linux-stable/drivers/net/dsa/microchip/ksz_common.c

4409 lines
118 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Microchip switch driver main logic
*
* Copyright (C) 2017-2019 Microchip Technology Inc.
*/
#include <linux/delay.h>
#include <linux/dsa/ksz_common.h>
#include <linux/export.h>
#include <linux/gpio/consumer.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/if_hsr.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/micrel_phy.h>
#include <net/dsa.h>
#include <net/pkt_cls.h>
#include <net/switchdev.h>
#include "ksz_common.h"
#include "ksz_ptp.h"
#include "ksz8.h"
#include "ksz9477.h"
#include "lan937x.h"
#define MIB_COUNTER_NUM 0x20
struct ksz_stats_raw {
u64 rx_hi;
u64 rx_undersize;
u64 rx_fragments;
u64 rx_oversize;
u64 rx_jabbers;
u64 rx_symbol_err;
u64 rx_crc_err;
u64 rx_align_err;
u64 rx_mac_ctrl;
u64 rx_pause;
u64 rx_bcast;
u64 rx_mcast;
u64 rx_ucast;
u64 rx_64_or_less;
u64 rx_65_127;
u64 rx_128_255;
u64 rx_256_511;
u64 rx_512_1023;
u64 rx_1024_1522;
u64 rx_1523_2000;
u64 rx_2001;
u64 tx_hi;
u64 tx_late_col;
u64 tx_pause;
u64 tx_bcast;
u64 tx_mcast;
u64 tx_ucast;
u64 tx_deferred;
u64 tx_total_col;
u64 tx_exc_col;
u64 tx_single_col;
u64 tx_mult_col;
u64 rx_total;
u64 tx_total;
u64 rx_discards;
u64 tx_discards;
};
struct ksz88xx_stats_raw {
u64 rx;
u64 rx_hi;
u64 rx_undersize;
u64 rx_fragments;
u64 rx_oversize;
u64 rx_jabbers;
u64 rx_symbol_err;
u64 rx_crc_err;
u64 rx_align_err;
u64 rx_mac_ctrl;
u64 rx_pause;
u64 rx_bcast;
u64 rx_mcast;
u64 rx_ucast;
u64 rx_64_or_less;
u64 rx_65_127;
u64 rx_128_255;
u64 rx_256_511;
u64 rx_512_1023;
u64 rx_1024_1522;
u64 tx;
u64 tx_hi;
u64 tx_late_col;
u64 tx_pause;
u64 tx_bcast;
u64 tx_mcast;
u64 tx_ucast;
u64 tx_deferred;
u64 tx_total_col;
u64 tx_exc_col;
u64 tx_single_col;
u64 tx_mult_col;
u64 rx_discards;
u64 tx_discards;
};
static const struct ksz_mib_names ksz88xx_mib_names[] = {
{ 0x00, "rx" },
{ 0x01, "rx_hi" },
{ 0x02, "rx_undersize" },
{ 0x03, "rx_fragments" },
{ 0x04, "rx_oversize" },
{ 0x05, "rx_jabbers" },
{ 0x06, "rx_symbol_err" },
{ 0x07, "rx_crc_err" },
{ 0x08, "rx_align_err" },
{ 0x09, "rx_mac_ctrl" },
{ 0x0a, "rx_pause" },
{ 0x0b, "rx_bcast" },
{ 0x0c, "rx_mcast" },
{ 0x0d, "rx_ucast" },
{ 0x0e, "rx_64_or_less" },
{ 0x0f, "rx_65_127" },
{ 0x10, "rx_128_255" },
{ 0x11, "rx_256_511" },
{ 0x12, "rx_512_1023" },
{ 0x13, "rx_1024_1522" },
{ 0x14, "tx" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1a, "tx_ucast" },
{ 0x1b, "tx_deferred" },
{ 0x1c, "tx_total_col" },
{ 0x1d, "tx_exc_col" },
{ 0x1e, "tx_single_col" },
{ 0x1f, "tx_mult_col" },
{ 0x100, "rx_discards" },
{ 0x101, "tx_discards" },
};
static const struct ksz_mib_names ksz9477_mib_names[] = {
{ 0x00, "rx_hi" },
{ 0x01, "rx_undersize" },
{ 0x02, "rx_fragments" },
{ 0x03, "rx_oversize" },
{ 0x04, "rx_jabbers" },
{ 0x05, "rx_symbol_err" },
{ 0x06, "rx_crc_err" },
{ 0x07, "rx_align_err" },
{ 0x08, "rx_mac_ctrl" },
{ 0x09, "rx_pause" },
{ 0x0A, "rx_bcast" },
{ 0x0B, "rx_mcast" },
{ 0x0C, "rx_ucast" },
{ 0x0D, "rx_64_or_less" },
{ 0x0E, "rx_65_127" },
{ 0x0F, "rx_128_255" },
{ 0x10, "rx_256_511" },
{ 0x11, "rx_512_1023" },
{ 0x12, "rx_1024_1522" },
{ 0x13, "rx_1523_2000" },
{ 0x14, "rx_2001" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1A, "tx_ucast" },
{ 0x1B, "tx_deferred" },
{ 0x1C, "tx_total_col" },
{ 0x1D, "tx_exc_col" },
{ 0x1E, "tx_single_col" },
{ 0x1F, "tx_mult_col" },
{ 0x80, "rx_total" },
{ 0x81, "tx_total" },
{ 0x82, "rx_discards" },
{ 0x83, "tx_discards" },
};
struct ksz_driver_strength_prop {
const char *name;
int offset;
int value;
};
enum ksz_driver_strength_type {
KSZ_DRIVER_STRENGTH_HI,
KSZ_DRIVER_STRENGTH_LO,
KSZ_DRIVER_STRENGTH_IO,
};
/**
* struct ksz_drive_strength - drive strength mapping
* @reg_val: register value
* @microamp: microamp value
*/
struct ksz_drive_strength {
u32 reg_val;
u32 microamp;
};
/* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
*
* This values are not documented in KSZ9477 variants but confirmed by
* Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
* and KSZ8563 are using same register (drive strength) settings like KSZ8795.
*
* Documentation in KSZ8795CLX provides more information with some
* recommendations:
* - for high speed signals
* 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
* 2.5V or 3.3V VDDIO.
* 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
* using 1.8V VDDIO.
* 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
* or 3.3V VDDIO.
* 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
* 5. In same interface, the heavy loading should use higher one of the
* drive current strength.
* - for low speed signals
* 1. 3.3V VDDIO, use either 4 mA or 8 mA.
* 2. 2.5V VDDIO, use either 8 mA or 12 mA.
* 3. 1.8V VDDIO, use either 12 mA or 16 mA.
* 4. If it is heavy loading, can use higher drive current strength.
*/
static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
{ SW_DRIVE_STRENGTH_2MA, 2000 },
{ SW_DRIVE_STRENGTH_4MA, 4000 },
{ SW_DRIVE_STRENGTH_8MA, 8000 },
{ SW_DRIVE_STRENGTH_12MA, 12000 },
{ SW_DRIVE_STRENGTH_16MA, 16000 },
{ SW_DRIVE_STRENGTH_20MA, 20000 },
{ SW_DRIVE_STRENGTH_24MA, 24000 },
{ SW_DRIVE_STRENGTH_28MA, 28000 },
};
/* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
* variants.
* This values are documented in KSZ8873 and KSZ8863 datasheets.
*/
static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
{ 0, 8000 },
{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
};
static const struct ksz_dev_ops ksz8_dev_ops = {
.setup = ksz8_setup,
.get_port_addr = ksz8_get_port_addr,
.cfg_port_member = ksz8_cfg_port_member,
.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
.port_setup = ksz8_port_setup,
.r_phy = ksz8_r_phy,
.w_phy = ksz8_w_phy,
.r_mib_cnt = ksz8_r_mib_cnt,
.r_mib_pkt = ksz8_r_mib_pkt,
.r_mib_stat64 = ksz88xx_r_mib_stats64,
.freeze_mib = ksz8_freeze_mib,
.port_init_cnt = ksz8_port_init_cnt,
.fdb_dump = ksz8_fdb_dump,
.fdb_add = ksz8_fdb_add,
.fdb_del = ksz8_fdb_del,
.mdb_add = ksz8_mdb_add,
.mdb_del = ksz8_mdb_del,
.vlan_filtering = ksz8_port_vlan_filtering,
.vlan_add = ksz8_port_vlan_add,
.vlan_del = ksz8_port_vlan_del,
.mirror_add = ksz8_port_mirror_add,
.mirror_del = ksz8_port_mirror_del,
.get_caps = ksz8_get_caps,
.phylink_mac_link_up = ksz8_phylink_mac_link_up,
.config_cpu_port = ksz8_config_cpu_port,
.enable_stp_addr = ksz8_enable_stp_addr,
.reset = ksz8_reset_switch,
.init = ksz8_switch_init,
.exit = ksz8_switch_exit,
.change_mtu = ksz8_change_mtu,
};
static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause,
bool rx_pause);
static const struct ksz_dev_ops ksz9477_dev_ops = {
.setup = ksz9477_setup,
.get_port_addr = ksz9477_get_port_addr,
.cfg_port_member = ksz9477_cfg_port_member,
.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
.port_setup = ksz9477_port_setup,
.set_ageing_time = ksz9477_set_ageing_time,
.r_phy = ksz9477_r_phy,
.w_phy = ksz9477_w_phy,
.r_mib_cnt = ksz9477_r_mib_cnt,
.r_mib_pkt = ksz9477_r_mib_pkt,
.r_mib_stat64 = ksz_r_mib_stats64,
.freeze_mib = ksz9477_freeze_mib,
.port_init_cnt = ksz9477_port_init_cnt,
.vlan_filtering = ksz9477_port_vlan_filtering,
.vlan_add = ksz9477_port_vlan_add,
.vlan_del = ksz9477_port_vlan_del,
.mirror_add = ksz9477_port_mirror_add,
.mirror_del = ksz9477_port_mirror_del,
.get_caps = ksz9477_get_caps,
.fdb_dump = ksz9477_fdb_dump,
.fdb_add = ksz9477_fdb_add,
.fdb_del = ksz9477_fdb_del,
.mdb_add = ksz9477_mdb_add,
.mdb_del = ksz9477_mdb_del,
.change_mtu = ksz9477_change_mtu,
.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
.get_wol = ksz9477_get_wol,
.set_wol = ksz9477_set_wol,
.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
.config_cpu_port = ksz9477_config_cpu_port,
.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
.enable_stp_addr = ksz9477_enable_stp_addr,
.reset = ksz9477_reset_switch,
.init = ksz9477_switch_init,
.exit = ksz9477_switch_exit,
};
static const struct ksz_dev_ops lan937x_dev_ops = {
.setup = lan937x_setup,
.teardown = lan937x_teardown,
.get_port_addr = ksz9477_get_port_addr,
.cfg_port_member = ksz9477_cfg_port_member,
.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
.port_setup = lan937x_port_setup,
.set_ageing_time = lan937x_set_ageing_time,
.r_phy = lan937x_r_phy,
.w_phy = lan937x_w_phy,
.r_mib_cnt = ksz9477_r_mib_cnt,
.r_mib_pkt = ksz9477_r_mib_pkt,
.r_mib_stat64 = ksz_r_mib_stats64,
.freeze_mib = ksz9477_freeze_mib,
.port_init_cnt = ksz9477_port_init_cnt,
.vlan_filtering = ksz9477_port_vlan_filtering,
.vlan_add = ksz9477_port_vlan_add,
.vlan_del = ksz9477_port_vlan_del,
.mirror_add = ksz9477_port_mirror_add,
.mirror_del = ksz9477_port_mirror_del,
.get_caps = lan937x_phylink_get_caps,
.setup_rgmii_delay = lan937x_setup_rgmii_delay,
.fdb_dump = ksz9477_fdb_dump,
.fdb_add = ksz9477_fdb_add,
.fdb_del = ksz9477_fdb_del,
.mdb_add = ksz9477_mdb_add,
.mdb_del = ksz9477_mdb_del,
.change_mtu = lan937x_change_mtu,
.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
.config_cpu_port = lan937x_config_cpu_port,
.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
.enable_stp_addr = ksz9477_enable_stp_addr,
.reset = lan937x_reset_switch,
.init = lan937x_switch_init,
.exit = lan937x_switch_exit,
};
static const u16 ksz8795_regs[] = {
[REG_SW_MAC_ADDR] = 0x68,
[REG_IND_CTRL_0] = 0x6E,
[REG_IND_DATA_8] = 0x70,
[REG_IND_DATA_CHECK] = 0x72,
[REG_IND_DATA_HI] = 0x71,
[REG_IND_DATA_LO] = 0x75,
[REG_IND_MIB_CHECK] = 0x74,
[REG_IND_BYTE] = 0xA0,
[P_FORCE_CTRL] = 0x0C,
[P_LINK_STATUS] = 0x0E,
[P_LOCAL_CTRL] = 0x07,
[P_NEG_RESTART_CTRL] = 0x0D,
[P_REMOTE_STATUS] = 0x08,
[P_SPEED_STATUS] = 0x09,
[S_TAIL_TAG_CTRL] = 0x0C,
[P_STP_CTRL] = 0x02,
[S_START_CTRL] = 0x01,
[S_BROADCAST_CTRL] = 0x06,
[S_MULTICAST_CTRL] = 0x04,
[P_XMII_CTRL_0] = 0x06,
[P_XMII_CTRL_1] = 0x06,
};
static const u32 ksz8795_masks[] = {
[PORT_802_1P_REMAPPING] = BIT(7),
[SW_TAIL_TAG_ENABLE] = BIT(1),
[MIB_COUNTER_OVERFLOW] = BIT(6),
[MIB_COUNTER_VALID] = BIT(5),
[VLAN_TABLE_FID] = GENMASK(6, 0),
[VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7),
[VLAN_TABLE_VALID] = BIT(12),
[STATIC_MAC_TABLE_VALID] = BIT(21),
[STATIC_MAC_TABLE_USE_FID] = BIT(23),
[STATIC_MAC_TABLE_FID] = GENMASK(30, 24),
[STATIC_MAC_TABLE_OVERRIDE] = BIT(22),
[STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16),
[DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0),
[DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7),
[DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
[DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29),
[DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16),
[DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24),
[DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27),
[P_MII_TX_FLOW_CTRL] = BIT(5),
[P_MII_RX_FLOW_CTRL] = BIT(5),
};
static const u8 ksz8795_xmii_ctrl0[] = {
[P_MII_100MBIT] = 0,
[P_MII_10MBIT] = 1,
[P_MII_FULL_DUPLEX] = 0,
[P_MII_HALF_DUPLEX] = 1,
};
static const u8 ksz8795_xmii_ctrl1[] = {
[P_RGMII_SEL] = 3,
[P_GMII_SEL] = 2,
[P_RMII_SEL] = 1,
[P_MII_SEL] = 0,
[P_GMII_1GBIT] = 1,
[P_GMII_NOT_1GBIT] = 0,
};
static const u8 ksz8795_shifts[] = {
[VLAN_TABLE_MEMBERSHIP_S] = 7,
[VLAN_TABLE] = 16,
[STATIC_MAC_FWD_PORTS] = 16,
[STATIC_MAC_FID] = 24,
[DYNAMIC_MAC_ENTRIES_H] = 3,
[DYNAMIC_MAC_ENTRIES] = 29,
[DYNAMIC_MAC_FID] = 16,
[DYNAMIC_MAC_TIMESTAMP] = 27,
[DYNAMIC_MAC_SRC_PORT] = 24,
};
static const u16 ksz8863_regs[] = {
[REG_SW_MAC_ADDR] = 0x70,
[REG_IND_CTRL_0] = 0x79,
[REG_IND_DATA_8] = 0x7B,
[REG_IND_DATA_CHECK] = 0x7B,
[REG_IND_DATA_HI] = 0x7C,
[REG_IND_DATA_LO] = 0x80,
[REG_IND_MIB_CHECK] = 0x80,
[P_FORCE_CTRL] = 0x0C,
[P_LINK_STATUS] = 0x0E,
[P_LOCAL_CTRL] = 0x0C,
[P_NEG_RESTART_CTRL] = 0x0D,
[P_REMOTE_STATUS] = 0x0E,
[P_SPEED_STATUS] = 0x0F,
[S_TAIL_TAG_CTRL] = 0x03,
[P_STP_CTRL] = 0x02,
[S_START_CTRL] = 0x01,
[S_BROADCAST_CTRL] = 0x06,
[S_MULTICAST_CTRL] = 0x04,
};
static const u32 ksz8863_masks[] = {
[PORT_802_1P_REMAPPING] = BIT(3),
[SW_TAIL_TAG_ENABLE] = BIT(6),
[MIB_COUNTER_OVERFLOW] = BIT(7),
