/
|
|
if (WARN_ON(!xa_is_value(entry)))
|
|
return -EIO;
|
|
|
|
if (unlikely(dax_is_locked(entry))) {
|
|
void *old_entry = entry;
|
|
|
|
entry = get_unlocked_entry(xas, 0);
|
|
|
|
/* Entry got punched out / reallocated? */
|
|
if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
|
|
goto put_unlocked;
|
|
/*
|
|
* Entry got reallocated elsewhere? No need to writeback.
|
|
* We have to compare pfns as we must not bail out due to
|
|
* difference in lockbit or entry type.
|
|
*/
|
|
if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
|
|
goto put_unlocked;
|
|
if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
|
|
dax_is_zero_entry(entry))) {
|
|
ret = -EIO;
|
|
goto put_unlocked;
|
|
}
|
|
|
|
/* Another fsync thread may have already done this entry */
|
|
if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
|
|
goto put_unlocked;
|
|
}
|
|
|
|
/* Lock the entry to serialize with page faults */
|
|
dax_lock_entry(xas, entry);
|
|
|
|
/*
|
|
* We can clear the tag now but we have to be careful so that concurrent
|
|
* dax_writeback_one() calls for the same index cannot finish before we
|
|
* actually flush the caches. This is achieved as the calls will look
|
|
* at the entry only under the i_pages lock and once they do that
|
|
* they will see the entry locked and wait for it to unlock.
|
|
*/
|
|
xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
|
|
xas_unlock_irq(xas);
|
|
|
|
/*
|
|
* If dax_writeback_mapping_range() was given a wbc->range_start
|
|
* in the middle of a PMD, the 'index' we use needs to be
|
|
* aligned to the start of the PMD.
|
|
* This allows us to flush for PMD_SIZE and not have to worry about
|
|
* partial PMD writebacks.
|
|
*/
|
|
pfn = dax_to_pfn(entry);
|
|
count = 1UL << dax_entry_order(entry);
|
|
index = xas->xa_index & ~(count - 1);
|
|
|
|
dax_entry_mkclean(mapping, index, pfn);
|
|
dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
|
|
/*
|
|
* After we have flushed the cache, we can clear the dirty tag. There
|
|
* cannot be new dirty data in the pfn after the flush has completed as
|
|
* the pfn mappings are writeprotected and fault waits for mapping
|
|
* entry lock.
|
|
*/
|
|
xas_reset(xas);
|
|
xas_lock_irq(xas);
|
|
xas_store(xas, entry);
|
|
xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
|
|
dax_wake_entry(xas, entry, WAKE_NEXT);
|
|
|
|
trace_dax_writeback_one(mapping->host, index, count);
|
|
return ret;
|
|
|
|
put_unlocked:
|
|
put_unlocked_entry(xas, entry, WAKE_NEXT);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Flush the mapping to the persistent domain within the byte range of [start,
|
|
* end]. This is required by data integrity operations to ensure file data is
|
|
* on persistent storage prior to completion of the operation.
