linux-stable/drivers/net/ethernet/sfc/ef10.c
Edward Cree 51b35a454e sfc: skeleton EF100 PF driver
No TX or RX path, no MCDI, not even an ifup/down handler.
Besides stubs, the bulk of the patch deals with reading the Xilinx
 extended PCIe capability, which tells us where to find our BAR.

Though in the same module, EF100 has its own struct pci_driver,
 which is named sfc_ef100.

A small number of additional nic_type methods are added; those in the
 TX (tx_enqueue) and RX (rx_packet) paths are called through indirect
 call wrappers to minimise the performance impact.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-27 12:26:55 -07:00

4182 lines
124 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2012-2013 Solarflare Communications Inc.
*/
#include "net_driver.h"
#include "rx_common.h"
#include "tx_common.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "mcdi_port.h"
#include "mcdi_port_common.h"
#include "mcdi_functions.h"
#include "nic.h"
#include "mcdi_filters.h"
#include "workarounds.h"
#include "selftest.h"
#include "ef10_sriov.h"
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <net/udp_tunnel.h>
/* Hardware control for EF10 architecture including 'Huntington'. */
#define EFX_EF10_DRVGEN_EV 7
enum {
EFX_EF10_TEST = 1,
EFX_EF10_REFILL,
};
/* VLAN list entry */
struct efx_ef10_vlan {
struct list_head list;
u16 vid;
};
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
efx_dword_t reg;
efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}
/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
* I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
* bar; PFs use BAR 0/1 for memory.
*/
static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
{
switch (efx->pci_dev->device) {
case 0x0b03: /* SFC9250 PF */
return 0;
default:
return 2;
}
}
/* All VFs use BAR 0/1 for memory */
static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
{
return 0;
}
static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
int bar;
bar = efx->type->mem_bar(efx);
return resource_size(&efx->pci_dev->resource[bar]);
}
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
return efx->type->is_vf;
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf))
return -EIO;
nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
return 0;
}
#endif
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
netif_err(efx, drv, efx->net_dev,
"unable to read datapath firmware capabilities\n");
return -EIO;
}
nic_data->datapath_caps =
MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
GET_CAPABILITIES_V2_OUT_FLAGS2);
nic_data->piobuf_size = MCDI_WORD(outbuf,
GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
} else {
nic_data->datapath_caps2 = 0;
nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
}
/* record the DPCPU firmware IDs to determine VEB vswitching support.
*/
nic_data->rx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
nic_data->tx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
netif_err(efx, probe, efx->net_dev,
"current firmware does not support an RX prefix\n");
return -ENODEV;
}
if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
u8 vi_window_mode = MCDI_BYTE(outbuf,
GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
if (rc)
return rc;
} else {
/* keep default VI stride */
netif_dbg(efx, probe, efx->net_dev,
"firmware did not report VI window mode, assuming vi_stride = %u\n",
efx->vi_stride);
}
if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
efx->num_mac_stats = MCDI_WORD(outbuf,
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
netif_dbg(efx, probe, efx->net_dev,
"firmware reports num_mac_stats = %u\n",
efx->num_mac_stats);
} else {
/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
netif_dbg(efx, probe, efx->net_dev,
"firmware did not report num_mac_stats, assuming %u\n",
efx->num_mac_stats);
}
return 0;
}
static void efx_ef10_read_licensed_features(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
return;
nic_data->licensed_features = MCDI_QWORD(outbuf,
LICENSING_V3_OUT_LICENSED_FEATURES);
}
static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc)
return rc;
rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
return rc > 0 ? rc : -ERANGE;
}
static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int implemented;
unsigned int enabled;
int rc;
nic_data->workaround_35388 = false;
nic_data->workaround_61265 = false;
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
if (rc == -ENOSYS) {
/* Firmware without GET_WORKAROUNDS - not a problem. */
rc = 0;
} else if (rc == 0) {
/* Bug61265 workaround is always enabled if implemented. */
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
nic_data->workaround_61265 = true;
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
nic_data->workaround_35388 = true;
} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
/* Workaround is implemented but not enabled.
* Try to enable it.
*/
rc = efx_mcdi_set_workaround(efx,
MC_CMD_WORKAROUND_BUG35388,
true, NULL);
if (rc == 0)
nic_data->workaround_35388 = true;
/* If we failed to set the workaround just carry on. */
rc = 0;
}
}
netif_dbg(efx, probe, efx->net_dev,
"workaround for bug 35388 is %sabled\n",
nic_data->workaround_35388 ? "en" : "dis");
netif_dbg(efx, probe, efx->net_dev,
"workaround for bug 61265 is %sabled\n",
nic_data->workaround_61265 ? "en" : "dis");
return rc;
}
static void efx_ef10_process_timer_config(struct efx_nic *efx,
const efx_dword_t *data)
{
unsigned int max_count;
if (EFX_EF10_WORKAROUND_61265(efx)) {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
efx->timer_max_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
max_count = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
} else {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
max_count = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
}
netif_dbg(efx, probe, efx->net_dev,
"got timer properties from MC: quantum %u ns; max %u ns\n",
efx->timer_quantum_ns, efx->timer_max_ns);
}
static int efx_ef10_get_timer_config(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
int rc;
rc = efx_ef10_get_timer_workarounds(efx);
if (rc)
return rc;
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc == 0) {
efx_ef10_process_timer_config(efx, outbuf);
} else if (rc == -ENOSYS || rc == -EPERM) {
/* Not available - fall back to Huntington defaults. */
unsigned int quantum;
rc = efx_ef10_get_sysclk_freq(efx);
if (rc < 0)
return rc;
quantum = 1536000 / rc; /* 1536 cycles */
efx->timer_quantum_ns = quantum;
efx->timer_max_ns = efx->type->timer_period_max * quantum;
rc = 0;
} else {
efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
NULL, 0, rc);
}
return rc;
}
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
return -EIO;
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
return 0;
}
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
size_t outlen;
int num_addrs, rc;
MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
return -EIO;
num_addrs = MCDI_DWORD(outbuf,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
WARN_ON(num_addrs != 1);
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
return 0;
}
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
? 1 : 0);
}
static ssize_t efx_ef10_show_primary_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
? 1 : 0);
}
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
if (vlan->vid == vid)
return vlan;
}
return NULL;
}
static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
int rc;
mutex_lock(&nic_data->vlan_lock);
vlan = efx_ef10_find_vlan(efx, vid);
if (vlan) {
/* We add VID 0 on init. 8021q adds it on module init
* for all interfaces with VLAN filtring feature.