[MIB_COUNTER_VALID] = BIT(6),
[VLAN_TABLE_FID] = GENMASK(15, 12),
[VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16),
[VLAN_TABLE_VALID] = BIT(19),
[STATIC_MAC_TABLE_VALID] = BIT(19),
[STATIC_MAC_TABLE_USE_FID] = BIT(21),
[STATIC_MAC_TABLE_FID] = GENMASK(25, 22),
[STATIC_MAC_TABLE_OVERRIDE] = BIT(20),
[STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16),
[DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0),
[DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2),
[DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
[DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24),
[DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16),
[DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20),
[DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22),
};
static u8 ksz8863_shifts[] = {
[VLAN_TABLE_MEMBERSHIP_S] = 16,
[STATIC_MAC_FWD_PORTS] = 16,
[STATIC_MAC_FID] = 22,
[DYNAMIC_MAC_ENTRIES_H] = 8,
[DYNAMIC_MAC_ENTRIES] = 24,
[DYNAMIC_MAC_FID] = 16,
[DYNAMIC_MAC_TIMESTAMP] = 22,
[DYNAMIC_MAC_SRC_PORT] = 20,
};
static const u16 ksz9477_regs[] = {
[REG_SW_MAC_ADDR] = 0x0302,
[P_STP_CTRL] = 0x0B04,
[S_START_CTRL] = 0x0300,
[S_BROADCAST_CTRL] = 0x0332,
[S_MULTICAST_CTRL] = 0x0331,
[P_XMII_CTRL_0] = 0x0300,
[P_XMII_CTRL_1] = 0x0301,
};
static const u32 ksz9477_masks[] = {
[ALU_STAT_WRITE] = 0,
[ALU_STAT_READ] = 1,
[P_MII_TX_FLOW_CTRL] = BIT(5),
[P_MII_RX_FLOW_CTRL] = BIT(3),
};
static const u8 ksz9477_shifts[] = {
[ALU_STAT_INDEX] = 16,
};
static const u8 ksz9477_xmii_ctrl0[] = {
[P_MII_100MBIT] = 1,
[P_MII_10MBIT] = 0,
[P_MII_FULL_DUPLEX] = 1,
[P_MII_HALF_DUPLEX] = 0,
};
static const u8 ksz9477_xmii_ctrl1[] = {
[P_RGMII_SEL] = 0,
[P_RMII_SEL] = 1,
[P_GMII_SEL] = 2,
[P_MII_SEL] = 3,
[P_GMII_1GBIT] = 0,
[P_GMII_NOT_1GBIT] = 1,
};
static const u32 lan937x_masks[] = {
[ALU_STAT_WRITE] = 1,
[ALU_STAT_READ] = 2,
[P_MII_TX_FLOW_CTRL] = BIT(5),
[P_MII_RX_FLOW_CTRL] = BIT(3),
};
static const u8 lan937x_shifts[] = {
[ALU_STAT_INDEX] = 8,
};
static const struct regmap_range ksz8563_valid_regs[] = {
regmap_reg_range(0x0000, 0x0003),
regmap_reg_range(0x0006, 0x0006),
regmap_reg_range(0x000f, 0x001f),
regmap_reg_range(0x0100, 0x0100),
regmap_reg_range(0x0104, 0x0107),
regmap_reg_range(0x010d, 0x010d),
regmap_reg_range(0x0110, 0x0113),
regmap_reg_range(0x0120, 0x012b),
regmap_reg_range(0x0201, 0x0201),
regmap_reg_range(0x0210, 0x0213),
regmap_reg_range(0x0300, 0x0300),
regmap_reg_range(0x0302, 0x031b),
regmap_reg_range(0x0320, 0x032b),
regmap_reg_range(0x0330, 0x0336),
regmap_reg_range(0x0338, 0x033e),
regmap_reg_range(0x0340, 0x035f),
regmap_reg_range(0x0370, 0x0370),
regmap_reg_range(0x0378, 0x0378),
regmap_reg_range(0x037c, 0x037d),
regmap_reg_range(0x0390, 0x0393),
regmap_reg_range(0x0400, 0x040e),
regmap_reg_range(0x0410, 0x042f),
regmap_reg_range(0x0500, 0x0519),
regmap_reg_range(0x0520, 0x054b),
regmap_reg_range(0x0550, 0x05b3),
/* port 1 */
regmap_reg_range(0x1000, 0x1001),
regmap_reg_range(0x1004, 0x100b),
regmap_reg_range(0x1013, 0x1013),
regmap_reg_range(0x1017, 0x1017),
regmap_reg_range(0x101b, 0x101b),
regmap_reg_range(0x101f, 0x1021),
regmap_reg_range(0x1030, 0x1030),
regmap_reg_range(0x1100, 0x1111),
regmap_reg_range(0x111a, 0x111d),
regmap_reg_range(0x1122, 0x1127),
regmap_reg_range(0x112a, 0x112b),
regmap_reg_range(0x1136, 0x1139),
regmap_reg_range(0x113e, 0x113f),
regmap_reg_range(0x1400, 0x1401),
regmap_reg_range(0x1403, 0x1403),
regmap_reg_range(0x1410, 0x1417),
regmap_reg_range(0x1420, 0x1423),
regmap_reg_range(0x1500, 0x1507),
regmap_reg_range(0x1600, 0x1612),
regmap_reg_range(0x1800, 0x180f),
regmap_reg_range(0x1900, 0x1907),
regmap_reg_range(0x1914, 0x191b),
regmap_reg_range(0x1a00, 0x1a03),
regmap_reg_range(0x1a04, 0x1a08),
regmap_reg_range(0x1b00, 0x1b01),
regmap_reg_range(0x1b04, 0x1b04),
regmap_reg_range(0x1c00, 0x1c05),
regmap_reg_range(0x1c08, 0x1c1b),
/* port 2 */
regmap_reg_range(0x2000, 0x2001),
regmap_reg_range(0x2004, 0x200b),
regmap_reg_range(0x2013, 0x2013),
regmap_reg_range(0x2017, 0x2017),
regmap_reg_range(0x201b, 0x201b),
regmap_reg_range(0x201f, 0x2021),
regmap_reg_range(0x2030, 0x2030),
regmap_reg_range(0x2100, 0x2111),
regmap_reg_range(0x211a, 0x211d),
regmap_reg_range(0x2122, 0x2127),
regmap_reg_range(0x212a, 0x212b),
regmap_reg_range(0x2136, 0x2139),
regmap_reg_range(0x213e, 0x213f),
regmap_reg_range(0x2400, 0x2401),
regmap_reg_range(0x2403, 0x2403),
regmap_reg_range(0x2410, 0x2417),
regmap_reg_range(0x2420, 0x2423),
regmap_reg_range(0x2500, 0x2507),
regmap_reg_range(0x2600, 0x2612),
regmap_reg_range(0x2800, 0x280f),
regmap_reg_range(0x2900, 0x2907),
regmap_reg_range(0x2914, 0x291b),
regmap_reg_range(0x2a00, 0x2a03),
regmap_reg_range(0x2a04, 0x2a08),
regmap_reg_range(0x2b00, 0x2b01),
regmap_reg_range(0x2b04, 0x2b04),
regmap_reg_range(0x2c00, 0x2c05),
regmap_reg_range(0x2c08, 0x2c1b),
/* port 3 */
regmap_reg_range(0x3000, 0x3001),
regmap_reg_range(0x3004, 0x300b),
regmap_reg_range(0x3013, 0x3013),
regmap_reg_range(0x3017, 0x3017),
regmap_reg_range(0x301b, 0x301b),
regmap_reg_range(0x301f, 0x3021),
regmap_reg_range(0x3030, 0x3030),
regmap_reg_range(0x3300, 0x3301),
regmap_reg_range(0x3303, 0x3303),
regmap_reg_range(0x3400, 0x3401),
regmap_reg_range(0x3403, 0x3403),
regmap_reg_range(0x3410, 0x3417),
regmap_reg_range(0x3420, 0x3423),
regmap_reg_range(0x3500, 0x3507),
regmap_reg_range(0x3600, 0x3612),
regmap_reg_range(0x3800, 0x380f),
regmap_reg_range(0x3900, 0x3907),
regmap_reg_range(0x3914, 0x391b),
regmap_reg_range(0x3a00, 0x3a03),
regmap_reg_range(0x3a04, 0x3a08),
regmap_reg_range(0x3b00, 0x3b01),
regmap_reg_range(0x3b04, 0x3b04),
regmap_reg_range(0x3c00, 0x3c05),
regmap_reg_range(0x3c08, 0x3c1b),
};
static const struct regmap_access_table ksz8563_register_set = {
.yes_ranges = ksz8563_valid_regs,
.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
};
static const struct regmap_range ksz9477_valid_regs[] = {
regmap_reg_range(0x0000, 0x0003),
regmap_reg_range(0x0006, 0x0006),
regmap_reg_range(0x0010, 0x001f),
regmap_reg_range(0x0100, 0x0100),
regmap_reg_range(0x0103, 0x0107),
regmap_reg_range(0x010d, 0x010d),
regmap_reg_range(0x0110, 0x0113),
regmap_reg_range(0x0120, 0x012b),
regmap_reg_range(0x0201, 0x0201),
regmap_reg_range(0x0210, 0x0213),
regmap_reg_range(0x0300, 0x0300),
regmap_reg_range(0x0302, 0x031b),
regmap_reg_range(0x0320, 0x032b),
regmap_reg_range(0x0330, 0x0336),
regmap_reg_range(0x0338, 0x033b),
regmap_reg_range(0x033e, 0x033e),
regmap_reg_range(0x0340, 0x035f),
regmap_reg_range(0x0370, 0x0370),
regmap_reg_range(0x0378, 0x0378),
regmap_reg_range(0x037c, 0x037d),
regmap_reg_range(0x0390, 0x0393),
regmap_reg_range(0x0400, 0x040e),
regmap_reg_range(0x0410, 0x042f),
regmap_reg_range(0x0444, 0x044b),
regmap_reg_range(0x0450, 0x046f),
regmap_reg_range(0x0500, 0x0519),
regmap_reg_range(0x0520, 0x054b),
regmap_reg_range(0x0550, 0x05b3),
regmap_reg_range(0x0604, 0x060b),
regmap_reg_range(0x0610, 0x0612),
regmap_reg_range(0x0614, 0x062c),
regmap_reg_range(0x0640, 0x0645),
regmap_reg_range(0x0648, 0x064d),
/* port 1 */
regmap_reg_range(0x1000, 0x1001),
regmap_reg_range(0x1013, 0x1013),
regmap_reg_range(0x1017, 0x1017),
regmap_reg_range(0x101b, 0x101b),
regmap_reg_range(0x101f, 0x1020),
regmap_reg_range(0x1030, 0x1030),
regmap_reg_range(0x1100, 0x1115),
regmap_reg_range(0x111a, 0x111f),
regmap_reg_range(0x1120, 0x112b),
regmap_reg_range(0x1134, 0x113b),
regmap_reg_range(0x113c, 0x113f),
regmap_reg_range(0x1400, 0x1401),
regmap_reg_range(0x1403, 0x1403),
regmap_reg_range(0x1410, 0x1417),
regmap_reg_range(0x1420, 0x1423),
regmap_reg_range(0x1500, 0x1507),
regmap_reg_range(0x1600, 0x1613),
regmap_reg_range(0x1800, 0x180f),
regmap_reg_range(0x1820, 0x1827),
regmap_reg_range(0x1830, 0x1837),
regmap_reg_range(0x1840, 0x184b),
regmap_reg_range(0x1900, 0x1907),
regmap_reg_range(0x1914, 0x191b),
regmap_reg_range(0x1920, 0x1920),
regmap_reg_range(0x1923, 0x1927),
regmap_reg_range(0x1a00, 0x1a03),
regmap_reg_range(0x1a04, 0x1a07),
regmap_reg_range(0x1b00, 0x1b01),
regmap_reg_range(0x1b04, 0x1b04),
regmap_reg_range(0x1c00, 0x1c05),
regmap_reg_range(0x1c08, 0x1c1b),
/* port 2 */
regmap_reg_range(0x2000, 0x2001),
regmap_reg_range(0x2013, 0x2013),
regmap_reg_range(0x2017, 0x2017),
regmap_reg_range(0x201b, 0x201b),
regmap_reg_range(0x201f, 0x2020),
regmap_reg_range(0x2030, 0x2030),
regmap_reg_range(0x2100, 0x2115),
regmap_reg_range(0x211a, 0x211f),
regmap_reg_range(0x2120, 0x212b),
regmap_reg_range(0x2134, 0x213b),
regmap_reg_range(0x213c, 0x213f),
regmap_reg_range(0x2400, 0x2401),
regmap_reg_range(0x2403, 0x2403),
regmap_reg_range(0x2410, 0x2417),
regmap_reg_range(0x2420, 0x2423),
regmap_reg_range(0x2500, 0x2507),
regmap_reg_range(0x2600, 0x2613),
regmap_reg_range(0x2800, 0x280f),
regmap_reg_range(0x2820, 0x2827),
regmap_reg_range(0x2830, 0x2837),
regmap_reg_range(0x2840, 0x284b),
regmap_reg_range(0x2900, 0x2907),
regmap_reg_range(0x2914, 0x291b),
regmap_reg_range(0x2920, 0x2920),
regmap_reg_range(0x2923, 0x2927),
regmap_reg_range(0x2a00, 0x2a03),
regmap_reg_range(0x2a04, 0x2a07),
regmap_reg_range(0x2b00, 0x2b01),
regmap_reg_range(0x2b04, 0x2b04),
regmap_reg_range(0x2c00, 0x2c05),
regmap_reg_range(0x2c08, 0x2c1b),
/* port 3 */
regmap_reg_range(0x3000, 0x3001),
regmap_reg_range(0x3013, 0x3013),
regmap_reg_range(0x3017, 0x3017),
regmap_reg_range(0x301b, 0x301b),
regmap_reg_range(0x301f, 0x3020),
regmap_reg_range(0x3030, 0x3030),
regmap_reg_range(0x3100, 0x3115),
regmap_reg_range(0x311a, 0x311f),
regmap_reg_range(0x3120, 0x312b),
regmap_reg_range(0x3134, 0x313b),
regmap_reg_range(0x313c, 0x313f),
regmap_reg_range(0x3400, 0x3401),
regmap_reg_range(0x3403, 0x3403),
regmap_reg_range(0x3410, 0x3417),
regmap_reg_range(0x3420, 0x3423),
regmap_reg_range(0x3500, 0x3507),
regmap_reg_range(0x3600, 0x3613),
regmap_reg_range(0x3800, 0x380f),
regmap_reg_range(0x3820, 0x3827),
regmap_reg_range(0x3830, 0x3837),
regmap_reg_range(0x3840, 0x384b),
regmap_reg_range(0x3900, 0x3907),
regmap_reg_range(0x3914, 0x391b),
regmap_reg_range(0x3920, 0x3920),
regmap_reg_range(0x3923, 0x3927),
regmap_reg_range(0x3a00, 0x3a03),
regmap_reg_range(0x3a04, 0x3a07),
regmap_reg_range(0x3b00, 0x3b01),
regmap_reg_range(0x3b04, 0x3b04),
regmap_reg_range(0x3c00, 0x3c05),
regmap_reg_range(0x3c08, 0x3c1b),
/* port 4 */
regmap_reg_range(0x4000, 0x4001),
regmap_reg_range(0x4013, 0x4013),
regmap_reg_range(0x4017, 0x4017),
regmap_reg_range(0x401b, 0x401b),
regmap_reg_range(0x401f, 0x4020),
regmap_reg_range(0x4030, 0x4030),
regmap_reg_range(0x4100, 0x4115),
regmap_reg_range(0x411a, 0x411f),
regmap_reg_range(0x4120, 0x412b),
regmap_reg_range(0x4134, 0x413b),
regmap_reg_range(0x413c, 0x413f),
regmap_reg_range(0x4400, 0x4401),
regmap_reg_range(0x4403, 0x4403),
regmap_reg_range(0x4410, 0x4417),
regmap_reg_range(0x4420, 0x4423),
regmap_reg_range(0x4500, 0x4507),
regmap_reg_range(0x4600, 0x4613),
regmap_reg_range(0x4800, 0x480f),
regmap_reg_range(0x4820, 0x4827),
regmap_reg_range(0x4830, 0x4837),
regmap_reg_range(0x4840, 0x484b),
regmap_reg_range(0x4900, 0x4907),
regmap_reg_range(0x4914, 0x491b),
regmap_reg_range(0x4920, 0x4920),
regmap_reg_range(0x4923, 0x4927),
regmap_reg_range(0x4a00, 0x4a03),
regmap_reg_range(0x4a04, 0x4a07),
regmap_reg_range(0x4b00, 0x4b01),
regmap_reg_range(0x4b04, 0x4b04),
regmap_reg_range(0x4c00, 0x4c05),
regmap_reg_range(0x4c08, 0x4c1b),
/* port 5 */
regmap_reg_range(0x5000, 0x5001),
regmap_reg_range(0x5013, 0x5013),
regmap_reg_range(0x5017, 0x5017),
regmap_reg_range(0x501b, 0x501b),
regmap_reg_range(0x501f, 0x5020),
regmap_reg_range(0x5030, 0x5030),
regmap_reg_range(0x5100, 0x5115),
regmap_reg_range(0x511a, 0x511f),
regmap_reg_range(0x5120, 0x512b),
regmap_reg_range(0x5134, 0x513b),
regmap_reg_range(0x513c, 0x513f),
regmap_reg_range(0x5400, 0x5401),
regmap_reg_range(0x5403, 0x5403),
regmap_reg_range(0x5410, 0x5417),
regmap_reg_range(0x5420, 0x5423),
regmap_reg_range(0x5500, 0x5507),
regmap_reg_range(0x5600, 0x5613),
regmap_reg_range(0x5800, 0x580f),
regmap_reg_range(0x5820, 0x5827),