|
|
*/
|
|
int dax_writeback_mapping_range(struct address_space *mapping,
|
|
struct dax_device *dax_dev, struct writeback_control *wbc)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
|
|
struct inode *inode = mapping->host;
|
|
pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
|
|
void *entry;
|
|
int ret = 0;
|
|
unsigned int scanned = 0;
|
|
|
|
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
|
|
return -EIO;
|
|
|
|
if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
|
|
return 0;
|
|
|
|
trace_dax_writeback_range(inode, xas.xa_index, end_index);
|
|
|
|
tag_pages_for_writeback(mapping, xas.xa_index, end_index);
|
|
|
|
xas_lock_irq(&xas);
|
|
xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
|
|
ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
|
|
if (ret < 0) {
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
}
|
|
if (++scanned % XA_CHECK_SCHED)
|
|
continue;
|
|
|
|
xas_pause(&xas);
|
|
xas_unlock_irq(&xas);
|
|
cond_resched();
|
|
xas_lock_irq(&xas);
|
|
}
|
|
xas_unlock_irq(&xas);
|
|
trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
|
|
|
|
static sector_t dax_iomap_sector(const struct iomap *iomap, loff_t pos)
|
|
{
|
|
return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
|
|
}
|
|
|
|
static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
|
|
pfn_t *pfnp)
|
|
{
|
|
const sector_t sector = dax_iomap_sector(iomap, pos);
|
|
pgoff_t pgoff;
|
|
int id, rc;
|
|
long length;
|
|
|
|
rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
id = dax_read_lock();
|
|
length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
|
|
NULL, pfnp);
|
|
if (length < 0) {
|
|
rc = length;
|
|
goto out;
|
|
}
|
|
rc = -EINVAL;
|
|
if (PFN_PHYS(length) < size)
|
|
goto out;
|
|
if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
|
|
goto out;
|
|
/* For larger pages we need devmap */
|
|
if (length > 1 && !pfn_t_devmap(*pfnp))
|
|
goto out;
|
|
rc = 0;
|
|
out:
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The user has performed a load from a hole in the file. Allocating a new
|
|
* page in the file would cause excessive storage usage for workloads with
|
|
* sparse files. Instead we insert a read-only mapping of the 4k zero page.
|
|
* If this page is ever written to we will re-fault and change the mapping to
|
|
* point to real DAX storage instead.
|
|
*/
|
|
static vm_fault_t dax_load_hole(struct xa_state *xas,
|
|
struct address_space *mapping, void **entry,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
unsigned long vaddr = vmf->address;
|
|
pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
|
|
vm_fault_t ret;
|
|
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
|
|
DAX_ZERO_PAGE, false);
|
|
|
|
ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
|
|
trace_dax_load_hole(inode, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
|
|
const struct iomap *iomap, void **entry)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct inode *inode = mapping->host;
|
|
pgtable_t pgtable = NULL;
|
|
struct page *zero_page;
|
|
spinlock_t *ptl;
|
|
pmd_t pmd_entry;
|
|
pfn_t pfn;
|
|
|
|
zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
|
|
|
|
if (unlikely(!zero_page))
|
|
goto fallback;
|
|
|
|
pfn = page_to_pfn_t(zero_page);
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
|
|
DAX_PMD | DAX_ZERO_PAGE, false);
|
|
|
|
if (arch_needs_pgtable_deposit()) {
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (!pgtable)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (!pmd_none(*(vmf->pmd))) {
|
|
spin_unlock(ptl);
|
|
goto fallback;
|
|
}
|
|
|
|
if (pgtable) {
|
|
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
|
|
mm_inc_nr_ptes(vma->vm_mm);
|
|
}
|
|
pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
|
|
pmd_entry = pmd_mkhuge(pmd_entry);
|
|
set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
|
|
spin_unlock(ptl);
|
|
trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
fallback:
|
|
if (pgtable)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#else
|
|
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
|
|
const struct iomap *iomap, void **entry)
|
|
{
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#endif /* CONFIG_FS_DAX_PMD */
|
|
|
|
s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
|
|
{
|
|
sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
|
|
pgoff_t pgoff;
|
|
long rc, id;
|
|
void *kaddr;
|
|
bool page_aligned = false;
|
|
unsigned offset = offset_in_page(pos);
|
|
unsigned size = min_t(u64, PAGE_SIZE - offset, length);
|
|
|
|
if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
|
|
(size == PAGE_SIZE))
|
|
page_aligned = true;
|
|
|
|
rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
|
|
id = dax_read_lock();
|
|
|
|
if (page_aligned)
|
|
rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
|
|
else
|
|
rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
|
|
if (rc < 0) {
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
|
|
if (!page_aligned) {
|
|
memset(kaddr + offset, 0, size);
|
|
dax_flush(iomap->dax_dev, kaddr + offset, size);
|
|
}
|
|
dax_read_unlock(id);
|
|
return size;
|
|
}
|
|
|
|
static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
|
|
struct iov_iter *iter)
|
|
{
|
|
const struct iomap *iomap = &iomi->iomap;
|
|
loff_t length = iomap_length(iomi);
|
|
loff_t pos = iomi->pos;
|
|
struct block_device *bdev = iomap->bdev;
|
|
struct dax_device *dax_dev = iomap->dax_dev;
|
|
loff_t end = pos + length, done = 0;
|
|
ssize_t ret = 0;
|
|
size_t xfer;
|
|
int id;
|
|
|
|
if (iov_iter_rw(iter) == READ) {
|
|
end = min(end, i_size_read(iomi->inode));
|
|
if (pos >= end)
|
|
return 0;
|
|
|
|
if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
|
|
return iov_iter_zero(min(length, end - pos), iter);
|
|
}
|
|
|
|
if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Write can allocate block for an area which has a hole page mapped
|
|
* into page tables. We have to tear down these mappings so that data
|
|
* written by write(2) is visible in mmap.