*/
if (vid == 0)
goto done_unlock;
netif_warn(efx, drv, efx->net_dev,
"VLAN %u already added\n", vid);
rc = -EALREADY;
goto fail_exist;
}
rc = -ENOMEM;
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan)
goto fail_alloc;
vlan->vid = vid;
list_add_tail(&vlan->list, &nic_data->vlan_list);
if (efx->filter_state) {
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
if (rc)
goto fail_filter_add_vlan;
}
done_unlock:
mutex_unlock(&nic_data->vlan_lock);
return 0;
fail_filter_add_vlan:
list_del(&vlan->list);
kfree(vlan);
fail_alloc:
fail_exist:
mutex_unlock(&nic_data->vlan_lock);
return rc;
}
static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
struct efx_ef10_vlan *vlan)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
if (efx->filter_state) {
down_write(&efx->filter_sem);
efx_mcdi_filter_del_vlan(efx, vlan->vid);
up_write(&efx->filter_sem);
}
list_del(&vlan->list);
kfree(vlan);
}
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
int rc = 0;
/* 8021q removes VID 0 on module unload for all interfaces
* with VLAN filtering feature. We need to keep it to receive
* untagged traffic.
*/
if (vid == 0)
return 0;
mutex_lock(&nic_data->vlan_lock);
vlan = efx_ef10_find_vlan(efx, vid);
if (!vlan) {
netif_err(efx, drv, efx->net_dev,
"VLAN %u to be deleted not found\n", vid);
rc = -ENOENT;
} else {
efx_ef10_del_vlan_internal(efx, vlan);
}
mutex_unlock(&nic_data->vlan_lock);
return rc;
}
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan, *next_vlan;
mutex_lock(&nic_data->vlan_lock);
list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
efx_ef10_del_vlan_internal(efx, vlan);
mutex_unlock(&nic_data->vlan_lock);
}
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
static int efx_ef10_probe(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data;
int i, rc;
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
/* we assume later that we can copy from this buffer in dwords */
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
if (rc)
goto fail1;
/* Get the MC's warm boot count. In case it's rebooting right
* now, be prepared to retry.
*/
i = 0;
for (;;) {
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0)
break;
if (++i == 5)
goto fail2;
ssleep(1);
}
nic_data->warm_boot_count = rc;
/* In case we're recovering from a crash (kexec), we want to
* cancel any outstanding request by the previous user of this
* function. We send a special message using the least
* significant bits of the 'high' (doorbell) register.
*/
_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
rc = efx_mcdi_init(efx);
if (rc)
goto fail2;
mutex_init(&nic_data->udp_tunnels_lock);
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
nic_data->udp_tunnels[i].type =
TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
/* Reset (most) configuration for this function */
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
if (rc)
goto fail3;
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev,
&dev_attr_link_control_flag);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
if (rc)
goto fail4;
rc = efx_get_pf_index(efx, &nic_data->pf_index);
if (rc)
goto fail5;
rc = efx_ef10_init_datapath_caps(efx);
if (rc < 0)
goto fail5;
efx_ef10_read_licensed_features(efx);
/* We can have one VI for each vi_stride-byte region.
* However, until we use TX option descriptors we need two TX queues
* per channel.
*/
efx->tx_queues_per_channel = 2;
efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
if (!efx->max_vis) {
netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
rc = -EIO;
goto fail5;
}
efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
efx->max_vis / efx->tx_queues_per_channel);
efx->max_tx_channels = efx->max_channels;
if (WARN_ON(efx->max_channels == 0)) {
rc = -EIO;
goto fail5;
}
efx->rx_packet_len_offset =
ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
efx->net_dev->hw_features |= NETIF_F_RXFCS;
rc = efx_mcdi_port_get_number(efx);
if (rc < 0)
goto fail5;
efx->port_num = rc;
rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
if (rc)
goto fail5;
rc = efx_ef10_get_timer_config(efx);
if (rc < 0)
goto fail5;
rc = efx_mcdi_mon_probe(efx);
if (rc && rc != -EPERM)
goto fail5;
efx_ptp_defer_probe_with_channel(efx);
#ifdef CONFIG_SFC_SRIOV
if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
} else
#endif
ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
INIT_LIST_HEAD(&nic_data->vlan_list);
mutex_init(&nic_data->vlan_lock);
/* Add unspecified VID to support VLAN filtering being disabled */
rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
if (rc)
goto fail_add_vid_unspec;
/* If VLAN filtering is enabled, we need VID 0 to get untagged
* traffic. It is added automatically if 8021q module is loaded,
* but we can't rely on it since module may be not loaded.
*/
rc = efx_ef10_add_vlan(efx, 0);
if (rc)
goto fail_add_vid_0;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
efx->mcdi->fn_flags &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
return 0;
fail_add_vid_0:
efx_ef10_cleanup_vlans(efx);
fail_add_vid_unspec:
mutex_destroy(&nic_data->vlan_lock);
efx_ptp_remove(efx);
efx_mcdi_mon_remove(efx);
fail5:
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
fail3:
efx_mcdi_detach(efx);
mutex_lock(&nic_data->udp_tunnels_lock);
memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
(void)efx_ef10_set_udp_tnl_ports(efx, true);
mutex_unlock(&nic_data->udp_tunnels_lock);
mutex_destroy(&nic_data->udp_tunnels_lock);
efx_mcdi_fini(efx);
fail2:
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
kfree(nic_data);
efx->nic_data = NULL;
return rc;
}
#ifdef EFX_USE_PIO
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
unsigned int i;
int rc;
BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
for (i = 0; i < nic_data->n_piobufs; i++) {
MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[i]);
rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
NULL, 0, NULL);
WARN_ON(rc);
}
nic_data->n_piobufs = 0;
}
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
unsigned int i;
size_t outlen;
int rc = 0;
BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
for (i = 0; i < n; i++) {
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc) {
/* Don't display the MC error if we didn't have space
* for a VF.
*/
if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
0, outbuf, outlen, rc);
break;
}
if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = -EIO;
break;
}
nic_data->piobuf_handle[i] =
MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
netif_dbg(efx, probe, efx->net_dev,
"allocated PIO buffer %u handle %x\n", i,
nic_data->piobuf_handle[i]);
}
nic_data->n_piobufs = i;
if (rc)
efx_ef10_free_piobufs(efx);
return rc;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
unsigned int offset, index;
int rc;
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
/* Link a buffer to each VI in the write-combining mapping */
for (index = 0; index < nic_data->n_piobufs; ++index) {
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
nic_data->pio_write_vi_base + index, index,
rc);
goto fail;
}
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u\n",
nic_data->pio_write_vi_base + index, index);
}
/* Link a buffer to each TX queue */
efx_for_each_channel(channel, efx) {
/* Extra channels, even those with TXQs (PTP), do not require
* PIO resources.