regmap_reg_range(0x5830, 0x5837),
regmap_reg_range(0x5840, 0x584b),
regmap_reg_range(0x5900, 0x5907),
regmap_reg_range(0x5914, 0x591b),
regmap_reg_range(0x5920, 0x5920),
regmap_reg_range(0x5923, 0x5927),
regmap_reg_range(0x5a00, 0x5a03),
regmap_reg_range(0x5a04, 0x5a07),
regmap_reg_range(0x5b00, 0x5b01),
regmap_reg_range(0x5b04, 0x5b04),
regmap_reg_range(0x5c00, 0x5c05),
regmap_reg_range(0x5c08, 0x5c1b),
/* port 6 */
regmap_reg_range(0x6000, 0x6001),
regmap_reg_range(0x6013, 0x6013),
regmap_reg_range(0x6017, 0x6017),
regmap_reg_range(0x601b, 0x601b),
regmap_reg_range(0x601f, 0x6020),
regmap_reg_range(0x6030, 0x6030),
regmap_reg_range(0x6300, 0x6301),
regmap_reg_range(0x6400, 0x6401),
regmap_reg_range(0x6403, 0x6403),
regmap_reg_range(0x6410, 0x6417),
regmap_reg_range(0x6420, 0x6423),
regmap_reg_range(0x6500, 0x6507),
regmap_reg_range(0x6600, 0x6613),
regmap_reg_range(0x6800, 0x680f),
regmap_reg_range(0x6820, 0x6827),
regmap_reg_range(0x6830, 0x6837),
regmap_reg_range(0x6840, 0x684b),
regmap_reg_range(0x6900, 0x6907),
regmap_reg_range(0x6914, 0x691b),
regmap_reg_range(0x6920, 0x6920),
regmap_reg_range(0x6923, 0x6927),
regmap_reg_range(0x6a00, 0x6a03),
regmap_reg_range(0x6a04, 0x6a07),
regmap_reg_range(0x6b00, 0x6b01),
regmap_reg_range(0x6b04, 0x6b04),
regmap_reg_range(0x6c00, 0x6c05),
regmap_reg_range(0x6c08, 0x6c1b),
/* port 7 */
regmap_reg_range(0x7000, 0x7001),
regmap_reg_range(0x7013, 0x7013),
regmap_reg_range(0x7017, 0x7017),
regmap_reg_range(0x701b, 0x701b),
regmap_reg_range(0x701f, 0x7020),
regmap_reg_range(0x7030, 0x7030),
regmap_reg_range(0x7200, 0x7203),
regmap_reg_range(0x7206, 0x7207),
regmap_reg_range(0x7300, 0x7301),
regmap_reg_range(0x7400, 0x7401),
regmap_reg_range(0x7403, 0x7403),
regmap_reg_range(0x7410, 0x7417),
regmap_reg_range(0x7420, 0x7423),
regmap_reg_range(0x7500, 0x7507),
regmap_reg_range(0x7600, 0x7613),
regmap_reg_range(0x7800, 0x780f),
regmap_reg_range(0x7820, 0x7827),
regmap_reg_range(0x7830, 0x7837),
regmap_reg_range(0x7840, 0x784b),
regmap_reg_range(0x7900, 0x7907),
regmap_reg_range(0x7914, 0x791b),
regmap_reg_range(0x7920, 0x7920),
regmap_reg_range(0x7923, 0x7927),
regmap_reg_range(0x7a00, 0x7a03),
regmap_reg_range(0x7a04, 0x7a07),
regmap_reg_range(0x7b00, 0x7b01),
regmap_reg_range(0x7b04, 0x7b04),
regmap_reg_range(0x7c00, 0x7c05),
regmap_reg_range(0x7c08, 0x7c1b),
};
static const struct regmap_access_table ksz9477_register_set = {
.yes_ranges = ksz9477_valid_regs,
.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
};
static const struct regmap_range ksz9896_valid_regs[] = {
regmap_reg_range(0x0000, 0x0003),
regmap_reg_range(0x0006, 0x0006),
regmap_reg_range(0x0010, 0x001f),
regmap_reg_range(0x0100, 0x0100),
regmap_reg_range(0x0103, 0x0107),
regmap_reg_range(0x010d, 0x010d),
regmap_reg_range(0x0110, 0x0113),
regmap_reg_range(0x0120, 0x0127),
regmap_reg_range(0x0201, 0x0201),
regmap_reg_range(0x0210, 0x0213),
regmap_reg_range(0x0300, 0x0300),
regmap_reg_range(0x0302, 0x030b),
regmap_reg_range(0x0310, 0x031b),
regmap_reg_range(0x0320, 0x032b),
regmap_reg_range(0x0330, 0x0336),
regmap_reg_range(0x0338, 0x033b),
regmap_reg_range(0x033e, 0x033e),
regmap_reg_range(0x0340, 0x035f),
regmap_reg_range(0x0370, 0x0370),
regmap_reg_range(0x0378, 0x0378),
regmap_reg_range(0x037c, 0x037d),
regmap_reg_range(0x0390, 0x0393),
regmap_reg_range(0x0400, 0x040e),
regmap_reg_range(0x0410, 0x042f),
/* port 1 */
regmap_reg_range(0x1000, 0x1001),
regmap_reg_range(0x1013, 0x1013),
regmap_reg_range(0x1017, 0x1017),
regmap_reg_range(0x101b, 0x101b),
regmap_reg_range(0x101f, 0x1020),
regmap_reg_range(0x1030, 0x1030),
regmap_reg_range(0x1100, 0x1115),
regmap_reg_range(0x111a, 0x111f),
regmap_reg_range(0x1122, 0x1127),
regmap_reg_range(0x112a, 0x112b),
regmap_reg_range(0x1136, 0x1139),
regmap_reg_range(0x113e, 0x113f),
regmap_reg_range(0x1400, 0x1401),
regmap_reg_range(0x1403, 0x1403),
regmap_reg_range(0x1410, 0x1417),
regmap_reg_range(0x1420, 0x1423),
regmap_reg_range(0x1500, 0x1507),
regmap_reg_range(0x1600, 0x1612),
regmap_reg_range(0x1800, 0x180f),
regmap_reg_range(0x1820, 0x1827),
regmap_reg_range(0x1830, 0x1837),
regmap_reg_range(0x1840, 0x184b),
regmap_reg_range(0x1900, 0x1907),
regmap_reg_range(0x1914, 0x1915),
regmap_reg_range(0x1a00, 0x1a03),
regmap_reg_range(0x1a04, 0x1a07),
regmap_reg_range(0x1b00, 0x1b01),
regmap_reg_range(0x1b04, 0x1b04),
/* port 2 */
regmap_reg_range(0x2000, 0x2001),
regmap_reg_range(0x2013, 0x2013),
regmap_reg_range(0x2017, 0x2017),
regmap_reg_range(0x201b, 0x201b),
regmap_reg_range(0x201f, 0x2020),
regmap_reg_range(0x2030, 0x2030),
regmap_reg_range(0x2100, 0x2115),
regmap_reg_range(0x211a, 0x211f),
regmap_reg_range(0x2122, 0x2127),
regmap_reg_range(0x212a, 0x212b),
regmap_reg_range(0x2136, 0x2139),
regmap_reg_range(0x213e, 0x213f),
regmap_reg_range(0x2400, 0x2401),
regmap_reg_range(0x2403, 0x2403),
regmap_reg_range(0x2410, 0x2417),
regmap_reg_range(0x2420, 0x2423),
regmap_reg_range(0x2500, 0x2507),
regmap_reg_range(0x2600, 0x2612),
regmap_reg_range(0x2800, 0x280f),
regmap_reg_range(0x2820, 0x2827),
regmap_reg_range(0x2830, 0x2837),
regmap_reg_range(0x2840, 0x284b),
regmap_reg_range(0x2900, 0x2907),
regmap_reg_range(0x2914, 0x2915),
regmap_reg_range(0x2a00, 0x2a03),
regmap_reg_range(0x2a04, 0x2a07),
regmap_reg_range(0x2b00, 0x2b01),
regmap_reg_range(0x2b04, 0x2b04),
/* port 3 */
regmap_reg_range(0x3000, 0x3001),
regmap_reg_range(0x3013, 0x3013),
regmap_reg_range(0x3017, 0x3017),
regmap_reg_range(0x301b, 0x301b),
regmap_reg_range(0x301f, 0x3020),
regmap_reg_range(0x3030, 0x3030),
regmap_reg_range(0x3100, 0x3115),
regmap_reg_range(0x311a, 0x311f),
regmap_reg_range(0x3122, 0x3127),
regmap_reg_range(0x312a, 0x312b),
regmap_reg_range(0x3136, 0x3139),
regmap_reg_range(0x313e, 0x313f),
regmap_reg_range(0x3400, 0x3401),
regmap_reg_range(0x3403, 0x3403),
regmap_reg_range(0x3410, 0x3417),
regmap_reg_range(0x3420, 0x3423),
regmap_reg_range(0x3500, 0x3507),
regmap_reg_range(0x3600, 0x3612),
regmap_reg_range(0x3800, 0x380f),
regmap_reg_range(0x3820, 0x3827),
regmap_reg_range(0x3830, 0x3837),
regmap_reg_range(0x3840, 0x384b),
regmap_reg_range(0x3900, 0x3907),
regmap_reg_range(0x3914, 0x3915),
regmap_reg_range(0x3a00, 0x3a03),
regmap_reg_range(0x3a04, 0x3a07),
regmap_reg_range(0x3b00, 0x3b01),
regmap_reg_range(0x3b04, 0x3b04),
/* port 4 */
regmap_reg_range(0x4000, 0x4001),
regmap_reg_range(0x4013, 0x4013),
regmap_reg_range(0x4017, 0x4017),
regmap_reg_range(0x401b, 0x401b),
regmap_reg_range(0x401f, 0x4020),
regmap_reg_range(0x4030, 0x4030),
regmap_reg_range(0x4100, 0x4115),
regmap_reg_range(0x411a, 0x411f),
regmap_reg_range(0x4122, 0x4127),
regmap_reg_range(0x412a, 0x412b),
regmap_reg_range(0x4136, 0x4139),
regmap_reg_range(0x413e, 0x413f),
regmap_reg_range(0x4400, 0x4401),
regmap_reg_range(0x4403, 0x4403),
regmap_reg_range(0x4410, 0x4417),
regmap_reg_range(0x4420, 0x4423),
regmap_reg_range(0x4500, 0x4507),
regmap_reg_range(0x4600, 0x4612),
regmap_reg_range(0x4800, 0x480f),
regmap_reg_range(0x4820, 0x4827),
regmap_reg_range(0x4830, 0x4837),
regmap_reg_range(0x4840, 0x484b),
regmap_reg_range(0x4900, 0x4907),
regmap_reg_range(0x4914, 0x4915),
regmap_reg_range(0x4a00, 0x4a03),
regmap_reg_range(0x4a04, 0x4a07),
regmap_reg_range(0x4b00, 0x4b01),
regmap_reg_range(0x4b04, 0x4b04),
/* port 5 */
regmap_reg_range(0x5000, 0x5001),
regmap_reg_range(0x5013, 0x5013),
regmap_reg_range(0x5017, 0x5017),
regmap_reg_range(0x501b, 0x501b),
regmap_reg_range(0x501f, 0x5020),
regmap_reg_range(0x5030, 0x5030),
regmap_reg_range(0x5100, 0x5115),
regmap_reg_range(0x511a, 0x511f),
regmap_reg_range(0x5122, 0x5127),
regmap_reg_range(0x512a, 0x512b),
regmap_reg_range(0x5136, 0x5139),
regmap_reg_range(0x513e, 0x513f),
regmap_reg_range(0x5400, 0x5401),
regmap_reg_range(0x5403, 0x5403),
regmap_reg_range(0x5410, 0x5417),
regmap_reg_range(0x5420, 0x5423),
regmap_reg_range(0x5500, 0x5507),
regmap_reg_range(0x5600, 0x5612),
regmap_reg_range(0x5800, 0x580f),
regmap_reg_range(0x5820, 0x5827),
regmap_reg_range(0x5830, 0x5837),
regmap_reg_range(0x5840, 0x584b),
regmap_reg_range(0x5900, 0x5907),
regmap_reg_range(0x5914, 0x5915),
regmap_reg_range(0x5a00, 0x5a03),
regmap_reg_range(0x5a04, 0x5a07),
regmap_reg_range(0x5b00, 0x5b01),
regmap_reg_range(0x5b04, 0x5b04),
/* port 6 */
regmap_reg_range(0x6000, 0x6001),
regmap_reg_range(0x6013, 0x6013),
regmap_reg_range(0x6017, 0x6017),
regmap_reg_range(0x601b, 0x601b),
regmap_reg_range(0x601f, 0x6020),
regmap_reg_range(0x6030, 0x6030),
regmap_reg_range(0x6100, 0x6115),
regmap_reg_range(0x611a, 0x611f),
regmap_reg_range(0x6122, 0x6127),
regmap_reg_range(0x612a, 0x612b),
regmap_reg_range(0x6136, 0x6139),
regmap_reg_range(0x613e, 0x613f),
regmap_reg_range(0x6300, 0x6301),
regmap_reg_range(0x6400, 0x6401),
regmap_reg_range(0x6403, 0x6403),
regmap_reg_range(0x6410, 0x6417),
regmap_reg_range(0x6420, 0x6423),
regmap_reg_range(0x6500, 0x6507),
regmap_reg_range(0x6600, 0x6612),
regmap_reg_range(0x6800, 0x680f),
regmap_reg_range(0x6820, 0x6827),
regmap_reg_range(0x6830, 0x6837),
regmap_reg_range(0x6840, 0x684b),
regmap_reg_range(0x6900, 0x6907),
regmap_reg_range(0x6914, 0x6915),
regmap_reg_range(0x6a00, 0x6a03),
regmap_reg_range(0x6a04, 0x6a07),
regmap_reg_range(0x6b00, 0x6b01),
regmap_reg_range(0x6b04, 0x6b04),
};
static const struct regmap_access_table ksz9896_register_set = {
.yes_ranges = ksz9896_valid_regs,
.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
};
static const struct regmap_range ksz8873_valid_regs[] = {
regmap_reg_range(0x00, 0x01),
/* global control register */
regmap_reg_range(0x02, 0x0f),
/* port registers */
regmap_reg_range(0x10, 0x1d),
regmap_reg_range(0x1e, 0x1f),
regmap_reg_range(0x20, 0x2d),
regmap_reg_range(0x2e, 0x2f),
regmap_reg_range(0x30, 0x39),
regmap_reg_range(0x3f, 0x3f),
/* advanced control registers */
regmap_reg_range(0x60, 0x6f),
regmap_reg_range(0x70, 0x75),
regmap_reg_range(0x76, 0x78),
regmap_reg_range(0x79, 0x7a),
regmap_reg_range(0x7b, 0x83),
regmap_reg_range(0x8e, 0x99),
regmap_reg_range(0x9a, 0xa5),
regmap_reg_range(0xa6, 0xa6),
regmap_reg_range(0xa7, 0xaa),
regmap_reg_range(0xab, 0xae),
regmap_reg_range(0xaf, 0xba),
regmap_reg_range(0xbb, 0xbc),
regmap_reg_range(0xbd, 0xbd),
regmap_reg_range(0xc0, 0xc0),
regmap_reg_range(0xc2, 0xc2),
regmap_reg_range(0xc3, 0xc3),
regmap_reg_range(0xc4, 0xc4),
regmap_reg_range(0xc6, 0xc6),
};
static const struct regmap_access_table ksz8873_register_set = {
.yes_ranges = ksz8873_valid_regs,
.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
};
const struct ksz_chip_data ksz_switch_chips[] = {
[KSZ8563] = {
.chip_id = KSZ8563_CHIP_ID,
.dev_name = "KSZ8563",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x07, /* can be configured as cpu port */
.port_cnt = 3, /* total port count */
.port_nirqs = 3,
.num_tx_queues = 4,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
.supports_mii = {false, false, true},
.supports_rmii = {false, false, true},
.supports_rgmii = {false, false, true},
.internal_phy = {true, true, false},
.gbit_capable = {false, false, true},
.wr_table = &ksz8563_register_set,
.rd_table = &ksz8563_register_set,
},
[KSZ8795] = {
.chip_id = KSZ8795_CHIP_ID,
.dev_name = "KSZ8795",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total cpu and user ports */
.num_tx_queues = 4,
.ops = &ksz8_dev_ops,
.ksz87xx_eee_link_erratum = true,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz8795_regs,
.masks = ksz8795_masks,
.shifts = ksz8795_shifts,
.xmii_ctrl0 = ksz8795_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1,
.supports_mii = {false, false, false, false, true},
.supports_rmii = {false, false, false, false, true},
.supports_rgmii = {false, false, false, false, true},
.internal_phy = {true, true, true, true, false},
},
[KSZ8794] = {
/* WARNING
* =======
* KSZ8794 is similar to KSZ8795, except the port map
* contains a gap between external and CPU ports, the
* port map is NOT continuous. The per-port register