|
|
*/
|
|
if (iomap->flags & IOMAP_F_NEW) {
|
|
invalidate_inode_pages2_range(iomi->inode->i_mapping,
|
|
pos >> PAGE_SHIFT,
|
|
(end - 1) >> PAGE_SHIFT);
|
|
}
|
|
|
|
id = dax_read_lock();
|
|
while (pos < end) {
|
|
unsigned offset = pos & (PAGE_SIZE - 1);
|
|
const size_t size = ALIGN(length + offset, PAGE_SIZE);
|
|
const sector_t sector = dax_iomap_sector(iomap, pos);
|
|
ssize_t map_len;
|
|
pgoff_t pgoff;
|
|
void *kaddr;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
|
|
if (ret)
|
|
break;
|
|
|
|
map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
|
|
&kaddr, NULL);
|
|
if (map_len < 0) {
|
|
ret = map_len;
|
|
break;
|
|
}
|
|
|
|
map_len = PFN_PHYS(map_len);
|
|
kaddr += offset;
|
|
map_len -= offset;
|
|
if (map_len > end - pos)
|
|
map_len = end - pos;
|
|
|
|
/*
|
|
* The userspace address for the memory copy has already been
|
|
* validated via access_ok() in either vfs_read() or
|
|
* vfs_write(), depending on which operation we are doing.
|
|
*/
|
|
if (iov_iter_rw(iter) == WRITE)
|
|
xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
else
|
|
xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
|
|
pos += xfer;
|
|
length -= xfer;
|
|
done += xfer;
|
|
|
|
if (xfer == 0)
|
|
ret = -EFAULT;
|
|
if (xfer < map_len)
|
|
break;
|
|
}
|
|
dax_read_unlock(id);
|
|
|
|
return done ? done : ret;
|
|
}
|
|
|
|
/**
|
|
* dax_iomap_rw - Perform I/O to a DAX file
|
|
* @iocb: The control block for this I/O
|
|
* @iter: The addresses to do I/O from or to
|
|
* @ops: iomap ops passed from the file system
|
|
*
|
|
* This function performs read and write operations to directly mapped
|
|
* persistent memory. The callers needs to take care of read/write exclusion
|
|
* and evicting any page cache pages in the region under I/O.
|
|
*/
|
|
ssize_t
|
|
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iomi = {
|
|
.inode = iocb->ki_filp->f_mapping->host,
|
|
.pos = iocb->ki_pos,
|
|
.len = iov_iter_count(iter),
|
|
};
|
|
loff_t done = 0;
|
|
int ret;
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
lockdep_assert_held_write(&iomi.inode->i_rwsem);
|
|
iomi.flags |= IOMAP_WRITE;
|
|
} else {
|
|
lockdep_assert_held(&iomi.inode->i_rwsem);
|
|
}
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
iomi.flags |= IOMAP_NOWAIT;
|
|
|
|
while ((ret = iomap_iter(&iomi, ops)) > 0)
|
|
iomi.processed = dax_iomap_iter(&iomi, iter);
|
|
|
|
done = iomi.pos - iocb->ki_pos;
|
|
iocb->ki_pos = iomi.pos;
|
|
return done ? done : ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_rw);
|
|
|
|
static vm_fault_t dax_fault_return(int error)
|
|
{
|
|
if (error == 0)
|
|
return VM_FAULT_NOPAGE;
|
|
return vmf_error(error);
|
|
}
|
|
|
|
/*
|
|
* MAP_SYNC on a dax mapping guarantees dirty metadata is
|
|
* flushed on write-faults (non-cow), but not read-faults.