*/
if (!channel->type->want_pio ||
channel->channel >= efx->xdp_channel_offset)
continue;
efx_for_each_channel_tx_queue(tx_queue, channel) {
/* We assign the PIO buffers to queues in
* reverse order to allow for the following
* special case.
*/
offset = ((efx->tx_channel_offset + efx->n_tx_channels -
tx_queue->channel->channel - 1) *
efx_piobuf_size);
index = offset / nic_data->piobuf_size;
offset = offset % nic_data->piobuf_size;
/* When the host page size is 4K, the first
* host page in the WC mapping may be within
* the same VI page as the last TX queue. We
* can only link one buffer to each VI.
*/
if (tx_queue->queue == nic_data->pio_write_vi_base) {
BUG_ON(index != 0);
rc = 0;
} else {
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_TXQ_INSTANCE,
tx_queue->queue);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
if (rc) {
/* This is non-fatal; the TX path just
* won't use PIO for this queue
*/
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
tx_queue->queue, index, rc);
tx_queue->piobuf = NULL;
} else {
tx_queue->piobuf =
nic_data->pio_write_base +
index * efx->vi_stride + offset;
tx_queue->piobuf_offset = offset;
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u offset %x addr %p\n",
tx_queue->queue, index,
tx_queue->piobuf_offset,
tx_queue->piobuf);
}
}
}
return 0;
fail:
/* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
* buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
*/
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
while (index--) {
MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
return rc;
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
/* All our existing PIO buffers went away */
efx_for_each_channel(channel, efx)
efx_for_each_channel_tx_queue(tx_queue, channel)
tx_queue->piobuf = NULL;
}
#else /* !EFX_USE_PIO */
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
return n == 0 ? 0 : -ENOBUFS;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
return 0;
}
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}
#endif /* EFX_USE_PIO */
static void efx_ef10_remove(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
#ifdef CONFIG_SFC_SRIOV
struct efx_ef10_nic_data *nic_data_pf;
struct pci_dev *pci_dev_pf;
struct efx_nic *efx_pf;
struct ef10_vf *vf;
if (efx->pci_dev->is_virtfn) {
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
efx_pf = pci_get_drvdata(pci_dev_pf);
nic_data_pf = efx_pf->nic_data;
vf = nic_data_pf->vf + nic_data->vf_index;
vf->efx = NULL;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
#endif
efx_ef10_cleanup_vlans(efx);
mutex_destroy(&nic_data->vlan_lock);
efx_ptp_remove(efx);
efx_mcdi_mon_remove(efx);
efx_mcdi_rx_free_indir_table(efx);
if (nic_data->wc_membase)
iounmap(nic_data->wc_membase);
rc = efx_mcdi_free_vis(efx);
WARN_ON(rc != 0);
if (!nic_data->must_restore_piobufs)
efx_ef10_free_piobufs(efx);
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
efx_mcdi_detach(efx);
memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
mutex_lock(&nic_data->udp_tunnels_lock);
(void)efx_ef10_set_udp_tnl_ports(efx, true);
mutex_unlock(&nic_data->udp_tunnels_lock);
mutex_destroy(&nic_data->udp_tunnels_lock);
efx_mcdi_fini(efx);
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
kfree(nic_data);
}
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
return efx_ef10_probe(efx);
}
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
u32 *port_flags, u32 *vadaptor_flags,
unsigned int *vlan_tags)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
size_t outlen;
int rc;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
port_id);
rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf)) {
rc = -EIO;
return rc;
}
}
if (port_flags)
*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
if (vadaptor_flags)
*vadaptor_flags =
MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
if (vlan_tags)
*vlan_tags =
MCDI_DWORD(outbuf,
VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
return 0;
}
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vport_add_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
int efx_ef10_vport_del_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
int rc;
struct pci_dev *pci_dev_pf;
/* If the parent PF has no VF data structure, it doesn't know about this
* VF so fail probe. The VF needs to be re-created. This can happen
* if the PF driver is unloaded while the VF is assigned to a guest.
*/
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
if (!nic_data_pf->vf) {
netif_info(efx, drv, efx->net_dev,
"The VF cannot link to its parent PF; "
"please destroy and re-create the VF\n");
return -EBUSY;
}
}
rc = efx_ef10_probe(efx);
if (rc)
return rc;
rc = efx_ef10_get_vf_index(efx);
if (rc)
goto fail;
if (efx->pci_dev->is_virtfn) {
if (efx->pci_dev->physfn) {
struct efx_nic *efx_pf =
pci_get_drvdata(efx->pci_dev->physfn);
struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
nic_data_p->vf[nic_data->vf_index].efx = efx;
nic_data_p->vf[nic_data->vf_index].pci_dev =
efx->pci_dev;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
return 0;
fail:
efx_ef10_remove(efx);
return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
return 0;
}
#endif
static int efx_ef10_alloc_vis(struct efx_nic *efx,
unsigned int min_vis, unsigned int max_vis)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
&nic_data->n_allocated_vis);
}
/* Note that the failure path of this function does not free
* resources, as this will be done by efx_ef10_remove().
*/
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
efx_separate_tx_channels ? 2 : 1);
unsigned int channel_vis, pio_write_vi_base, max_vis;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int uc_mem_map_size, wc_mem_map_size;
void __iomem *membase;
int rc;
channel_vis = max(efx->n_channels,
((efx->n_tx_channels + efx->n_extra_tx_channels) *
efx->tx_queues_per_channel) +
efx->n_xdp_channels * efx->xdp_tx_per_channel);
if (efx->max_vis && efx->max_vis < channel_vis) {
netif_dbg(efx, drv, efx->net_dev,
"Reducing channel VIs from %u to %u\n",
channel_vis, efx->max_vis);
channel_vis = efx->max_vis;
}
#ifdef EFX_USE_PIO
/* Try to allocate PIO buffers if wanted and if the full
* number of PIO buffers would be sufficient to allocate one
* copy-buffer per TX channel. Failure is non-fatal, as there
* are only a small number of PIO buffers shared between all
* functions of the controller.