* map is shifted accordingly too, i.e. registers at
* offset 0x40 are NOT used on KSZ8794 and they ARE
* used on KSZ8795 for external port 3.
* external cpu
* KSZ8794 0,1,2 4
* KSZ8795 0,1,2,3 4
* KSZ8765 0,1,2,3 4
* port_cnt is configured as 5, even though it is 4
*/
.chip_id = KSZ8794_CHIP_ID,
.dev_name = "KSZ8794",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total cpu and user ports */
.num_tx_queues = 4,
.ops = &ksz8_dev_ops,
.ksz87xx_eee_link_erratum = true,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz8795_regs,
.masks = ksz8795_masks,
.shifts = ksz8795_shifts,
.xmii_ctrl0 = ksz8795_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1,
.supports_mii = {false, false, false, false, true},
.supports_rmii = {false, false, false, false, true},
.supports_rgmii = {false, false, false, false, true},
.internal_phy = {true, true, true, false, false},
},
[KSZ8765] = {
.chip_id = KSZ8765_CHIP_ID,
.dev_name = "KSZ8765",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total cpu and user ports */
.num_tx_queues = 4,
.ops = &ksz8_dev_ops,
.ksz87xx_eee_link_erratum = true,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz8795_regs,
.masks = ksz8795_masks,
.shifts = ksz8795_shifts,
.xmii_ctrl0 = ksz8795_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1,
.supports_mii = {false, false, false, false, true},
.supports_rmii = {false, false, false, false, true},
.supports_rgmii = {false, false, false, false, true},
.internal_phy = {true, true, true, true, false},
},
[KSZ8830] = {
.chip_id = KSZ8830_CHIP_ID,
.dev_name = "KSZ8863/KSZ8873",
.num_vlans = 16,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x4, /* can be configured as cpu port */
.port_cnt = 3,
.num_tx_queues = 4,
.ops = &ksz8_dev_ops,
.mib_names = ksz88xx_mib_names,
.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz8863_regs,
.masks = ksz8863_masks,
.shifts = ksz8863_shifts,
.supports_mii = {false, false, true},
.supports_rmii = {false, false, true},
.internal_phy = {true, true, false},
.wr_table = &ksz8873_register_set,
.rd_table = &ksz8873_register_set,
},
[KSZ9477] = {
.chip_id = KSZ9477_CHIP_ID,
.dev_name = "KSZ9477",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
.port_nirqs = 4,
.num_tx_queues = 4,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
false, true, false},
.supports_rmii = {false, false, false, false,
false, true, false},
.supports_rgmii = {false, false, false, false,
false, true, false},
.internal_phy = {true, true, true, true,
true, false, false},
.gbit_capable = {true, true, true, true, true, true, true},
.wr_table = &ksz9477_register_set,
.rd_table = &ksz9477_register_set,
},
[KSZ9896] = {
.chip_id = KSZ9896_CHIP_ID,
.dev_name = "KSZ9896",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x3F, /* can be configured as cpu port */
.port_cnt = 6, /* total physical port count */
.port_nirqs = 2,
.num_tx_queues = 4,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
false, true},
.supports_rmii = {false, false, false, false,
false, true},
.supports_rgmii = {false, false, false, false,
false, true},
.internal_phy = {true, true, true, true,
true, false},
.gbit_capable = {true, true, true, true, true, true},
.wr_table = &ksz9896_register_set,
.rd_table = &ksz9896_register_set,
},
[KSZ9897] = {
.chip_id = KSZ9897_CHIP_ID,
.dev_name = "KSZ9897",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
.port_nirqs = 2,
.num_tx_queues = 4,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
false, true, true},
.supports_rmii = {false, false, false, false,
false, true, true},
.supports_rgmii = {false, false, false, false,
false, true, true},
.internal_phy = {true, true, true, true,
true, false, false},
.gbit_capable = {true, true, true, true, true, true, true},
},
[KSZ9893] = {
.chip_id = KSZ9893_CHIP_ID,
.dev_name = "KSZ9893",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x07, /* can be configured as cpu port */
.port_cnt = 3, /* total port count */
.port_nirqs = 2,
.num_tx_queues = 4,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
.supports_mii = {false, false, true},
.supports_rmii = {false, false, true},
.supports_rgmii = {false, false, true},
.internal_phy = {true, true, false},
.gbit_capable = {true, true, true},
},
[KSZ9563] = {
.chip_id = KSZ9563_CHIP_ID,
.dev_name = "KSZ9563",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x07, /* can be configured as cpu port */
.port_cnt = 3, /* total port count */
.port_nirqs = 3,
.num_tx_queues = 4,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
.supports_mii = {false, false, true},
.supports_rmii = {false, false, true},
.supports_rgmii = {false, false, true},
.internal_phy = {true, true, false},
.gbit_capable = {true, true, true},
},
[KSZ8567] = {
.chip_id = KSZ8567_CHIP_ID,
.dev_name = "KSZ8567",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total port count */
.port_nirqs = 3,
.num_tx_queues = 4,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
false, true, true},
.supports_rmii = {false, false, false, false,
false, true, true},
.supports_rgmii = {false, false, false, false,
false, true, true},
.internal_phy = {true, true, true, true,
true, false, false},
.gbit_capable = {false, false, false, false, false,
true, true},
},
[KSZ9567] = {
.chip_id = KSZ9567_CHIP_ID,
.dev_name = "KSZ9567",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
.port_nirqs = 3,
.num_tx_queues = 4,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &ksz9477_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = ksz9477_masks,
.shifts = ksz9477_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
false, true, true},
.supports_rmii = {false, false, false, false,
false, true, true},
.supports_rgmii = {false, false, false, false,
false, true, true},
.internal_phy = {true, true, true, true,
true, false, false},
.gbit_capable = {true, true, true, true, true, true, true},
},
[LAN9370] = {
.chip_id = LAN9370_CHIP_ID,
.dev_name = "LAN9370",
.num_vlans = 4096,
.num_alus = 1024,
.num_statics = 256,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total physical port count */
.port_nirqs = 6,
.num_tx_queues = 8,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &lan937x_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = lan937x_masks,
.shifts = lan937x_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false, true},
.supports_rmii = {false, false, false, false, true},
.supports_rgmii = {false, false, false, false, true},
.internal_phy = {true, true, true, true, false},
},
[LAN9371] = {
.chip_id = LAN9371_CHIP_ID,
.dev_name = "LAN9371",
.num_vlans = 4096,
.num_alus = 1024,
.num_statics = 256,
.cpu_ports = 0x30, /* can be configured as cpu port */
.port_cnt = 6, /* total physical port count */
.port_nirqs = 6,
.num_tx_queues = 8,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &lan937x_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = lan937x_masks,
.shifts = lan937x_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false, true, true},
.supports_rmii = {false, false, false, false, true, true},
.supports_rgmii = {false, false, false, false, true, true},
.internal_phy = {true, true, true, true, false, false},
},
[LAN9372] = {
.chip_id = LAN9372_CHIP_ID,
.dev_name = "LAN9372",
.num_vlans = 4096,
.num_alus = 1024,
.num_statics = 256,
.cpu_ports = 0x30, /* can be configured as cpu port */
.port_cnt = 8, /* total physical port count */
.port_nirqs = 6,
.num_tx_queues = 8,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &lan937x_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = lan937x_masks,
.shifts = lan937x_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
true, true, false, false},
.supports_rmii = {false, false, false, false,
true, true, false, false},
.supports_rgmii = {false, false, false, false,
true, true, false, false},
.internal_phy = {true, true, true, true,
false, false, true, true},
},
[LAN9373] = {
.chip_id = LAN9373_CHIP_ID,
.dev_name = "LAN9373",
.num_vlans = 4096,
.num_alus = 1024,
.num_statics = 256,
.cpu_ports = 0x38, /* can be configured as cpu port */
.port_cnt = 5, /* total physical port count */
.port_nirqs = 6,
.num_tx_queues = 8,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &lan937x_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = lan937x_masks,
.shifts = lan937x_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
true, true, false, false},
.supports_rmii = {false, false, false, false,
true, true, false, false},
.supports_rgmii = {false, false, false, false,
true, true, false, false},
.internal_phy = {true, true, true, false,
false, false, true, true},
},
[LAN9374] = {
.chip_id = LAN9374_CHIP_ID,
.dev_name = "LAN9374",
.num_vlans = 4096,
.num_alus = 1024,
.num_statics = 256,
.cpu_ports = 0x30, /* can be configured as cpu port */
.port_cnt = 8, /* total physical port count */
.port_nirqs = 6,
.num_tx_queues = 8,
.tc_cbs_supported = true,
.tc_ets_supported = true,
.ops = &lan937x_dev_ops,
.mib_names = ksz9477_mib_names,
.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
.reg_mib_cnt = MIB_COUNTER_NUM,
.regs = ksz9477_regs,
.masks = lan937x_masks,
.shifts = lan937x_shifts,
.xmii_ctrl0 = ksz9477_xmii_ctrl0,
.xmii_ctrl1 = ksz9477_xmii_ctrl1,
.supports_mii = {false, false, false, false,
true, true, false, false},
.supports_rmii = {false, false, false, false,
true, true, false, false},
.supports_rgmii = {false, false, false, false,
true, true, false, false},
.internal_phy = {true, true, true, true,
false, false, true, true},
},
};
EXPORT_SYMBOL_GPL(ksz_switch_chips);
static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
{
int i;
for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz_switch_chips[i];
if (chip->chip_id == prod_num)
return chip;
}
return NULL;
}
static int ksz_check_device_id(struct ksz_device *dev)
{
const struct ksz_chip_data *expected_chip_data;
u32 expected_chip_id;
if (dev->pdata) {
expected_chip_id = dev->pdata->chip_id;
expected_chip_data = ksz_lookup_info(expected_chip_id);
if (WARN_ON(!expected_chip_data))
return -ENODEV;
} else {
expected_chip_data = of_device_get_match_data(dev->dev);
expected_chip_id = expected_chip_data->chip_id;
}
if (expected_chip_id != dev->chip_id) {
dev_err(dev->dev,
"Device tree specifies chip %s but found %s, please fix it!\n",
expected_chip_data->dev_name, dev->info->dev_name);
return -ENODEV;
}
return 0;
}
static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct ksz_device *dev = ds->priv;
if (dev->info->supports_mii[port])
__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
if (dev->info->supports_rmii[port])
__set_bit(PHY_INTERFACE_MODE_RMII,
config->supported_interfaces);
if (dev->info->supports_rgmii[port])
phy_interface_set_rgmii(config->supported_interfaces);
if (dev->info->internal_phy[port]) {
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
config->supported_interfaces);
/* Compatibility for phylib's default interface type when the
* phy-mode property is absent
*/
__set_bit(PHY_INTERFACE_MODE_GMII,
config->supported_interfaces);
}
if (dev->dev_ops->get_caps)
dev->dev_ops->get_caps(dev, port, config);
}
void ksz_r_mib_stats64(struct ksz_device *dev, int port)
{
struct ethtool_pause_stats *pstats;
struct rtnl_link_stats64 *stats;
struct ksz_stats_raw *raw;
struct ksz_port_mib *mib;
mib = &dev->ports[port].mib;
stats = &mib->stats64;
pstats = &mib->pause_stats;
raw = (struct ksz_stats_raw *)mib->counters;
spin_lock(&mib->stats64_lock);
stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
raw->rx_pause;
stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
raw->tx_pause;
/* HW counters are counting bytes + FCS which is not acceptable
* for rtnl_link_stats64 interface
*/
stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
raw->rx_oversize;
stats->rx_crc_errors = raw->rx_crc_err;
stats->rx_frame_errors = raw->rx_align_err;
stats->rx_dropped = raw->rx_discards;
stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
stats->rx_frame_errors + stats->rx_dropped;
stats->tx_window_errors = raw->tx_late_col;
