linux-stable/drivers/hwmon/emc1403.c
Wolfram Sang f2f394db4b hwmon: move from strlcpy with unused retval to strscpy
Follow the advice of the below link and prefer 'strscpy' in this
subsystem. Conversion is 1:1 because the return value is not used.
Generated by a coccinelle script.

Link: https://lore.kernel.org/r/CAHk-=wgfRnXz0W3D37d01q3JFkr_i_uTL=V6A6G1oUZcprmknw@mail.gmail.com/
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Link: https://lore.kernel.org/r/20220818210014.6769-1-wsa+renesas@sang-engineering.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2022-09-19 06:17:05 -07:00

466 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* emc1403.c - SMSC Thermal Driver
*
* Copyright (C) 2008 Intel Corp
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/sysfs.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#define THERMAL_PID_REG 0xfd
#define THERMAL_SMSC_ID_REG 0xfe
#define THERMAL_REVISION_REG 0xff
enum emc1403_chip { emc1402, emc1403, emc1404 };
struct thermal_data {
struct regmap *regmap;
struct mutex mutex;
const struct attribute_group *groups[4];
};
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned int val;
int retval;
retval = regmap_read(data->regmap, sda->index, &val);
if (retval < 0)
return retval;
return sprintf(buf, "%d000\n", val);
}
static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned int val;
int retval;
retval = regmap_read(data->regmap, sda->nr, &val);
if (retval < 0)
return retval;
return sprintf(buf, "%d\n", !!(val & sda->index));
}
static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned long val;
int retval;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
retval = regmap_write(data->regmap, sda->index,
DIV_ROUND_CLOSEST(val, 1000));
if (retval < 0)
return retval;
return count;
}
static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
struct thermal_data *data = dev_get_drvdata(dev);
unsigned long val;
int retval;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
val ? sda->index : 0);
if (retval < 0)
return retval;
return count;
}
static ssize_t show_hyst_common(struct device *dev,
struct device_attribute *attr, char *buf,
bool is_min)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
struct regmap *regmap = data->regmap;
unsigned int limit;
unsigned int hyst;
int retval;
retval = regmap_read(regmap, sda->index, &limit);
if (retval < 0)
return retval;
retval = regmap_read(regmap, 0x21, &hyst);
if (retval < 0)
return retval;
return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
}
static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return show_hyst_common(dev, attr, buf, false);
}
static ssize_t min_hyst_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return show_hyst_common(dev, attr, buf, true);
}
static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
struct thermal_data *data = dev_get_drvdata(dev);
struct regmap *regmap = data->regmap;
unsigned int limit;
int retval;
int hyst;
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->mutex);
retval = regmap_read(regmap, sda->index, &limit);
if (retval < 0)
goto fail;
hyst = limit * 1000 - val;
hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
retval = regmap_write(regmap, 0x21, hyst);
if (retval == 0)
retval = count;
fail:
mutex_unlock(&data->mutex);
return retval;
}
/*
* Sensors. We pass the actual i2c register to the methods.
*/
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
static struct attribute *emc1402_attrs[] = {
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_power_state.dev_attr.attr,
NULL
};
static const struct attribute_group emc1402_group = {
.attrs = emc1402_attrs,
};
static struct attribute *emc1403_attrs[] = {
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group emc1403_group = {
.attrs = emc1403_attrs,
};
static struct attribute *emc1404_attrs[] = {
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_crit.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_fault.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group emc1404_group = {
.attrs = emc1404_attrs,
};
/*
* EMC14x2 uses a different register and different bits to report alarm and
* fault status. For simplicity, provide a separate attribute group for this
* chip series.
* Since we can not re-use the same attribute names, create a separate attribute
* array.
*/
static struct sensor_device_attribute_2 emc1402_alarms[] = {
SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
};
static struct attribute *emc1402_alarm_attrs[] = {
&emc1402_alarms[0].dev_attr.attr,
&emc1402_alarms[1].dev_attr.attr,
&emc1402_alarms[2].dev_attr.attr,
&emc1402_alarms[3].dev_attr.attr,
&emc1402_alarms[4].dev_attr.attr,
&emc1402_alarms[5].dev_attr.attr,
&emc1402_alarms[6].dev_attr.attr,
NULL,
};
static const struct attribute_group emc1402_alarm_group = {
.attrs = emc1402_alarm_attrs,
};
static int emc1403_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int id;
/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
if (id != 0x5d)
return -ENODEV;
id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
switch (id) {
case 0x20:
strscpy(info->type, "emc1402", I2C_NAME_SIZE);
break;
case 0x21:
strscpy(info->type, "emc1403", I2C_NAME_SIZE);
break;
case 0x22:
strscpy(info->type, "emc1422", I2C_NAME_SIZE);
break;
case 0x23:
strscpy(info->type, "emc1423", I2C_NAME_SIZE);
break;
case 0x25:
strscpy(info->type, "emc1404", I2C_NAME_SIZE);
break;
case 0x27:
strscpy(info->type, "emc1424", I2C_NAME_SIZE);
break;
default:
return -ENODEV;
}
id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
if (id < 0x01 || id > 0x04)
return -ENODEV;
return 0;
}
static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case 0x00: /* internal diode high byte */
case 0x01: /* external diode 1 high byte */
case 0x02: /* status */
case 0x10: /* external diode 1 low byte */
case 0x1b: /* external diode fault */
case 0x23: /* external diode 2 high byte */
case 0x24: /* external diode 2 low byte */
case 0x29: /* internal diode low byte */
case 0x2a: /* externl diode 3 high byte */
case 0x2b: /* external diode 3 low byte */
case 0x35: /* high limit status */
case 0x36: /* low limit status */
case 0x37: /* therm limit status */
return true;
default:
return false;
}
}
static const struct regmap_config emc1403_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = emc1403_regmap_is_volatile,
};
static const struct i2c_device_id emc1403_idtable[];
static int emc1403_probe(struct i2c_client *client)
{
struct thermal_data *data;
struct device *hwmon_dev;
const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
mutex_init(&data->mutex);
switch (id->driver_data) {
case emc1404:
data->groups[2] = &emc1404_group;
fallthrough;
case emc1403:
data->groups[1] = &emc1403_group;
fallthrough;
case emc1402:
data->groups[0] = &emc1402_group;
}
if (id->driver_data == emc1402)
data->groups[1] = &emc1402_alarm_group;
hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
client->name, data,
data->groups);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
dev_info(&client->dev, "%s Thermal chip found\n", id->name);
return 0;
}
static const unsigned short emc1403_address_list[] = {
0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
};
/* Last digit of chip name indicates number of channels */
static const struct i2c_device_id emc1403_idtable[] = {
{ "emc1402", emc1402 },
{ "emc1403", emc1403 },
{ "emc1404", emc1404 },
{ "emc1412", emc1402 },
{ "emc1413", emc1403 },
{ "emc1414", emc1404 },
{ "emc1422", emc1402 },
{ "emc1423", emc1403 },
{ "emc1424", emc1404 },
{ }
};
MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
static struct i2c_driver sensor_emc1403 = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "emc1403",
},
.detect = emc1403_detect,
.probe_new = emc1403_probe,
.id_table = emc1403_idtable,
.address_list = emc1403_address_list,
};
module_i2c_driver(sensor_emc1403);
MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
MODULE_DESCRIPTION("emc1403 Thermal Driver");
MODULE_LICENSE("GPL v2");