*/
if (efx_piobuf_size != 0 &&
nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
efx->n_tx_channels) {
unsigned int n_piobufs =
DIV_ROUND_UP(efx->n_tx_channels,
nic_data->piobuf_size / efx_piobuf_size);
rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
if (rc == -ENOSPC)
netif_dbg(efx, probe, efx->net_dev,
"out of PIO buffers; cannot allocate more\n");
else if (rc == -EPERM)
netif_dbg(efx, probe, efx->net_dev,
"not permitted to allocate PIO buffers\n");
else if (rc)
netif_err(efx, probe, efx->net_dev,
"failed to allocate PIO buffers (%d)\n", rc);
else
netif_dbg(efx, probe, efx->net_dev,
"allocated %u PIO buffers\n", n_piobufs);
}
#else
nic_data->n_piobufs = 0;
#endif
/* PIO buffers should be mapped with write-combining enabled,
* and we want to make single UC and WC mappings rather than
* several of each (in fact that's the only option if host
* page size is >4K). So we may allocate some extra VIs just
* for writing PIO buffers through.
*
* The UC mapping contains (channel_vis - 1) complete VIs and the
* first 4K of the next VI. Then the WC mapping begins with
* the remainder of this last VI.
*/
uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
ER_DZ_TX_PIOBUF);
if (nic_data->n_piobufs) {
/* pio_write_vi_base rounds down to give the number of complete
* VIs inside the UC mapping.
*/
pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
nic_data->n_piobufs) *
efx->vi_stride) -
uc_mem_map_size);
max_vis = pio_write_vi_base + nic_data->n_piobufs;
} else {
pio_write_vi_base = 0;
wc_mem_map_size = 0;
max_vis = channel_vis;
}
/* In case the last attached driver failed to free VIs, do it now */
rc = efx_mcdi_free_vis(efx);
if (rc != 0)
return rc;
rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
if (rc != 0)
return rc;
if (nic_data->n_allocated_vis < channel_vis) {
netif_info(efx, drv, efx->net_dev,
"Could not allocate enough VIs to satisfy RSS"
" requirements. Performance may not be optimal.\n");
/* We didn't get the VIs to populate our channels.
* We could keep what we got but then we'd have more
* interrupts than we need.
* Instead calculate new max_channels and restart
*/
efx->max_channels = nic_data->n_allocated_vis;
efx->max_tx_channels =
nic_data->n_allocated_vis / efx->tx_queues_per_channel;
efx_mcdi_free_vis(efx);
return -EAGAIN;
}
/* If we didn't get enough VIs to map all the PIO buffers, free the
* PIO buffers
*/
if (nic_data->n_piobufs &&
nic_data->n_allocated_vis <
pio_write_vi_base + nic_data->n_piobufs) {
netif_dbg(efx, probe, efx->net_dev,
"%u VIs are not sufficient to map %u PIO buffers\n",
nic_data->n_allocated_vis, nic_data->n_piobufs);
efx_ef10_free_piobufs(efx);
}
/* Shrink the original UC mapping of the memory BAR */
membase = ioremap(efx->membase_phys, uc_mem_map_size);
if (!membase) {
netif_err(efx, probe, efx->net_dev,
"could not shrink memory BAR to %x\n",
uc_mem_map_size);
return -ENOMEM;
}
iounmap(efx->membase);
efx->membase = membase;
/* Set up the WC mapping if needed */
if (wc_mem_map_size) {
nic_data->wc_membase = ioremap_wc(efx->membase_phys +
uc_mem_map_size,
wc_mem_map_size);
if (!nic_data->wc_membase) {
netif_err(efx, probe, efx->net_dev,
"could not allocate WC mapping of size %x\n",
wc_mem_map_size);
return -ENOMEM;
}
nic_data->pio_write_vi_base = pio_write_vi_base;
nic_data->pio_write_base =
nic_data->wc_membase +
(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
uc_mem_map_size);
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
netif_dbg(efx, probe, efx->net_dev,
"memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
&efx->membase_phys, efx->membase, uc_mem_map_size,
nic_data->wc_membase, wc_mem_map_size);
return 0;
}
static void efx_ef10_fini_nic(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
kfree(nic_data->mc_stats);
nic_data->mc_stats = NULL;
}
static int efx_ef10_init_nic(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
if (nic_data->must_check_datapath_caps) {
rc = efx_ef10_init_datapath_caps(efx);
if (rc)
return rc;
nic_data->must_check_datapath_caps = false;
}
if (efx->must_realloc_vis) {
/* We cannot let the number of VIs change now */
rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
nic_data->n_allocated_vis);
if (rc)
return rc;
efx->must_realloc_vis = false;
}
nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
GFP_KERNEL);
if (!nic_data->mc_stats)
return -ENOMEM;
if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
if (rc == 0) {
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
/* Log an error on failure, but this is non-fatal.
* Permission errors are less important - we've presumably
* had the PIO buffer licence removed.
*/
if (rc == -EPERM)
netif_dbg(efx, drv, efx->net_dev,
"not permitted to restore PIO buffers\n");
else if (rc)
netif_err(efx, drv, efx->net_dev,
"failed to restore PIO buffers (%d)\n", rc);
nic_data->must_restore_piobufs = false;
}
/* don't fail init if RSS setup doesn't work */
rc = efx->type->rx_push_rss_config(efx, false,
efx->rss_context.rx_indir_table, NULL);
return 0;
}
static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
#ifdef CONFIG_SFC_SRIOV
unsigned int i;
#endif
/* All our allocations have been reset */
efx->must_realloc_vis = true;
efx_mcdi_filter_table_reset_mc_allocations(efx);
nic_data->must_restore_piobufs = true;
efx_ef10_forget_old_piobufs(efx);
efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
/* Driver-created vswitches and vports must be re-created */
nic_data->must_probe_vswitching = true;
efx->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
if (nic_data->vf)
for (i = 0; i < efx->vf_count; i++)
nic_data->vf[i].vport_id = 0;
#endif
}
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
if (reason == RESET_TYPE_MC_FAILURE)
return RESET_TYPE_DATAPATH;
return efx_mcdi_map_reset_reason(reason);
}
static int efx_ef10_map_reset_flags(u32 *flags)
{
enum {
EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
ETH_RESET_SHARED_SHIFT),
EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
ETH_RESET_PHY | ETH_RESET_MGMT) <<
ETH_RESET_SHARED_SHIFT)
};
/* We assume for now that our PCI function is permitted to
* reset everything.