|
|
*/
|
|
static bool dax_fault_is_synchronous(unsigned long flags,
|
|
struct vm_area_struct *vma, const struct iomap *iomap)
|
|
{
|
|
return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
|
|
&& (iomap->flags & IOMAP_F_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* When handling a synchronous page fault and the inode need a fsync, we can
|
|
* insert the PTE/PMD into page tables only after that fsync happened. Skip
|
|
* insertion for now and return the pfn so that caller can insert it after the
|
|
* fsync is done.
|
|
*/
|
|
static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
|
|
{
|
|
if (WARN_ON_ONCE(!pfnp))
|
|
return VM_FAULT_SIGBUS;
|
|
*pfnp = pfn;
|
|
return VM_FAULT_NEEDDSYNC;
|
|
}
|
|
|
|
static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
|
|
const struct iomap_iter *iter)
|
|
{
|
|
sector_t sector = dax_iomap_sector(&iter->iomap, iter->pos);
|
|
unsigned long vaddr = vmf->address;
|
|
vm_fault_t ret;
|
|
int error = 0;
|
|
|
|
switch (iter->iomap.type) {
|
|
case IOMAP_HOLE:
|
|
case IOMAP_UNWRITTEN:
|
|
clear_user_highpage(vmf->cow_page, vaddr);
|
|
break;
|
|
case IOMAP_MAPPED:
|
|
error = copy_cow_page_dax(iter->iomap.bdev, iter->iomap.dax_dev,
|
|
sector, vmf->cow_page, vaddr);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
return dax_fault_return(error);
|
|
|
|
__SetPageUptodate(vmf->cow_page);
|
|
ret = finish_fault(vmf);
|
|
if (!ret)
|
|
return VM_FAULT_DONE_COW;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
|
|
* @vmf: vm fault instance
|
|
* @iter: iomap iter
|
|
* @pfnp: pfn to be returned
|
|
* @xas: the dax mapping tree of a file
|
|
* @entry: an unlocked dax entry to be inserted
|
|
* @pmd: distinguish whether it is a pmd fault
|
|
*/
|
|
static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
|
|
const struct iomap_iter *iter, pfn_t *pfnp,
|
|
struct xa_state *xas, void **entry, bool pmd)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
const struct iomap *iomap = &iter->iomap;
|
|
size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
|
|
loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
|
|
unsigned long entry_flags = pmd ? DAX_PMD : 0;
|
|
int err = 0;
|
|
pfn_t pfn;
|
|
|
|
if (!pmd && vmf->cow_page)
|
|
return dax_fault_cow_page(vmf, iter);
|
|
|
|
/* if we are reading UNWRITTEN and HOLE, return a hole. */
|
|
if (!write &&
|
|
(iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
|
|
if (!pmd)
|
|
return dax_load_hole(xas, mapping, entry, vmf);
|
|
return dax_pmd_load_hole(xas, vmf, iomap, entry);
|
|
}
|
|
|
|
if (iomap->type != IOMAP_MAPPED) {
|
|
WARN_ON_ONCE(1);
|
|
return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
|
|
if (err)
|
|
return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
|
|
|
|
*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
|
|
write && !sync);
|
|
|
|
if (sync)
|
|
return dax_fault_synchronous_pfnp(pfnp, pfn);
|
|
|
|
/* insert PMD pfn */
|
|
if (pmd)
|
|
return vmf_insert_pfn_pmd(vmf, pfn, write);
|
|
|
|
/* insert PTE pfn */
|
|
if (write)
|
|
return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
|
|
return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
|
|
struct iomap_iter iter = {
|
|
.inode = mapping->host,
|
|
.pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
|
|
.len = PAGE_SIZE,
|
|
.flags = IOMAP_FAULT,
|
|
};
|
|
vm_fault_t ret = 0;
|
|
void *entry;
|
|
int error;
|
|
|
|
trace_dax_pte_fault(iter.inode, vmf, ret);
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is supposed
|
|
* to hold locks serializing us with truncate / punch hole so this is
|
|
* a reliable test.