stats->tx_fifo_errors = raw->tx_discards;
stats->tx_aborted_errors = raw->tx_exc_col;
stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
stats->tx_aborted_errors;
stats->multicast = raw->rx_mcast;
stats->collisions = raw->tx_total_col;
pstats->tx_pause_frames = raw->tx_pause;
pstats->rx_pause_frames = raw->rx_pause;
spin_unlock(&mib->stats64_lock);
}
void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
{
struct ethtool_pause_stats *pstats;
struct rtnl_link_stats64 *stats;
struct ksz88xx_stats_raw *raw;
struct ksz_port_mib *mib;
mib = &dev->ports[port].mib;
stats = &mib->stats64;
pstats = &mib->pause_stats;
raw = (struct ksz88xx_stats_raw *)mib->counters;
spin_lock(&mib->stats64_lock);
stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
raw->rx_pause;
stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
raw->tx_pause;
/* HW counters are counting bytes + FCS which is not acceptable
* for rtnl_link_stats64 interface
*/
stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
raw->rx_oversize;
stats->rx_crc_errors = raw->rx_crc_err;
stats->rx_frame_errors = raw->rx_align_err;
stats->rx_dropped = raw->rx_discards;
stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
stats->rx_frame_errors + stats->rx_dropped;
stats->tx_window_errors = raw->tx_late_col;
stats->tx_fifo_errors = raw->tx_discards;
stats->tx_aborted_errors = raw->tx_exc_col;
stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
stats->tx_aborted_errors;
stats->multicast = raw->rx_mcast;
stats->collisions = raw->tx_total_col;
pstats->tx_pause_frames = raw->tx_pause;
pstats->rx_pause_frames = raw->rx_pause;
spin_unlock(&mib->stats64_lock);
}
static void ksz_get_stats64(struct dsa_switch *ds, int port,
struct rtnl_link_stats64 *s)
{
struct ksz_device *dev = ds->priv;
struct ksz_port_mib *mib;
mib = &dev->ports[port].mib;
spin_lock(&mib->stats64_lock);
memcpy(s, &mib->stats64, sizeof(*s));
spin_unlock(&mib->stats64_lock);
}
static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
struct ethtool_pause_stats *pause_stats)
{
struct ksz_device *dev = ds->priv;
struct ksz_port_mib *mib;
mib = &dev->ports[port].mib;
spin_lock(&mib->stats64_lock);
memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
spin_unlock(&mib->stats64_lock);
}
static void ksz_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
struct ksz_device *dev = ds->priv;
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < dev->info->mib_cnt; i++) {
memcpy(buf + i * ETH_GSTRING_LEN,
dev->info->mib_names[i].string, ETH_GSTRING_LEN);
}
}
/**
* ksz_update_port_member - Adjust port forwarding rules based on STP state and
* isolation settings.
* @dev: A pointer to the struct ksz_device representing the device.
* @port: The port number to adjust.
*
* This function dynamically adjusts the port membership configuration for a
* specified port and other device ports, based on Spanning Tree Protocol (STP)
* states and port isolation settings. Each port, including the CPU port, has a
* membership register, represented as a bitfield, where each bit corresponds
* to a port number. A set bit indicates permission to forward frames to that
* port. This function iterates over all ports, updating the membership register
* to reflect current forwarding permissions:
*
* 1. Forwards frames only to ports that are part of the same bridge group and
* in the BR_STATE_FORWARDING state.
* 2. Takes into account the isolation status of ports; ports in the
* BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
* frames to each other, even if they are in the same bridge group.
* 3. Ensures that the CPU port is included in the membership based on its
* upstream port configuration, allowing for management and control traffic
* to flow as required.
*/
static void ksz_update_port_member(struct ksz_device *dev, int port)
{
struct ksz_port *p = &dev->ports[port];
struct dsa_switch *ds = dev->ds;
u8 port_member = 0, cpu_port;
const struct dsa_port *dp;
int i, j;
if (!dsa_is_user_port(ds, port))
return;
dp = dsa_to_port(ds, port);
cpu_port = BIT(dsa_upstream_port(ds, port));
for (i = 0; i < ds->num_ports; i++) {
const struct dsa_port *other_dp = dsa_to_port(ds, i);
struct ksz_port *other_p = &dev->ports[i];
u8 val = 0;
if (!dsa_is_user_port(ds, i))
continue;
if (port == i)
continue;
if (!dsa_port_bridge_same(dp, other_dp))
continue;
if (other_p->stp_state != BR_STATE_FORWARDING)
continue;
/* At this point we know that "port" and "other" port [i] are in
* the same bridge group and that "other" port [i] is in
* forwarding stp state. If "port" is also in forwarding stp
* state, we can allow forwarding from port [port] to port [i].
* Except if both ports are isolated.
*/
if (p->stp_state == BR_STATE_FORWARDING &&
!(p->isolated && other_p->isolated)) {
val |= BIT(port);
port_member |= BIT(i);
}
/* Retain port [i]'s relationship to other ports than [port] */
for (j = 0; j < ds->num_ports; j++) {
const struct dsa_port *third_dp;
struct ksz_port *third_p;
if (j == i)
continue;
if (j == port)
continue;
if (!dsa_is_user_port(ds, j))
continue;
third_p = &dev->ports[j];
if (third_p->stp_state != BR_STATE_FORWARDING)
continue;
third_dp = dsa_to_port(ds, j);
/* Now we updating relation of the "other" port [i] to
* the "third" port [j]. We already know that "other"
* port [i] is in forwarding stp state and that "third"
* port [j] is in forwarding stp state too.
* We need to check if "other" port [i] and "third" port
* [j] are in the same bridge group and not isolated
* before allowing forwarding from port [i] to port [j].
*/
if (dsa_port_bridge_same(other_dp, third_dp) &&
!(other_p->isolated && third_p->isolated))
val |= BIT(j);
}
dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
}
dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
}
static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct ksz_device *dev = bus->priv;
u16 val;
int ret;
ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
if (ret < 0)
return ret;
return val;
}
static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct ksz_device *dev = bus->priv;
return dev->dev_ops->w_phy(dev, addr, regnum, val);
}
static int ksz_irq_phy_setup(struct ksz_device *dev)
{
struct dsa_switch *ds = dev->ds;
int phy;
int irq;
int ret;
for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
if (BIT(phy) & ds->phys_mii_mask) {
irq = irq_find_mapping(dev->ports[phy].pirq.domain,
PORT_SRC_PHY_INT);
if (irq < 0) {
ret = irq;
goto out;
}
ds->user_mii_bus->irq[phy] = irq;
}
}
return 0;
out:
while (phy--)
if (BIT(phy) & ds->phys_mii_mask)
irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
return ret;
}
static void ksz_irq_phy_free(struct ksz_device *dev)
{
struct dsa_switch *ds = dev->ds;
int phy;
for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
if (BIT(phy) & ds->phys_mii_mask)
irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
}
static int ksz_mdio_register(struct ksz_device *dev)
{
struct dsa_switch *ds = dev->ds;
struct device_node *mdio_np;
struct mii_bus *bus;
int ret;
mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
if (!mdio_np)
return 0;
bus = devm_mdiobus_alloc(ds->dev);
if (!bus) {
of_node_put(mdio_np);
return -ENOMEM;
}
bus->priv = dev;
bus->read = ksz_sw_mdio_read;
bus->write = ksz_sw_mdio_write;
bus->name = "ksz user smi";
snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
bus->parent = ds->dev;
bus->phy_mask = ~ds->phys_mii_mask;
ds->user_mii_bus = bus;
if (dev->irq > 0) {
ret = ksz_irq_phy_setup(dev);
if (ret) {
of_node_put(mdio_np);
return ret;
}
}
ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
if (ret) {
dev_err(ds->dev, "unable to register MDIO bus %s\n",
bus->id);
if (dev->irq > 0)
ksz_irq_phy_free(dev);
}
of_node_put(mdio_np);
return ret;
}
static void ksz_irq_mask(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
kirq->masked |= BIT(d->hwirq);
}
static void ksz_irq_unmask(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
kirq->masked &= ~BIT(d->hwirq);
}
static void ksz_irq_bus_lock(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
mutex_lock(&kirq->dev->lock_irq);
}
static void ksz_irq_bus_sync_unlock(struct irq_data *d)
{
struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
struct ksz_device *dev = kirq->dev;
int ret;
ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
if (ret)
dev_err(dev->dev, "failed to change IRQ mask\n");
mutex_unlock(&dev->lock_irq);
}
static const struct irq_chip ksz_irq_chip = {
.name = "ksz-irq",
.irq_mask = ksz_irq_mask,
.irq_unmask = ksz_irq_unmask,
.irq_bus_lock = ksz_irq_bus_lock,
.irq_bus_sync_unlock = ksz_irq_bus_sync_unlock,
};
static int ksz_irq_domain_map(struct irq_domain *d,
unsigned int irq, irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
irq_set_noprobe(irq);
return 0;
}
static const struct irq_domain_ops ksz_irq_domain_ops = {
.map = ksz_irq_domain_map,
.xlate = irq_domain_xlate_twocell,
};
static void ksz_irq_free(struct ksz_irq *kirq)
{
int irq, virq;
free_irq(kirq->irq_num, kirq);
for (irq = 0; irq < kirq->nirqs; irq++) {
virq = irq_find_mapping(kirq->domain, irq);
irq_dispose_mapping(virq);
}
irq_domain_remove(kirq->domain);
}
static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
{
struct ksz_irq *kirq = dev_id;
unsigned int nhandled = 0;
struct ksz_device *dev;
unsigned int sub_irq;
u8 data;
int ret;
u8 n;
dev = kirq->dev;
/* Read interrupt status register */
ret = ksz_read8(dev, kirq->reg_status, &data);
if (ret)
goto out;
for (n = 0; n < kirq->nirqs; ++n) {
if (data & BIT(n)) {
sub_irq = irq_find_mapping(kirq->domain, n);
handle_nested_irq(sub_irq);
++nhandled;
}
}
out:
return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}
static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
{
int ret, n;
kirq->dev = dev;
kirq->masked = ~0;
kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
&ksz_irq_domain_ops, kirq);
if (!kirq->domain)
return -ENOMEM;
for (n = 0; n < kirq->nirqs; n++)
irq_create_mapping(kirq->domain, n);
ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
IRQF_ONESHOT, kirq->name, kirq);
if (ret)
goto out;
return 0;
out:
ksz_irq_free(kirq);
return ret;
}
static int ksz_girq_setup(struct ksz_device *dev)
{
struct ksz_irq *girq = &dev->girq;
girq->nirqs = dev->info->port_cnt;
girq->reg_mask = REG_SW_PORT_INT_MASK__1;
girq->reg_status = REG_SW_PORT_INT_STATUS__1;
snprintf(girq->name, sizeof(girq->name), "global_port_irq");
girq->irq_num = dev->irq;
return ksz_irq_common_setup(dev, girq);
}
static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
{
struct ksz_irq *pirq = &dev->ports[p].pirq;
pirq->nirqs = dev->info->port_nirqs;
pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
if (pirq->irq_num < 0)
return pirq->irq_num;
return ksz_irq_common_setup(dev, pirq);
}
static int ksz_parse_drive_strength(struct ksz_device *dev);
static int ksz_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct dsa_port *dp;
struct ksz_port *p;
const u16 *regs;
int ret;
regs = dev->info->regs;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->info->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = dev->dev_ops->reset(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
ret = ksz_parse_drive_strength(dev);
if (ret)
return ret;
/* set broadcast storm protection 10% rate */
regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
BROADCAST_STORM_RATE,
(BROADCAST_STORM_VALUE *
BROADCAST_STORM_PROT_RATE) / 100);
dev->dev_ops->config_cpu_port(ds);
dev->dev_ops->enable_stp_addr(dev);
ds->num_tx_queues = dev->info->num_tx_queues;
regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
ksz_init_mib_timer(dev);
ds->configure_vlan_while_not_filtering = false;
if (dev->dev_ops->setup) {
ret = dev->dev_ops->setup(ds);
if (ret)
return ret;
}
/* Start with learning disabled on standalone user ports, and enabled
* on the CPU port. In lack of other finer mechanisms, learning on the
* CPU port will avoid flooding bridge local addresses on the network
* in some cases.