*/
if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
*flags &= ~EF10_RESET_MC;
return RESET_TYPE_WORLD;
}
if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
*flags &= ~EF10_RESET_PORT;
return RESET_TYPE_ALL;
}
/* no invisible reset implemented */
return -EINVAL;
}
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
int rc = efx_mcdi_reset(efx, reset_type);
/* Unprivileged functions return -EPERM, but need to return success
* here so that the datapath is brought back up.
*/
if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
rc = 0;
/* If it was a port reset, trigger reallocation of MC resources.
* Note that on an MC reset nothing needs to be done now because we'll
* detect the MC reset later and handle it then.
* For an FLR, we never get an MC reset event, but the MC has reset all
* resources assigned to us, so we have to trigger reallocation now.
*/
if ((reset_type == RESET_TYPE_ALL ||
reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
efx_ef10_table_reset_mc_allocations(efx);
return rc;
}
#define EF10_DMA_STAT(ext_name, mcdi_name) \
[EF10_STAT_ ## ext_name] = \
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
[EF10_STAT_ ## int_name] = \
{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name) \
[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
EF10_DMA_STAT(port_tx_packets, TX_PKTS),
EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
EF10_OTHER_STAT(port_rx_good_bytes),
EF10_OTHER_STAT(port_rx_bad_bytes),
EF10_DMA_STAT(port_rx_packets, RX_PKTS),
EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
EFX_GENERIC_SW_STAT(rx_noskb_drops),
EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
};
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
(1ULL << EF10_STAT_port_tx_packets) | \
(1ULL << EF10_STAT_port_tx_pause) | \
(1ULL << EF10_STAT_port_tx_unicast) | \
(1ULL << EF10_STAT_port_tx_multicast) | \
(1ULL << EF10_STAT_port_tx_broadcast) | \
(1ULL << EF10_STAT_port_rx_bytes) | \
(1ULL << \
EF10_STAT_port_rx_bytes_minus_good_bytes) | \
(1ULL << EF10_STAT_port_rx_good_bytes) | \
(1ULL << EF10_STAT_port_rx_bad_bytes) | \
(1ULL << EF10_STAT_port_rx_packets) | \
(1ULL << EF10_STAT_port_rx_good) | \
(1ULL << EF10_STAT_port_rx_bad) | \
(1ULL << EF10_STAT_port_rx_pause) | \
(1ULL << EF10_STAT_port_rx_control) | \
(1ULL << EF10_STAT_port_rx_unicast) | \
(1ULL << EF10_STAT_port_rx_multicast) | \
(1ULL << EF10_STAT_port_rx_broadcast) | \
(1ULL << EF10_STAT_port_rx_lt64) | \
(1ULL << EF10_STAT_port_rx_64) | \
(1ULL << EF10_STAT_port_rx_65_to_127) | \
(1ULL << EF10_STAT_port_rx_128_to_255) | \
(1ULL << EF10_STAT_port_rx_256_to_511) | \
(1ULL << EF10_STAT_port_rx_512_to_1023) |\
(1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
(1ULL << EF10_STAT_port_rx_gtjumbo) | \
(1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
(1ULL << EF10_STAT_port_rx_overflow) | \
(1ULL << EF10_STAT_port_rx_nodesc_drops) |\
(1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
(1ULL << GENERIC_STAT_rx_noskb_drops))
/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
* For a 10G/40G switchable port we do not expose these because they might
* not include all the packets they should.
* On 8000 series NICs these statistics are always provided.
*/
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
(1ULL << EF10_STAT_port_tx_lt64) | \
(1ULL << EF10_STAT_port_tx_64) | \
(1ULL << EF10_STAT_port_tx_65_to_127) |\
(1ULL << EF10_STAT_port_tx_128_to_255) |\
(1ULL << EF10_STAT_port_tx_256_to_511) |\
(1ULL << EF10_STAT_port_tx_512_to_1023) |\
(1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
/* These statistics are only provided by the 40G MAC. For a 10G/40G
* switchable port we do expose these because the errors will otherwise
* be silent.
*/
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
(1ULL << EF10_STAT_port_rx_length_error))
/* These statistics are only provided if the firmware supports the
* capability PM_AND_RXDP_COUNTERS.
*/
#define HUNT_PM_AND_RXDP_STAT_MASK ( \
(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
(1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
* indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
* MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
* These bits are in the second u64 of the raw mask.
*/
#define EF10_FEC_STAT_MASK ( \
(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
(1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
* indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
* MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
* These bits are in the second u64 of the raw mask.
*/
#define EF10_CTPIO_STAT_MASK ( \
(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
(1ULL << (EF10_STAT_ctpio_success - 64)) | \
(1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
(1ULL << (EF10_STAT_ctpio_poison - 64)) | \
(1ULL << (EF10_STAT_ctpio_erase - 64)))
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
{
u64 raw_mask = HUNT_COMMON_STAT_MASK;
u32 port_caps = efx_mcdi_phy_get_caps(efx);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (!(efx->mcdi->fn_flags &
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
return 0;
if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
/* 8000 series have everything even at 40G */
if (nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
} else {
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
}
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
return raw_mask;
}
static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 raw_mask[2];
raw_mask[0] = efx_ef10_raw_stat_mask(efx);
/* Only show vadaptor stats when EVB capability is present */
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
} else {
raw_mask[1] = 0;
}
/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
raw_mask[1] |= EF10_FEC_STAT_MASK;
/* CTPIO stats appear in V3. Only show them on devices that actually
* support CTPIO. Although this driver doesn't use CTPIO others might,
* and we may be reporting the stats for the underlying port.