|
|
*/
|
|
if (iter.pos >= i_size_read(iter.inode)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
|
|
iter.flags |= IOMAP_WRITE;
|
|
|
|
entry = grab_mapping_entry(&xas, mapping, 0);
|
|
if (xa_is_internal(entry)) {
|
|
ret = xa_to_internal(entry);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PMD fault that overlaps with
|
|
* the PTE we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
while ((error = iomap_iter(&iter, ops)) > 0) {
|
|
if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
|
|
iter.processed = -EIO; /* fs corruption? */
|
|
continue;
|
|
}
|
|
|
|
ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
|
|
if (ret != VM_FAULT_SIGBUS &&
|
|
(iter.iomap.flags & IOMAP_F_NEW)) {
|
|
count_vm_event(PGMAJFAULT);
|
|
count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
|
|
ret |= VM_FAULT_MAJOR;
|
|
}
|
|
|
|
if (!(ret & VM_FAULT_ERROR))
|
|
iter.processed = PAGE_SIZE;
|
|
}
|
|
|
|
if (iomap_errp)
|
|
*iomap_errp = error;
|
|
if (!ret && error)
|
|
ret = dax_fault_return(error);
|
|
|
|
unlock_entry:
|
|
dax_unlock_entry(&xas, entry);
|
|
out:
|
|
trace_dax_pte_fault_done(iter.inode, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
|
|
pgoff_t max_pgoff)
|
|
{
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
/*
|
|
* Make sure that the faulting address's PMD offset (color) matches
|
|
* the PMD offset from the start of the file. This is necessary so
|
|
* that a PMD range in the page table overlaps exactly with a PMD
|
|
* range in the page cache.
|
|
*/
|
|
if ((vmf->pgoff & PG_PMD_COLOUR) !=
|
|
((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
|
|
return true;
|
|
|
|
/* Fall back to PTEs if we're going to COW */
|
|
if (write && !(vmf->vma->vm_flags & VM_SHARED))
|
|
return true;
|
|
|
|
/* If the PMD would extend outside the VMA */
|
|
if (pmd_addr < vmf->vma->vm_start)
|
|
return true;
|
|
if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
|
|
return true;
|
|
|
|
/* If the PMD would extend beyond the file size */
|
|
if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
|
|
struct iomap_iter iter = {
|
|
.inode = mapping->host,
|
|
.len = PMD_SIZE,
|
|
.flags = IOMAP_FAULT,
|
|
};
|
|
vm_fault_t ret = VM_FAULT_FALLBACK;
|
|
pgoff_t max_pgoff;
|
|
void *entry;
|
|
int error;
|
|
|
|
if (vmf->flags & FAULT_FLAG_WRITE)
|
|
iter.flags |= IOMAP_WRITE;
|
|
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is
|
|
* supposed to hold locks serializing us with truncate / punch hole so
|
|
* this is a reliable test.
|
|
*/
|
|
max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
|
|
|
|
trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
|
|
|
|
if (xas.xa_index >= max_pgoff) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
|
|
goto fallback;
|
|
|
|
/*
|
|
* grab_mapping_entry() will make sure we get an empty PMD entry,
|
|
* a zero PMD entry or a DAX PMD. If it can't (because a PTE
|
|
* entry is already in the array, for instance), it will return
|
|
* VM_FAULT_FALLBACK.