*/
p = &dev->ports[dev->cpu_port];
p->learning = true;
if (dev->irq > 0) {
ret = ksz_girq_setup(dev);
if (ret)
return ret;
dsa_switch_for_each_user_port(dp, dev->ds) {
ret = ksz_pirq_setup(dev, dp->index);
if (ret)
goto out_girq;
ret = ksz_ptp_irq_setup(ds, dp->index);
if (ret)
goto out_pirq;
}
}
ret = ksz_ptp_clock_register(ds);
if (ret) {
dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
goto out_ptpirq;
}
ret = ksz_mdio_register(dev);
if (ret < 0) {
dev_err(dev->dev, "failed to register the mdio");
goto out_ptp_clock_unregister;
}
/* start switch */
regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
SW_START, SW_START);
return 0;
out_ptp_clock_unregister:
ksz_ptp_clock_unregister(ds);
out_ptpirq:
if (dev->irq > 0)
dsa_switch_for_each_user_port(dp, dev->ds)
ksz_ptp_irq_free(ds, dp->index);
out_pirq:
if (dev->irq > 0)
dsa_switch_for_each_user_port(dp, dev->ds)
ksz_irq_free(&dev->ports[dp->index].pirq);
out_girq:
if (dev->irq > 0)
ksz_irq_free(&dev->girq);
return ret;
}
static void ksz_teardown(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct dsa_port *dp;
ksz_ptp_clock_unregister(ds);
if (dev->irq > 0) {
dsa_switch_for_each_user_port(dp, dev->ds) {
ksz_ptp_irq_free(ds, dp->index);
ksz_irq_free(&dev->ports[dp->index].pirq);
}
ksz_irq_free(&dev->girq);
}
if (dev->dev_ops->teardown)
dev->dev_ops->teardown(ds);
}
static void port_r_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
u64 *dropped;
/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
&mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
/* last one in storage */
dropped = &mib->counters[dev->info->mib_cnt];
/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->mib_cnt) {
dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
dropped, &mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
mib->cnt_ptr = 0;
}
static void ksz_mib_read_work(struct work_struct *work)
{
struct ksz_device *dev = container_of(work, struct ksz_device,
mib_read.work);
struct ksz_port_mib *mib;
struct ksz_port *p;
int i;
for (i = 0; i < dev->info->port_cnt; i++) {
if (dsa_is_unused_port(dev->ds, i))
continue;
p = &dev->ports[i];
mib = &p->mib;
mutex_lock(&mib->cnt_mutex);
/* Only read MIB counters when the port is told to do.
* If not, read only dropped counters when link is not up.
*/
if (!p->read) {
const struct dsa_port *dp = dsa_to_port(dev->ds, i);
if (!netif_carrier_ok(dp->user))
mib->cnt_ptr = dev->info->reg_mib_cnt;
}
port_r_cnt(dev, i);
p->read = false;
if (dev->dev_ops->r_mib_stat64)
dev->dev_ops->r_mib_stat64(dev, i);
mutex_unlock(&mib->cnt_mutex);
}
schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
}
void ksz_init_mib_timer(struct ksz_device *dev)
{
int i;
INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
for (i = 0; i < dev->info->port_cnt; i++) {
struct ksz_port_mib *mib = &dev->ports[i].mib;
dev->dev_ops->port_init_cnt(dev, i);
mib->cnt_ptr = 0;
memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
}
}
static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
u16 val = 0xffff;
int ret;
ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
if (ret)
return ret;
return val;
}
static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct ksz_device *dev = ds->priv;
int ret;
ret = dev->dev_ops->w_phy(dev, addr, reg, val);
if (ret)
return ret;
return 0;
}
static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
switch (dev->chip_id) {
case KSZ8830_CHIP_ID:
/* Silicon Errata Sheet (DS80000830A):
* Port 1 does not work with LinkMD Cable-Testing.
* Port 1 does not respond to received PAUSE control frames.
*/
if (!port)
return MICREL_KSZ8_P1_ERRATA;
break;
case KSZ9477_CHIP_ID:
/* KSZ9477 Errata DS80000754C
*
* Module 4: Energy Efficient Ethernet (EEE) feature select must
* be manually disabled
* The EEE feature is enabled by default, but it is not fully
* operational. It must be manually disabled through register
* controls. If not disabled, the PHY ports can auto-negotiate
* to enable EEE, and this feature can cause link drops when
* linked to another device supporting EEE.
*/
return MICREL_NO_EEE;
}
return 0;
}
static void ksz_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode, phy_interface_t interface)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p = &dev->ports[port];
/* Read all MIB counters when the link is going down. */
p->read = true;
/* timer started */
if (dev->mib_read_interval)
schedule_delayed_work(&dev->mib_read, 0);
}
static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
{
struct ksz_device *dev = ds->priv;
if (sset != ETH_SS_STATS)
return 0;
return dev->info->mib_cnt;
}
static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *buf)
{
const struct dsa_port *dp = dsa_to_port(ds, port);
struct ksz_device *dev = ds->priv;
struct ksz_port_mib *mib;
mib = &dev->ports[port].mib;
mutex_lock(&mib->cnt_mutex);
/* Only read dropped counters if no link. */
if (!netif_carrier_ok(dp->user))
mib->cnt_ptr = dev->info->reg_mib_cnt;
port_r_cnt(dev, port);
memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
mutex_unlock(&mib->cnt_mutex);
}
static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge,
bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
/* port_stp_state_set() will be called after to put the port in
* appropriate state so there is no need to do anything.
*/
return 0;
}
static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
/* port_stp_state_set() will be called after to put the port in
* forwarding state so there is no need to do anything.
*/
}
static void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
dev->dev_ops->flush_dyn_mac_table(dev, port);
}
static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->set_ageing_time)
return -EOPNOTSUPP;
return dev->dev_ops->set_ageing_time(dev, msecs);
}
static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->fdb_add)
return -EOPNOTSUPP;
return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
}
static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr,
u16 vid, struct dsa_db db)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->fdb_del)
return -EOPNOTSUPP;
return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
}
static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->fdb_dump)
return -EOPNOTSUPP;
return dev->dev_ops->fdb_dump(dev, port, cb, data);
}
static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->mdb_add)
return -EOPNOTSUPP;
return dev->dev_ops->mdb_add(dev, port, mdb, db);
}
static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->mdb_del)
return -EOPNOTSUPP;
return dev->dev_ops->mdb_del(dev, port, mdb, db);
}
static int ksz_port_setup(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
if (!dsa_is_user_port(ds, port))
return 0;
/* setup user port */
dev->dev_ops->port_setup(dev, port, false);
/* port_stp_state_set() will be called after to enable the port so
* there is no need to do anything.
*/
return 0;
}
void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
const u16 *regs;
u8 data;
regs = dev->info->regs;
ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
p = &dev->ports[port];
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
if (!p->learning)
data |= PORT_LEARN_DISABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
if (!p->learning)
data |= PORT_LEARN_DISABLE;
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
p->stp_state = state;
ksz_update_port_member(dev, port);
}
static void ksz_port_teardown(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
switch (dev->chip_id) {
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
if (dsa_is_user_port(ds, port))
ksz9477_port_acl_free(dev, port);
}
}
static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
return -EINVAL;
return 0;
}
static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p = &dev->ports[port];
if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
if (flags.mask & BR_LEARNING)
p->learning = !!(flags.val & BR_LEARNING);
if (flags.mask & BR_ISOLATED)
p->isolated = !!(flags.val & BR_ISOLATED);
/* Make the change take effect immediately */
ksz_port_stp_state_set(ds, port, p->stp_state);
}
return 0;
}
static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
struct ksz_device *dev = ds->priv;
enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
if (dev->chip_id == KSZ8795_CHIP_ID ||
dev->chip_id == KSZ8794_CHIP_ID ||
dev->chip_id == KSZ8765_CHIP_ID)
proto = DSA_TAG_PROTO_KSZ8795;
if (dev->chip_id == KSZ8830_CHIP_ID ||
dev->chip_id == KSZ8563_CHIP_ID ||
dev->chip_id == KSZ9893_CHIP_ID ||
dev->chip_id == KSZ9563_CHIP_ID)
proto = DSA_TAG_PROTO_KSZ9893;
if (dev->chip_id == KSZ8567_CHIP_ID ||
dev->chip_id == KSZ9477_CHIP_ID ||
dev->chip_id == KSZ9896_CHIP_ID ||
dev->chip_id == KSZ9897_CHIP_ID ||
dev->chip_id == KSZ9567_CHIP_ID)
proto = DSA_TAG_PROTO_KSZ9477;
if (is_lan937x(dev))
proto = DSA_TAG_PROTO_LAN937X;
return proto;
}
static int ksz_connect_tag_protocol(struct dsa_switch *ds,
enum dsa_tag_protocol proto)
{
struct ksz_tagger_data *tagger_data;
switch (proto) {
case DSA_TAG_PROTO_KSZ8795:
return 0;
case DSA_TAG_PROTO_KSZ9893:
case DSA_TAG_PROTO_KSZ9477:
case DSA_TAG_PROTO_LAN937X:
tagger_data = ksz_tagger_data(ds);
tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
return 0;
default:
return -EPROTONOSUPPORT;
}
}
static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
bool flag, struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->vlan_filtering)
return -EOPNOTSUPP;
return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
}
static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->vlan_add)
return -EOPNOTSUPP;
return dev->dev_ops->vlan_add(dev, port, vlan, extack);
}
static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->vlan_del)
return -EOPNOTSUPP;
return dev->dev_ops->vlan_del(dev, port, vlan);
}
static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->mirror_add)
return -EOPNOTSUPP;
return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
}
static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
if (dev->dev_ops->mirror_del)
dev->dev_ops->mirror_del(dev, port, mirror);
}
static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
{
struct ksz_device *dev = ds->priv;
if (!dev->dev_ops->change_mtu)
return -EOPNOTSUPP;
return dev->dev_ops->change_mtu(dev, port, mtu);
}
static int ksz_max_mtu(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
switch (dev->chip_id) {
case KSZ8795_CHIP_ID:
case KSZ8794_CHIP_ID:
case KSZ8765_CHIP_ID:
return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
case KSZ8830_CHIP_ID:
return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
case LAN9370_CHIP_ID:
case LAN9371_CHIP_ID:
case LAN9372_CHIP_ID:
case LAN9373_CHIP_ID:
case LAN9374_CHIP_ID:
return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
}
return -EOPNOTSUPP;
}
static int ksz_validate_eee(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
if (!dev->info->internal_phy[port])
return -EOPNOTSUPP;
switch (dev->chip_id) {
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
return 0;
}
return -EOPNOTSUPP;
}
static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_keee *e)
{
int ret;
ret = ksz_validate_eee(ds, port);
if (ret)
return ret;
/* There is no documented control of Tx LPI configuration. */
e->tx_lpi_enabled = true;
/* There is no documented control of Tx LPI timer. According to tests
* Tx LPI timer seems to be set by default to minimal value.