*/
if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
(nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
raw_mask[1] |= EF10_CTPIO_STAT_MASK;
#if BITS_PER_LONG == 64
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
mask[0] = raw_mask[0];
mask[1] = raw_mask[1];
#else
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
mask[0] = raw_mask[0] & 0xffffffff;
mask[1] = raw_mask[0] >> 32;
mask[2] = raw_mask[1] & 0xffffffff;
#endif
}
static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
efx_ef10_get_stat_mask(efx, mask);
return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
mask, names);
}
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 *stats = nic_data->stats;
size_t stats_count = 0, index;
efx_ef10_get_stat_mask(efx, mask);
if (full_stats) {
for_each_set_bit(index, mask, EF10_STAT_COUNT) {
if (efx_ef10_stat_desc[index].name) {
*full_stats++ = stats[index];
++stats_count;
}
}
}
if (!core_stats)
return stats_count;
if (nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
/* Use vadaptor stats. */
core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
stats[EF10_STAT_rx_multicast] +
stats[EF10_STAT_rx_broadcast];
core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
stats[EF10_STAT_tx_multicast] +
stats[EF10_STAT_tx_broadcast];
core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
stats[EF10_STAT_rx_multicast_bytes] +
stats[EF10_STAT_rx_broadcast_bytes];
core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
stats[EF10_STAT_tx_multicast_bytes] +
stats[EF10_STAT_tx_broadcast_bytes];
core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_rx_multicast];
core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
core_stats->rx_errors = core_stats->rx_crc_errors;
core_stats->tx_errors = stats[EF10_STAT_tx_bad];
} else {
/* Use port stats. */
core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
core_stats->rx_length_errors =
stats[EF10_STAT_port_rx_gtjumbo] +
stats[EF10_STAT_port_rx_length_error];
core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
core_stats->rx_frame_errors =
stats[EF10_STAT_port_rx_align_error];
core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
core_stats->rx_errors = (core_stats->rx_length_errors +
core_stats->rx_crc_errors +
core_stats->rx_frame_errors);
}
return stats_count;
}
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
u64 *stats = nic_data->stats;
efx_ef10_get_stat_mask(efx, mask);
efx_nic_copy_stats(efx, nic_data->mc_stats);
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
mask, stats, nic_data->mc_stats, false);
/* Update derived statistics */
efx_nic_fix_nodesc_drop_stat(efx,
&stats[EF10_STAT_port_rx_nodesc_drops]);
/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
* It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
* We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
* Here we calculate port_rx_good_bytes.
*/
stats[EF10_STAT_port_rx_good_bytes] =
stats[EF10_STAT_port_rx_bytes] -
stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
/* The asynchronous reads used to calculate RX_BAD_BYTES in
* MC Firmware are done such that we should not see an increase in
* RX_BAD_BYTES when a good packet has arrived. Unfortunately this
* does mean that the stat can decrease at times. Here we do not
* update the stat unless it has increased or has gone to zero
* (In the case of the NIC rebooting).
* Please see Bug 33781 for a discussion of why things work this way.
*/
efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
efx_update_sw_stats(efx, stats);
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
__must_hold(&efx->stats_lock)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
__le64 generation_start, generation_end;
u64 *stats = nic_data->stats;
u32 dma_len = efx->num_mac_stats * sizeof(u64);
struct efx_buffer stats_buf;
__le64 *dma_stats;
int rc;
spin_unlock_bh(&efx->stats_lock);
if (in_interrupt()) {
/* If in atomic context, cannot update stats. Just update the
* software stats and return so the caller can continue.
*/
spin_lock_bh(&efx->stats_lock);
efx_update_sw_stats(efx, stats);
return 0;
}
efx_ef10_get_stat_mask(efx, mask);
rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
if (rc) {
spin_lock_bh(&efx->stats_lock);
return rc;
}
dma_stats = stats_buf.addr;
dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
MAC_STATS_IN_DMA, 1);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
NULL, 0, NULL);
spin_lock_bh(&efx->stats_lock);
if (rc) {
/* Expect ENOENT if DMA queues have not been set up */
if (rc != -ENOENT || atomic_read(&efx->active_queues))
efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
sizeof(inbuf), NULL, 0, rc);
goto out;
}
generation_end = dma_stats[efx->num_mac_stats - 1];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
WARN_ON_ONCE(1);
goto out;
}
rmb();
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
stats, stats_buf.addr, false);
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start) {
rc = -EAGAIN;
goto out;
}
efx_update_sw_stats(efx, stats);
out:
efx_nic_free_buffer(efx, &stats_buf);
return rc;
}
static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
if (efx_ef10_try_update_nic_stats_vf(efx))
return 0;
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned int mode, usecs;
efx_dword_t timer_cmd;
if (channel->irq_moderation_us) {
mode = 3;
usecs = channel->irq_moderation_us;
} else {
mode = 0;
usecs = 0;
}
if (EFX_EF10_WORKAROUND_61265(efx)) {
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
unsigned int ns = usecs * 1000;
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
channel->channel);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
inbuf, sizeof(inbuf), 0, NULL, 0);
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
EFE_DD_EVQ_IND_TIMER_FLAGS,
ERF_DD_EVQ_IND_TIMER_MODE, mode,
ERF_DD_EVQ_IND_TIMER_VAL, ticks);
efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
ERF_DZ_TC_TIMER_VAL, ticks,
ERF_FZ_TC_TMR_REL_VAL, ticks);
efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
channel->channel);
}
}
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
struct ethtool_wolinfo *wol) {}
static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
return -EOPNOTSUPP;
}
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
if (type != 0)
return -EINVAL;
return 0;
}
static void efx_ef10_mcdi_request(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(pdu, hdr, hdr_len);
memcpy(pdu + hdr_len, sdu, sdu_len);
wmb();
/* The hardware provides 'low' and 'high' (doorbell) registers
* for passing the 64-bit address of an MCDI request to
* firmware. However the dwords are swapped by firmware. The
* least significant bits of the doorbell are then 0 for all
* MCDI requests due to alignment.
*/
_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
ER_DZ_MC_DB_LWRD);
_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
ER_DZ_MC_DB_HWRD);
}
static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
rmb();
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}
static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
size_t offset, size_t outlen)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(outbuf, pdu + offset, outlen);
}
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* All our allocations have been reset */
efx_ef10_table_reset_mc_allocations(efx);
/* The datapath firmware might have been changed */
nic_data->must_check_datapath_caps = true;
/* MAC statistics have been cleared on the NIC; clear the local
* statistic that we update with efx_update_diff_stat().
*/
nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
rc = efx_ef10_get_warm_boot_count(efx);
if (rc < 0) {
/* The firmware is presumably in the process of
* rebooting. However, we are supposed to report each
* reboot just once, so we must only do that once we
* can read and store the updated warm boot count.