|
|
*/
|
|
entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
|
|
if (xa_is_internal(entry)) {
|
|
ret = xa_to_internal(entry);
|
|
goto fallback;
|
|
}
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PTE fault that overlaps with
|
|
* the PMD we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
|
|
!pmd_devmap(*vmf->pmd)) {
|
|
ret = 0;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
|
|
while ((error = iomap_iter(&iter, ops)) > 0) {
|
|
if (iomap_length(&iter) < PMD_SIZE)
|
|
continue; /* actually breaks out of the loop */
|
|
|
|
ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
|
|
if (ret != VM_FAULT_FALLBACK)
|
|
iter.processed = PMD_SIZE;
|
|
}
|
|
|
|
unlock_entry:
|
|
dax_unlock_entry(&xas, entry);
|
|
fallback:
|
|
if (ret == VM_FAULT_FALLBACK) {
|
|
split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
}
|
|
out:
|
|
trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
|
|
return ret;
|
|
}
|
|
#else
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#endif /* CONFIG_FS_DAX_PMD */
|
|
|
|
/**
|
|
* dax_iomap_fault - handle a page fault on a DAX file
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of the page to fault in
|
|
* @pfnp: PFN to insert for synchronous faults if fsync is required
|
|
* @iomap_errp: Storage for detailed error code in case of error
|
|
* @ops: Iomap ops passed from the file system
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in
|
|
* their fault handler for DAX files. dax_iomap_fault() assumes the caller
|
|
* has done all the necessary locking for page fault to proceed
|
|
* successfully.
|
|
*/
|
|
vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
|
|
pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
switch (pe_size) {
|
|
case PE_SIZE_PTE:
|
|
return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
|
|
case PE_SIZE_PMD:
|
|
return dax_iomap_pmd_fault(vmf, pfnp, ops);
|
|
default:
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_fault);
|
|
|
|
/*
|
|
* dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
|
|
* @vmf: The description of the fault
|
|
* @pfn: PFN to insert
|
|
* @order: Order of entry to insert.
|
|
*
|
|
* This function inserts a writeable PTE or PMD entry into the page tables
|
|
* for an mmaped DAX file. It also marks the page cache entry as dirty.
|
|
*/
|
|
static vm_fault_t
|
|
dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
|
|
void *entry;
|
|
vm_fault_t ret;
|
|
|
|
xas_lock_irq(&xas);
|
|
entry = get_unlocked_entry(&xas, order);
|
|
/* Did we race with someone splitting entry or so? */
|
|
if (!entry || dax_is_conflict(entry) ||
|
|
(order == 0 && !dax_is_pte_entry(entry))) {
|
|
put_unlocked_entry(&xas, entry, WAKE_NEXT);
|
|
xas_unlock_irq(&xas);
|
|
trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
|
|
VM_FAULT_NOPAGE);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
|
|
dax_lock_entry(&xas, entry);
|
|
xas_unlock_irq(&xas);
|
|
if (order == 0)
|
|
ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
else if (order == PMD_ORDER)
|
|
ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
|
|
#endif
|
|
else
|
|
ret = VM_FAULT_FALLBACK;
|
|
dax_unlock_entry(&xas, entry);
|
|
trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dax_finish_sync_fault - finish synchronous page fault
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of entry to be inserted
|
|
* @pfn: PFN to insert
|
|
*
|
|
* This function ensures that the file range touched by the page fault is
|
|
* stored persistently on the media and handles inserting of appropriate page
|
|
* table entry.
|
|
*/
|
|
vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size, pfn_t pfn)
|
|
{
|
|
int err;
|
|
loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
|
|
unsigned int order = pe_order(pe_size);
|
|
size_t len = PAGE_SIZE << order;
|
|
|
|
err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
|
|
if (err)
|
|
return VM_FAULT_SIGBUS;
|
|
return dax_insert_pfn_mkwrite(vmf, pfn, order);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
|