*/
e->tx_lpi_timer = 0;
return 0;
}
static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_keee *e)
{
struct ksz_device *dev = ds->priv;
int ret;
ret = ksz_validate_eee(ds, port);
if (ret)
return ret;
if (!e->tx_lpi_enabled) {
dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
return -EINVAL;
}
if (e->tx_lpi_timer) {
dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
return -EINVAL;
}
return 0;
}
static void ksz_set_xmii(struct ksz_device *dev, int port,
phy_interface_t interface)
{
const u8 *bitval = dev->info->xmii_ctrl1;
struct ksz_port *p = &dev->ports[port];
const u16 *regs = dev->info->regs;
u8 data8;
ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
P_RGMII_ID_EG_ENABLE);
switch (interface) {
case PHY_INTERFACE_MODE_MII:
data8 |= bitval[P_MII_SEL];
break;
case PHY_INTERFACE_MODE_RMII:
data8 |= bitval[P_RMII_SEL];
break;
case PHY_INTERFACE_MODE_GMII:
data8 |= bitval[P_GMII_SEL];
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
data8 |= bitval[P_RGMII_SEL];
/* On KSZ9893, disable RGMII in-band status support */
if (dev->chip_id == KSZ9893_CHIP_ID ||
dev->chip_id == KSZ8563_CHIP_ID ||
dev->chip_id == KSZ9563_CHIP_ID)
data8 &= ~P_MII_MAC_MODE;
break;
default:
dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
phy_modes(interface), port);
return;
}
if (p->rgmii_tx_val)
data8 |= P_RGMII_ID_EG_ENABLE;
if (p->rgmii_rx_val)
data8 |= P_RGMII_ID_IG_ENABLE;
/* Write the updated value */
ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
}
phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
{
const u8 *bitval = dev->info->xmii_ctrl1;
const u16 *regs = dev->info->regs;
phy_interface_t interface;
u8 data8;
u8 val;
ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
val = FIELD_GET(P_MII_SEL_M, data8);
if (val == bitval[P_MII_SEL]) {
if (gbit)
interface = PHY_INTERFACE_MODE_GMII;
else
interface = PHY_INTERFACE_MODE_MII;
} else if (val == bitval[P_RMII_SEL]) {
interface = PHY_INTERFACE_MODE_RGMII;
} else {
interface = PHY_INTERFACE_MODE_RGMII;
if (data8 & P_RGMII_ID_EG_ENABLE)
interface = PHY_INTERFACE_MODE_RGMII_TXID;
if (data8 & P_RGMII_ID_IG_ENABLE) {
interface = PHY_INTERFACE_MODE_RGMII_RXID;
if (data8 & P_RGMII_ID_EG_ENABLE)
interface = PHY_INTERFACE_MODE_RGMII_ID;
}
}
return interface;
}
static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct ksz_device *dev = ds->priv;
if (ksz_is_ksz88x3(dev)) {
dev->ports[port].manual_flow = !(state->pause & MLO_PAUSE_AN);
return;
}
/* Internal PHYs */
if (dev->info->internal_phy[port])
return;
if (phylink_autoneg_inband(mode)) {
dev_err(dev->dev, "In-band AN not supported!\n");
return;
}
ksz_set_xmii(dev, port, state->interface);
if (dev->dev_ops->phylink_mac_config)
dev->dev_ops->phylink_mac_config(dev, port, mode, state);
if (dev->dev_ops->setup_rgmii_delay)
dev->dev_ops->setup_rgmii_delay(dev, port);
}
bool ksz_get_gbit(struct ksz_device *dev, int port)
{
const u8 *bitval = dev->info->xmii_ctrl1;
const u16 *regs = dev->info->regs;
bool gbit = false;
u8 data8;
bool val;
ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
val = FIELD_GET(P_GMII_1GBIT_M, data8);
if (val == bitval[P_GMII_1GBIT])
gbit = true;
return gbit;
}
static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
{
const u8 *bitval = dev->info->xmii_ctrl1;
const u16 *regs = dev->info->regs;
u8 data8;
ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
data8 &= ~P_GMII_1GBIT_M;
if (gbit)
data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
else
data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
/* Write the updated value */
ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
}
static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
{
const u8 *bitval = dev->info->xmii_ctrl0;
const u16 *regs = dev->info->regs;
u8 data8;
ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
data8 &= ~P_MII_100MBIT_M;
if (speed == SPEED_100)
data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
else
data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
/* Write the updated value */
ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
}
static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
{
if (speed == SPEED_1000)
ksz_set_gbit(dev, port, true);
else
ksz_set_gbit(dev, port, false);
if (speed == SPEED_100 || speed == SPEED_10)
ksz_set_100_10mbit(dev, port, speed);
}
static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
bool tx_pause, bool rx_pause)
{
const u8 *bitval = dev->info->xmii_ctrl0;
const u32 *masks = dev->info->masks;
const u16 *regs = dev->info->regs;
u8 mask;
u8 val;
mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
masks[P_MII_RX_FLOW_CTRL];
if (duplex == DUPLEX_FULL)
val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
else
val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
if (tx_pause)
val |= masks[P_MII_TX_FLOW_CTRL];
if (rx_pause)
val |= masks[P_MII_RX_FLOW_CTRL];
ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
}
static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause,
bool rx_pause)
{
struct ksz_port *p;
p = &dev->ports[port];
/* Internal PHYs */
if (dev->info->internal_phy[port])
return;
p->phydev.speed = speed;
ksz_port_set_xmii_speed(dev, port, speed);
ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
}
static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
struct ksz_device *dev = ds->priv;
dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface, phydev,
speed, duplex, tx_pause, rx_pause);
}
static int ksz_switch_detect(struct ksz_device *dev)
{
u8 id1, id2, id4;
u16 id16;
u32 id32;
int ret;
/* read chip id */
ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
if (ret)
return ret;
id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
id2 = FIELD_GET(SW_CHIP_ID_M, id16);
switch (id1) {
case KSZ87_FAMILY_ID:
if (id2 == KSZ87_CHIP_ID_95) {
u8 val;
dev->chip_id = KSZ8795_CHIP_ID;
ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
if (val & KSZ8_PORT_FIBER_MODE)
dev->chip_id = KSZ8765_CHIP_ID;
} else if (id2 == KSZ87_CHIP_ID_94) {
dev->chip_id = KSZ8794_CHIP_ID;
} else {
return -ENODEV;
}
break;
case KSZ88_FAMILY_ID:
if (id2 == KSZ88_CHIP_ID_63)
dev->chip_id = KSZ8830_CHIP_ID;
else
return -ENODEV;
break;
default:
ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
if (ret)
return ret;
dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
id32 &= ~0xFF;
switch (id32) {
case KSZ9477_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ8567_CHIP_ID:
case LAN9370_CHIP_ID:
case LAN9371_CHIP_ID:
case LAN9372_CHIP_ID:
case LAN9373_CHIP_ID:
case LAN9374_CHIP_ID:
dev->chip_id = id32;
break;
case KSZ9893_CHIP_ID:
ret = ksz_read8(dev, REG_CHIP_ID4,
&id4);
if (ret)
return ret;
if (id4 == SKU_ID_KSZ8563)
dev->chip_id = KSZ8563_CHIP_ID;
else if (id4 == SKU_ID_KSZ9563)
dev->chip_id = KSZ9563_CHIP_ID;
else
dev->chip_id = KSZ9893_CHIP_ID;
break;
default:
dev_err(dev->dev,
"unsupported switch detected %x)\n", id32);
return -ENODEV;
}
}
return 0;
}
static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
struct flow_cls_offload *cls, bool ingress)
{
struct ksz_device *dev = ds->priv;
switch (dev->chip_id) {
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
return ksz9477_cls_flower_add(ds, port, cls, ingress);
}
return -EOPNOTSUPP;
}
static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
struct flow_cls_offload *cls, bool ingress)
{
struct ksz_device *dev = ds->priv;
switch (dev->chip_id) {
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
return ksz9477_cls_flower_del(ds, port, cls, ingress);
}
return -EOPNOTSUPP;
}
/* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
* is converted to Hex-decimal using the successive multiplication method. On
* every step, integer part is taken and decimal part is carry forwarded.
*/
static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
{
u32 cinc = 0;
u32 txrate;
u32 rate;
u8 temp;
u8 i;
txrate = idle_slope - send_slope;
if (!txrate)
return -EINVAL;
rate = idle_slope;
/* 24 bit register */
for (i = 0; i < 6; i++) {
rate = rate * 16;
temp = rate / txrate;
rate %= txrate;
cinc = ((cinc << 4) | temp);
}
*bw = cinc;
return 0;
}
static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
u8 shaper)
{
return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
FIELD_PREP(MTI_SHAPING_M, shaper));
}
static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
struct tc_cbs_qopt_offload *qopt)
{
struct ksz_device *dev = ds->priv;
int ret;
u32 bw;
if (!dev->info->tc_cbs_supported)
return -EOPNOTSUPP;
if (qopt->queue > dev->info->num_tx_queues)
return -EINVAL;
/* Queue Selection */
ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
if (ret)
return ret;
if (!qopt->enable)
return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
MTI_SHAPING_OFF);
/* High Credit */
ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
qopt->hicredit);
if (ret)
return ret;
/* Low Credit */
ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
qopt->locredit);
if (ret)
return ret;
/* Credit Increment Register */
ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
if (ret)
return ret;
if (dev->dev_ops->tc_cbs_set_cinc) {
ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
if (ret)
return ret;
}
return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
MTI_SHAPING_SRP);
}
static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
{
int queue, ret;
/* Configuration will not take effect until the last Port Queue X
* Egress Limit Control Register is written.
*/
for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
KSZ9477_OUT_RATE_NO_LIMIT);
if (ret)
return ret;
}
return 0;
}
static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
int band)
{
/* Compared to queues, bands prioritize packets differently. In strict
* priority mode, the lowest priority is assigned to Queue 0 while the
* highest priority is given to Band 0.
*/
return p->bands - 1 - band;
}
static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
{
int ret;
ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
if (ret)
return ret;
return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
MTI_SHAPING_OFF);
}
static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
int weight)
{
int ret;
ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
if (ret)
return ret;
ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
MTI_SHAPING_OFF);
if (ret)
return ret;
return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
}
static int ksz_tc_ets_add(struct ksz_device *dev, int port,
struct tc_ets_qopt_offload_replace_params *p)
{
int ret, band, tc_prio;
u32 queue_map = 0;
/* In order to ensure proper prioritization, it is necessary to set the
* rate limit for the related queue to zero. Otherwise strict priority
* or WRR mode will not work. This is a hardware limitation.
*/
ret = ksz_disable_egress_rate_limit(dev, port);
if (ret)
return ret;
/* Configure queue scheduling mode for all bands. Currently only strict
* prio mode is supported.
*/
for (band = 0; band < p->bands; band++) {
int queue = ksz_ets_band_to_queue(p, band);
ret = ksz_queue_set_strict(dev, port, queue);
if (ret)
return ret;
}
/* Configure the mapping between traffic classes and queues. Note:
* priomap variable support 16 traffic classes, but the chip can handle
* only 8 classes.
*/
for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
int queue;
if (tc_prio > KSZ9477_MAX_TC_PRIO)
break;
queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
}
return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
}
static int ksz_tc_ets_del(struct ksz_device *dev, int port)
{
int ret, queue, tc_prio, s;
u32 queue_map = 0;
/* To restore the default chip configuration, set all queues to use the
* WRR scheduler with a weight of 1.
*/
for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
ret = ksz_queue_set_wrr(dev, port, queue,
KSZ9477_DEFAULT_WRR_WEIGHT);
if (ret)
return ret;
}
switch (dev->info->num_tx_queues) {
case 2:
s = 2;
break;
case 4:
s = 1;
break;
case 8:
s = 0;
break;
default:
return -EINVAL;
}
/* Revert the queue mapping for TC-priority to its default setting on
* the chip.
*/
for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
int queue;
queue = tc_prio >> s;
queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
}
return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
}
static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
struct tc_ets_qopt_offload_replace_params *p)
{
int band;
/* Since it is not feasible to share one port among multiple qdisc,
* the user must configure all available queues appropriately.
*/
if (p->bands != dev->info->num_tx_queues) {
dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
dev->info->num_tx_queues);
return -EOPNOTSUPP;
}
for (band = 0; band < p->bands; ++band) {
/* The KSZ switches utilize a weighted round robin configuration
* where a certain number of packets can be transmitted from a
* queue before the next queue is serviced. For more information
* on this, refer to section 5.2.8.4 of the KSZ8565R
* documentation on the Port Transmit Queue Control 1 Register.
* However, the current ETS Qdisc implementation (as of February
* 2023) assigns a weight to each queue based on the number of
* bytes or extrapolated bandwidth in percentages. Since this
* differs from the KSZ switches' method and we don't want to
* fake support by converting bytes to packets, it is better to
* return an error instead.
*/
if (p->quanta[band]) {
dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
return -EOPNOTSUPP;
}
}
return 0;
}
static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
struct tc_ets_qopt_offload *qopt)
{
struct ksz_device *dev = ds->priv;
int ret;
if (!dev->info->tc_ets_supported)
return -EOPNOTSUPP;
if (qopt->parent != TC_H_ROOT) {
dev_err(dev->dev, "Parent should be \"root\"\n");
return -EOPNOTSUPP;
}
switch (qopt->command) {
case TC_ETS_REPLACE:
ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
if (ret)
return ret;
return ksz_tc_ets_add(dev, port, &qopt->replace_params);
case TC_ETS_DESTROY:
return ksz_tc_ets_del(dev, port);
case TC_ETS_STATS:
case TC_ETS_GRAFT:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int ksz_setup_tc(struct dsa_switch *ds, int port,
enum tc_setup_type type, void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_CBS:
return ksz_setup_tc_cbs(ds, port, type_data);
case TC_SETUP_QDISC_ETS:
return ksz_tc_setup_qdisc_ets(ds, port, type_data);
default:
return -EOPNOTSUPP;
}
}
static void ksz_get_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct ksz_device *dev = ds->priv;
if (dev->dev_ops->get_wol)
dev->dev_ops->get_wol(dev, port, wol);
}
static int ksz_set_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct ksz_device *dev = ds->priv;
if (dev->dev_ops->set_wol)
return dev->dev_ops->set_wol(dev, port, wol);
return -EOPNOTSUPP;
}
static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
const unsigned char *addr)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct ethtool_wolinfo wol;
if (dp->hsr_dev) {
dev_err(ds->dev,
"Cannot change MAC address on port %d with active HSR offload\n",
port);
return -EBUSY;
}
ksz_get_wol(ds, dp->index, &wol);
if (wol.wolopts & WAKE_MAGIC) {
dev_err(ds->dev,
"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
port);
return -EBUSY;
}
return 0;
}
/**
* ksz_is_port_mac_global_usable - Check if the MAC address on a given port
* can be used as a global address.
* @ds: Pointer to the DSA switch structure.
* @port: The port number on which the MAC address is to be checked.
*
* This function examines the MAC address set on the specified port and
* determines if it can be used as a global address for the switch.
*
* Return: true if the port's MAC address can be used as a global address, false
* otherwise.
*/
bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
{
struct net_device *user = dsa_to_port(ds, port)->user;
const unsigned char *addr = user->dev_addr;
struct ksz_switch_macaddr *switch_macaddr;
struct ksz_device *dev = ds->priv;
ASSERT_RTNL();
switch_macaddr = dev->switch_macaddr;
if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
return false;
return true;
}
/**
* ksz_switch_macaddr_get - Program the switch's MAC address register.
* @ds: DSA switch instance.
* @port: Port number.
* @extack: Netlink extended acknowledgment.
*
* This function programs the switch's MAC address register with the MAC address
* of the requesting user port. This single address is used by the switch for
* multiple features like HSR self-address filtering and WoL. Other user ports
* can share ownership of this address as long as their MAC address is the same.
* The MAC addresses of user ports must not change while they have ownership of
* the switch MAC address.
*
* Return: 0 on success, or other error codes on failure.
*/
int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
struct netlink_ext_ack *extack)
{
struct net_device *user = dsa_to_port(ds, port)->user;
const unsigned char *addr = user->dev_addr;
struct ksz_switch_macaddr *switch_macaddr;
struct ksz_device *dev = ds->priv;
const u16 *regs = dev->info->regs;
int i, ret;
/* Make sure concurrent MAC address changes are blocked */
ASSERT_RTNL();
switch_macaddr = dev->switch_macaddr;
if (switch_macaddr) {
if (!ether_addr_equal(switch_macaddr->addr, addr)) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Switch already configured for MAC address %pM",
switch_macaddr->addr);
return -EBUSY;
}
refcount_inc(&switch_macaddr->refcount);
return 0;
}
switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
if (!switch_macaddr)
return -ENOMEM;
ether_addr_copy(switch_macaddr->addr, addr);
refcount_set(&switch_macaddr->refcount, 1);
dev->switch_macaddr = switch_macaddr;
/* Program the switch MAC address to hardware */
for (i = 0; i < ETH_ALEN; i++) {
ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
if (ret)
goto macaddr_drop;
}
return 0;
macaddr_drop:
dev->switch_macaddr = NULL;
refcount_set(&switch_macaddr->refcount, 0);
kfree(switch_macaddr);
return ret;
}
void ksz_switch_macaddr_put(struct dsa_switch *ds)
{
struct ksz_switch_macaddr *switch_macaddr;
struct ksz_device *dev = ds->priv;
const u16 *regs = dev->info->regs;
int i;
/* Make sure concurrent MAC address changes are blocked */
ASSERT_RTNL();
switch_macaddr = dev->switch_macaddr;
if (!refcount_dec_and_test(&switch_macaddr->refcount))
return;
for (i = 0; i < ETH_ALEN; i++)
ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
dev->switch_macaddr = NULL;
kfree(switch_macaddr);
}
static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
enum hsr_version ver;
int ret;
ret = hsr_get_version(hsr, &ver);
if (ret)
return ret;
if (dev->chip_id != KSZ9477_CHIP_ID) {
NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
return -EOPNOTSUPP;
}
/* KSZ9477 can support HW offloading of only 1 HSR device */
if (dev->hsr_dev && hsr != dev->hsr_dev) {
NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
return -EOPNOTSUPP;
}
/* KSZ9477 only supports HSR v0 and v1 */
if (!(ver == HSR_V0 || ver == HSR_V1)) {
NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
return -EOPNOTSUPP;
}
/* Self MAC address filtering, to avoid frames traversing
* the HSR ring more than once.