*/
return 0;
}
if (rc == nic_data->warm_boot_count)
return 0;
nic_data->warm_boot_count = rc;
efx_ef10_mcdi_reboot_detected(efx);
return -EIO;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
if (likely(READ_ONCE(efx->irq_soft_enabled))) {
/* Note test interrupts */
if (context->index == efx->irq_level)
efx->last_irq_cpu = raw_smp_processor_id();
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
}
return IRQ_HANDLED;
}
static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
if (queues == 0)
return IRQ_NONE;
if (likely(soft_enabled)) {
/* Note test interrupts */
if (queues & (1U << efx->irq_level))
efx->last_irq_cpu = raw_smp_processor_id();
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel_irq(channel);
queues >>= 1;
}
}
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
return IRQ_HANDLED;
}
static int efx_ef10_irq_test_generate(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
NULL) == 0)
return -ENOTSUPP;
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
inbuf, sizeof(inbuf), NULL, 0, NULL);
}
static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
(tx_queue->ptr_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned int write_ptr;
efx_oword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD, tx_queue->queue);
}
/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
*/
static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
struct sk_buff *skb,
bool *data_mapped)
{
struct efx_tx_buffer *buffer;
struct tcphdr *tcp;
struct iphdr *ip;
u16 ipv4_id;
u32 seqnum;
u32 mss;
EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
mss = skb_shinfo(skb)->gso_size;
if (unlikely(mss < 4)) {
WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
return -EINVAL;
}
ip = ip_hdr(skb);
if (ip->version == 4) {
/* Modify IPv4 header if needed. */
ip->tot_len = 0;
ip->check = 0;
ipv4_id = ntohs(ip->id);
} else {
/* Modify IPv6 header if needed. */
struct ipv6hdr *ipv6 = ipv6_hdr(skb);
ipv6->payload_len = 0;
ipv4_id = 0;
}
tcp = tcp_hdr(skb);
seqnum = ntohl(tcp->seq);
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
buffer->flags = EFX_TX_BUF_OPTION;
buffer->len = 0;
buffer->unmap_len = 0;
EFX_POPULATE_QWORD_5(buffer->option,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
);
++tx_queue->insert_count;
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
buffer->flags = EFX_TX_BUF_OPTION;
buffer->len = 0;
buffer->unmap_len = 0;
EFX_POPULATE_QWORD_4(buffer->option,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
ESF_DZ_TX_TSO_TCP_MSS, mss
);
++tx_queue->insert_count;
return 0;
}
static u32 efx_ef10_tso_versions(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u32 tso_versions = 0;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
tso_versions |= BIT(1);
if (nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
tso_versions |= BIT(2);
return tso_versions;
}
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
bool csum_offload = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
struct efx_channel *channel = tx_queue->channel;
struct efx_nic *efx = tx_queue->efx;
struct efx_ef10_nic_data *nic_data;
bool tso_v2 = false;
efx_qword_t *txd;
int rc;
nic_data = efx->nic_data;
/* Only attempt to enable TX timestamping if we have the license for it,
* otherwise TXQ init will fail
*/
if (!(nic_data->licensed_features &
(1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
tx_queue->timestamping = false;
/* Disable sync events on this channel. */
if (efx->type->ptp_set_ts_sync_events)
efx->type->ptp_set_ts_sync_events(efx, false, false);
}
/* TSOv2 is a limited resource that can only be configured on a limited
* number of queues. TSO without checksum offload is not really a thing,
* so we only enable it for those queues.
* TSOv2 cannot be used with Hardware timestamping, and is never needed
* for XDP tx.
*/
if (csum_offload && (nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
!tx_queue->timestamping && !tx_queue->xdp_tx) {
tso_v2 = true;
netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
channel->channel);
}
rc = efx_mcdi_tx_init(tx_queue, tso_v2);
if (rc)
goto fail;
/* A previous user of this TX queue might have set us up the
* bomb by writing a descriptor to the TX push collector but
* not the doorbell. (Each collector belongs to a port, not a
* queue or function, so cannot easily be reset.) We must
* attempt to push a no-op descriptor in its place.
*/
tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
tx_queue->insert_count = 1;
txd = efx_tx_desc(tx_queue, 0);
EFX_POPULATE_QWORD_5(*txd,
ESF_DZ_TX_DESC_IS_OPT, true,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
tx_queue->write_count = 1;
if (tso_v2) {
tx_queue->handle_tso = efx_ef10_tx_tso_desc;
tx_queue->tso_version = 2;
} else if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
tx_queue->tso_version = 1;
}
wmb();
efx_ef10_push_tx_desc(tx_queue, txd);
return;
fail:
netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
tx_queue->queue);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned int write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}
#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned int len)
{
if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
/* If we need to break across multiple descriptors we should
* stop at a page boundary. This assumes the length limit is
* greater than the page size.
*/
dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
}
return len;
}
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
unsigned int old_write_count = tx_queue->write_count;
struct efx_tx_buffer *buffer;
unsigned int write_ptr;
efx_qword_t *txd;
tx_queue->xmit_more_available = false;
if (unlikely(tx_queue->write_count == tx_queue->insert_count))
return;
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
if (buffer->flags & EFX_TX_BUF_OPTION) {
*txd = buffer->option;
if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
/* PIO descriptor */
tx_queue->packet_write_count = tx_queue->write_count;
} else {
tx_queue->packet_write_count = tx_queue->write_count;
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
EFX_POPULATE_QWORD_3(
*txd,
ESF_DZ_TX_KER_CONT,
buffer->flags & EFX_TX_BUF_CONT,
ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
}
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_ef10_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_ef10_notify_tx_desc(tx_queue);
}
}
static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int enabled, implemented;
bool want_workaround_26807;
int rc;
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
if (rc == -ENOSYS) {
/* GET_WORKAROUNDS was implemented before this workaround,
* thus it must be unavailable in this firmware.
*/
nic_data->workaround_26807 = false;
return 0;
}
if (rc)
return rc;
want_workaround_26807 =
implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
nic_data->workaround_26807 =
!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
if (want_workaround_26807 && !nic_data->workaround_26807) {
unsigned int flags;
rc = efx_mcdi_set_workaround(efx,
MC_CMD_WORKAROUND_BUG26807,
true, &flags);
if (!rc) {
if (flags &
1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
netif_info(efx, drv, efx->net_dev,
"other functions on NIC have been reset\n");
/* With MCFW v4.6.x and earlier, the
* boot count will have incremented,
* so re-read the warm_boot_count
* value now to ensure this function
* doesn't think it has changed next
* time it checks.