*/
ret = ksz_switch_macaddr_get(ds, port, extack);
if (ret)
return ret;
ksz9477_hsr_join(ds, port, hsr);
dev->hsr_dev = hsr;
dev->hsr_ports |= BIT(port);
return 0;
}
static int ksz_hsr_leave(struct dsa_switch *ds, int port,
struct net_device *hsr)
{
struct ksz_device *dev = ds->priv;
WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
ksz9477_hsr_leave(ds, port, hsr);
dev->hsr_ports &= ~BIT(port);
if (!dev->hsr_ports)
dev->hsr_dev = NULL;
ksz_switch_macaddr_put(ds);
return 0;
}
static const struct dsa_switch_ops ksz_switch_ops = {
.get_tag_protocol = ksz_get_tag_protocol,
.connect_tag_protocol = ksz_connect_tag_protocol,
.get_phy_flags = ksz_get_phy_flags,
.setup = ksz_setup,
.teardown = ksz_teardown,
.phy_read = ksz_phy_read16,
.phy_write = ksz_phy_write16,
.phylink_get_caps = ksz_phylink_get_caps,
.phylink_mac_config = ksz_phylink_mac_config,
.phylink_mac_link_up = ksz_phylink_mac_link_up,
.phylink_mac_link_down = ksz_mac_link_down,
.port_setup = ksz_port_setup,
.set_ageing_time = ksz_set_ageing_time,
.get_strings = ksz_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_bridge_join = ksz_port_bridge_join,
.port_bridge_leave = ksz_port_bridge_leave,
.port_hsr_join = ksz_hsr_join,
.port_hsr_leave = ksz_hsr_leave,
.port_set_mac_address = ksz_port_set_mac_address,
.port_stp_state_set = ksz_port_stp_state_set,
.port_teardown = ksz_port_teardown,
.port_pre_bridge_flags = ksz_port_pre_bridge_flags,
.port_bridge_flags = ksz_port_bridge_flags,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz_port_vlan_filtering,
.port_vlan_add = ksz_port_vlan_add,
.port_vlan_del = ksz_port_vlan_del,
.port_fdb_dump = ksz_port_fdb_dump,
.port_fdb_add = ksz_port_fdb_add,
.port_fdb_del = ksz_port_fdb_del,
.port_mdb_add = ksz_port_mdb_add,
.port_mdb_del = ksz_port_mdb_del,
.port_mirror_add = ksz_port_mirror_add,
.port_mirror_del = ksz_port_mirror_del,
.get_stats64 = ksz_get_stats64,
.get_pause_stats = ksz_get_pause_stats,
.port_change_mtu = ksz_change_mtu,
.port_max_mtu = ksz_max_mtu,
.get_wol = ksz_get_wol,
.set_wol = ksz_set_wol,
.get_ts_info = ksz_get_ts_info,
.port_hwtstamp_get = ksz_hwtstamp_get,
.port_hwtstamp_set = ksz_hwtstamp_set,
.port_txtstamp = ksz_port_txtstamp,
.port_rxtstamp = ksz_port_rxtstamp,
.cls_flower_add = ksz_cls_flower_add,
.cls_flower_del = ksz_cls_flower_del,
.port_setup_tc = ksz_setup_tc,
.get_mac_eee = ksz_get_mac_eee,
.set_mac_eee = ksz_set_mac_eee,
};
struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
{
struct dsa_switch *ds;
struct ksz_device *swdev;
ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = base;
ds->num_ports = DSA_MAX_PORTS;
ds->ops = &ksz_switch_ops;
swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
if (!swdev)
return NULL;
ds->priv = swdev;
swdev->dev = base;
swdev->ds = ds;
swdev->priv = priv;
return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);
/**
* ksz_switch_shutdown - Shutdown routine for the switch device.
* @dev: The switch device structure.
*
* This function is responsible for initiating a shutdown sequence for the
* switch device. It invokes the reset operation defined in the device
* operations, if available, to reset the switch. Subsequently, it calls the
* DSA framework's shutdown function to ensure a proper shutdown of the DSA
* switch.
*/
void ksz_switch_shutdown(struct ksz_device *dev)
{
bool wol_enabled = false;
if (dev->dev_ops->wol_pre_shutdown)
dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
if (dev->dev_ops->reset && !wol_enabled)
dev->dev_ops->reset(dev);
dsa_switch_shutdown(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_shutdown);
static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
struct device_node *port_dn)
{
phy_interface_t phy_mode = dev->ports[port_num].interface;
int rx_delay = -1, tx_delay = -1;
if (!phy_interface_mode_is_rgmii(phy_mode))
return;
of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
if (rx_delay == -1 && tx_delay == -1) {
dev_warn(dev->dev,
"Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
"please update device tree to specify \"rx-internal-delay-ps\" and "
"\"tx-internal-delay-ps\"",
port_num);
if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
rx_delay = 2000;
if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
tx_delay = 2000;
}
if (rx_delay < 0)
rx_delay = 0;
if (tx_delay < 0)
tx_delay = 0;
dev->ports[port_num].rgmii_rx_val = rx_delay;
dev->ports[port_num].rgmii_tx_val = tx_delay;
}
/**
* ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
* register value.
* @array: The array of drive strength values to search.
* @array_size: The size of the array.
* @microamp: The drive strength value in microamp to be converted.
*
* This function searches the array of drive strength values for the given
* microamp value and returns the corresponding register value for that drive.
*
* Returns: If found, the corresponding register value for that drive strength
* is returned. Otherwise, -EINVAL is returned indicating an invalid value.
*/
static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
size_t array_size, int microamp)
{
int i;
for (i = 0; i < array_size; i++) {
if (array[i].microamp == microamp)
return array[i].reg_val;
}
return -EINVAL;
}
/**
* ksz_drive_strength_error() - Report invalid drive strength value
* @dev: ksz device
* @array: The array of drive strength values to search.
* @array_size: The size of the array.
* @microamp: Invalid drive strength value in microamp
*
* This function logs an error message when an unsupported drive strength value
* is detected. It lists out all the supported drive strength values for
* reference in the error message.
*/
static void ksz_drive_strength_error(struct ksz_device *dev,
const struct ksz_drive_strength *array,
size_t array_size, int microamp)
{
char supported_values[100];
size_t remaining_size;
int added_len;
char *ptr;
int i;
remaining_size = sizeof(supported_values);
ptr = supported_values;
for (i = 0; i < array_size; i++) {
added_len = snprintf(ptr, remaining_size,
i == 0 ? "%d" : ", %d", array[i].microamp);
if (added_len >= remaining_size)
break;
ptr += added_len;
remaining_size -= added_len;
}
dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
microamp, supported_values);
}
/**
* ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
* chip variants.
* @dev: ksz device
* @props: Array of drive strength properties to be applied
* @num_props: Number of properties in the array
*
* This function configures the drive strength for various KSZ9477 chip variants
* based on the provided properties. It handles chip-specific nuances and
* ensures only valid drive strengths are written to the respective chip.
*
* Return: 0 on successful configuration, a negative error code on failure.
*/
static int ksz9477_drive_strength_write(struct ksz_device *dev,
struct ksz_driver_strength_prop *props,
int num_props)
{
size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
int i, ret, reg;
u8 mask = 0;
u8 val = 0;
if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
dev_warn(dev->dev, "%s is not supported by this chip variant\n",
props[KSZ_DRIVER_STRENGTH_IO].name);
if (dev->chip_id == KSZ8795_CHIP_ID ||
dev->chip_id == KSZ8794_CHIP_ID ||
dev->chip_id == KSZ8765_CHIP_ID)
reg = KSZ8795_REG_SW_CTRL_20;
else
reg = KSZ9477_REG_SW_IO_STRENGTH;
for (i = 0; i < num_props; i++) {
if (props[i].value == -1)
continue;
ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
array_size, props[i].value);
if (ret < 0) {
ksz_drive_strength_error(dev, ksz9477_drive_strengths,
array_size, props[i].value);
return ret;
}
mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
val |= ret << props[i].offset;
}
return ksz_rmw8(dev, reg, mask, val);
}
/**
* ksz8830_drive_strength_write() - Set the drive strength configuration for
* KSZ8830 compatible chip variants.
* @dev: ksz device
* @props: Array of drive strength properties to be set
* @num_props: Number of properties in the array
*
* This function applies the specified drive strength settings to KSZ8830 chip
* variants (KSZ8873, KSZ8863).
* It ensures the configurations align with what the chip variant supports and
* warns or errors out on unsupported settings.
*
* Return: 0 on success, error code otherwise
*/
static int ksz8830_drive_strength_write(struct ksz_device *dev,
struct ksz_driver_strength_prop *props,
int num_props)
{
size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
int microamp;
int i, ret;
for (i = 0; i < num_props; i++) {
if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
continue;
dev_warn(dev->dev, "%s is not supported by this chip variant\n",
props[i].name);
}
microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
microamp);
if (ret < 0) {
ksz_drive_strength_error(dev, ksz8830_drive_strengths,
array_size, microamp);
return ret;
}
return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
KSZ8873_DRIVE_STRENGTH_16MA, ret);
}
/**
* ksz_parse_drive_strength() - Extract and apply drive strength configurations
* from device tree properties.
* @dev: ksz device
*
* This function reads the specified drive strength properties from the
* device tree, validates against the supported chip variants, and sets
* them accordingly. An error should be critical here, as the drive strength
* settings are crucial for EMI compliance.
*
* Return: 0 on success, error code otherwise
*/
static int ksz_parse_drive_strength(struct ksz_device *dev)
{
struct ksz_driver_strength_prop of_props[] = {
[KSZ_DRIVER_STRENGTH_HI] = {
.name = "microchip,hi-drive-strength-microamp",
.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
.value = -1,
},
[KSZ_DRIVER_STRENGTH_LO] = {
.name = "microchip,lo-drive-strength-microamp",
.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
.value = -1,
},
[KSZ_DRIVER_STRENGTH_IO] = {
.name = "microchip,io-drive-strength-microamp",
.offset = 0, /* don't care */
.value = -1,
},
};
struct device_node *np = dev->dev->of_node;
bool have_any_prop = false;
int i, ret;
for (i = 0; i < ARRAY_SIZE(of_props); i++) {
ret = of_property_read_u32(np, of_props[i].name,
&of_props[i].value);
if (ret && ret != -EINVAL)
dev_warn(dev->dev, "Failed to read %s\n",
of_props[i].name);
if (ret)
continue;
have_any_prop = true;
}
if (!have_any_prop)
return 0;
switch (dev->chip_id) {
case KSZ8830_CHIP_ID:
return ksz8830_drive_strength_write(dev, of_props,
ARRAY_SIZE(of_props));
case KSZ8795_CHIP_ID:
case KSZ8794_CHIP_ID:
case KSZ8765_CHIP_ID:
case KSZ8563_CHIP_ID:
case KSZ8567_CHIP_ID:
case KSZ9477_CHIP_ID:
case KSZ9563_CHIP_ID:
case KSZ9567_CHIP_ID:
case KSZ9893_CHIP_ID:
case KSZ9896_CHIP_ID:
case KSZ9897_CHIP_ID:
return ksz9477_drive_strength_write(dev, of_props,
ARRAY_SIZE(of_props));
default:
for (i = 0; i < ARRAY_SIZE(of_props); i++) {
if (of_props[i].value == -1)
continue;
dev_warn(dev->dev, "%s is not supported by this chip variant\n",
of_props[i].name);
}
}
return 0;
}
int ksz_switch_register(struct ksz_device *dev)
{
const struct ksz_chip_data *info;
struct device_node *port, *ports;
phy_interface_t interface;
unsigned int port_num;
int ret;
int i;
dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(dev->reset_gpio))
return PTR_ERR(dev->reset_gpio);
if (dev->reset_gpio) {
gpiod_set_value_cansleep(dev->reset_gpio, 1);
usleep_range(10000, 12000);
gpiod_set_value_cansleep(dev->reset_gpio, 0);
msleep(100);
}
mutex_init(&dev->dev_mutex);
mutex_init(&dev->regmap_mutex);
mutex_init(&dev->alu_mutex);
mutex_init(&dev->vlan_mutex);
ret = ksz_switch_detect(dev);
if (ret)
return ret;
info = ksz_lookup_info(dev->chip_id);
if (!info)
return -ENODEV;
/* Update the compatible info with the probed one */
dev->info = info;
dev_info(dev->dev, "found switch: %s, rev %i\n",
dev->info->dev_name, dev->chip_rev);
ret = ksz_check_device_id(dev);
if (ret)
return ret;
dev->dev_ops = dev->info->ops;
ret = dev->dev_ops->init(dev);
if (ret)
return ret;
dev->ports = devm_kzalloc(dev->dev,
dev->info->port_cnt * sizeof(struct ksz_port),
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
for (i = 0; i < dev->info->port_cnt; i++) {
spin_lock_init(&dev->ports[i].mib.stats64_lock);
mutex_init(&dev->ports[i].mib.cnt_mutex);
dev->ports[i].mib.counters =
devm_kzalloc(dev->dev,
sizeof(u64) * (dev->info->mib_cnt + 1),
GFP_KERNEL);
if (!dev->ports[i].mib.counters)
return -ENOMEM;
dev->ports[i].ksz_dev = dev;
dev->ports[i].num = i;
}
/* set the real number of ports */
dev->ds->num_ports = dev->info->port_cnt;
/* Host port interface will be self detected, or specifically set in
* device tree.
*/
for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
if (dev->dev->of_node) {
ret = of_get_phy_mode(dev->dev->of_node, &interface);
if (ret == 0)
dev->compat_interface = interface;
ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
if (!ports)
ports = of_get_child_by_name(dev->dev->of_node, "ports");
if (ports) {
for_each_available_child_of_node(ports, port) {
if (of_property_read_u32(port, "reg",
&port_num))
continue;
if (!(dev->port_mask & BIT(port_num))) {
of_node_put(port);
of_node_put(ports);
return -EINVAL;
}
of_get_phy_mode(port,
&dev->ports[port_num].interface);
ksz_parse_rgmii_delay(dev, port_num, port);
}
of_node_put(ports);
}
dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
"microchip,synclko-125");
dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
"microchip,synclko-disable");
if (dev->synclko_125 && dev->synclko_disable) {
dev_err(dev->dev, "inconsistent synclko settings\n");
return -EINVAL;
}
dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
"wakeup-source");
}
ret = dsa_register_switch(dev->ds);
if (ret) {
dev->dev_ops->exit(dev);
return ret;
}
/* Read MIB counters every 30 seconds to avoid overflow. */
dev->mib_read_interval = msecs_to_jiffies(5000);
/* Start the MIB timer. */
schedule_delayed_work(&dev->mib_read, 0);
return ret;
}
EXPORT_SYMBOL(ksz_switch_register);
void ksz_switch_remove(struct ksz_device *dev)
{
/* timer started */
if (dev->mib_read_interval) {
dev->mib_read_interval = 0;
cancel_delayed_work_sync(&dev->mib_read);
}
dev->dev_ops->exit(dev);
dsa_unregister_switch(dev->ds);
if (dev->reset_gpio)
gpiod_set_value_cansleep(dev->reset_gpio, 1);
}
EXPORT_SYMBOL(ksz_switch_remove);
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");