*/
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0) {
nic_data->warm_boot_count = rc;
rc = 0;
}
}
nic_data->workaround_26807 = true;
} else if (rc == -EPERM) {
rc = 0;
}
}
return rc;
}
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc = efx_ef10_probe_multicast_chaining(efx);
struct efx_mcdi_filter_vlan *vlan;
if (rc)
return rc;
rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
if (rc)
return rc;
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
if (rc)
goto fail_add_vlan;
}
return 0;
fail_add_vlan:
efx_mcdi_filter_table_remove(efx);
return rc;
}
/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_2(*rxd,
ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int write_count;
efx_dword_t reg;
/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
write_count = rx_queue->added_count & ~7;
if (rx_queue->notified_count == write_count)
return;
do
efx_ef10_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
while (++rx_queue->notified_count != write_count);
wmb();
EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
write_count & rx_queue->ptr_mask);
efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
efx_rx_queue_index(rx_queue));
}
static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
efx_qword_t event;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_REFILL);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
inbuf, sizeof(inbuf), 0,
efx_ef10_rx_defer_refill_complete, 0);
}
static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
/* nothing to do */
}
static int efx_ef10_ev_init(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
struct efx_ef10_nic_data *nic_data;
bool use_v2, cut_thru;
nic_data = efx->nic_data;
use_v2 = nic_data->datapath_caps2 &
1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
cut_thru = !(nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
return efx_mcdi_ev_init(channel, cut_thru, use_v2);
}
static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
unsigned int rx_queue_label)
{
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"rx event arrived on queue %d labeled as queue %u\n",
efx_rx_queue_index(rx_queue), rx_queue_label);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
unsigned int actual, unsigned int expected)
{
unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, actual, expected);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
unsigned int rx_desc_ptr;
netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
"scattered RX aborted (dropping %u buffers)\n",
rx_queue->scatter_n);
rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
0, EFX_RX_PKT_DISCARD);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}
static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
unsigned int n_packets,
unsigned int rx_encap_hdr,
unsigned int rx_l3_class,
unsigned int rx_l4_class,
const efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
bool handled = false;
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
if (!(efx->net_dev->features & NETIF_F_RXALL)) {
if (!efx->loopback_selftest)
channel->n_rx_eth_crc_err += n_packets;
return EFX_RX_PKT_DISCARD;
}
handled = true;
}
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
netdev_WARN(efx->net_dev,
"invalid class for RX_IPCKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
if (!efx->loopback_selftest)
*(rx_encap_hdr ?
&channel->n_rx_outer_ip_hdr_chksum_err :
&channel->n_rx_ip_hdr_chksum_err) += n_packets;
return 0;
}
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
(rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
netdev_WARN(efx->net_dev,
"invalid class for RX_TCPUDP_CKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
if (!efx->loopback_selftest)
*(rx_encap_hdr ?
&channel->n_rx_outer_tcp_udp_chksum_err :
&channel->n_rx_tcp_udp_chksum_err) += n_packets;
return 0;
}
if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
if (unlikely(!rx_encap_hdr))
netdev_WARN(efx->net_dev,
"invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
netdev_WARN(efx->net_dev,
"invalid class for RX_IP_INNER_CHKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
if (!efx->loopback_selftest)
channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
return 0;
}
if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
if (unlikely(!rx_encap_hdr))
netdev_WARN(efx->net_dev,
"invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
(rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
netdev_WARN(efx->net_dev,
"invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
if (!efx->loopback_selftest)
channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
return 0;
}
WARN_ON(!handled); /* No error bits were recognised */
return 0;
}
static int efx_ef10_handle_rx_event(struct efx_channel *channel,
const efx_qword_t *event)
{
unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
unsigned int n_descs, n_packets, i;
struct efx_nic *efx = channel->efx;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_rx_queue *rx_queue;
efx_qword_t errors;
bool rx_cont;
u16 flags = 0;
if (unlikely(READ_ONCE(efx->reset_pending)))
return 0;
/* Basic packet information */
rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
rx_encap_hdr =
nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
ESE_EZ_ENCAP_HDR_NONE;
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
rx_queue = efx_channel_get_rx_queue(channel);
if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
if (n_descs != rx_queue->scatter_n + 1) {
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* detect rx abort */
if (unlikely(n_descs == rx_queue->scatter_n)) {
if (rx_queue->scatter_n == 0 || rx_bytes != 0)
netdev_WARN(efx->net_dev,
"invalid RX abort: scatter_n=%u event="
EFX_QWORD_FMT "\n",
rx_queue->scatter_n,
EFX_QWORD_VAL(*event));
efx_ef10_handle_rx_abort(rx_queue);
return 0;
}
/* Check that RX completion merging is valid, i.e.
* the current firmware supports it and this is a
* non-scattered packet.
*/
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
rx_queue->scatter_n != 0 || rx_cont) {
efx_ef10_handle_rx_bad_lbits(
rx_queue, next_ptr_lbits,
(rx_queue->removed_count +
rx_queue->scatter_n + 1) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
return 0;
}
/* Merged completion for multiple non-scattered packets */
rx_queue->scatter_n = 1;
rx_queue->scatter_len = 0;
n_packets = n_descs;
++channel->n_rx_merge_events;
channel->n_rx_merge_packets += n_packets;
flags |= EFX_RX_PKT_PREFIX_LEN;
} else {
++rx_queue->scatter_n;
rx_queue->scatter_len += rx_bytes;
if (rx_cont)
return 0;
n_packets = 1;
}
EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
ESF_DZ_RX_IPCKSUM_ERR, 1,
ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
EFX_AND_QWORD(errors, *event, errors);
if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
rx_encap_hdr,
rx_l3_class, rx_l4_class,
event);
} else {
bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
rx_l4_class == ESE_FZ_L4_CLASS_UDP;
switch (rx_encap_hdr) {
case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
if (tcpudp)
flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
break;
case ESE_EZ_ENCAP_HDR_GRE:
case ESE_EZ_ENCAP_HDR_NONE:
if (tcpudp)
flags |= EFX_RX_PKT_CSUMMED;
break;
default:
netdev_WARN(efx->net_dev,
"unknown encapsulation type: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
}
}
if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
flags |= EFX_RX_PKT_TCP;
channel->irq_mod_score += 2 * n_packets;
/* Handle received packet(s) */
for (i = 0; i < n_packets; i++) {
efx_rx_packet(rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, rx_queue->scatter_len,
flags);
rx_queue->removed_count += rx_queue->scatter_n;
}
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
return n_packets;
}
static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
{
u32 tstamp;
tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
tstamp <<= 16;
tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
return tstamp;
}
static void
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_tx_queue *tx_queue;
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
unsigned int tx_ev_type;
u64 ts_part;
if (unlikely(READ_ONCE(efx->reset_pending)))
return;
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
return;
/* Get the transmit queue */
tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
tx_queue = efx_channel_get_tx_queue(channel,
tx_ev_q_label % EFX_TXQ_TYPES);
if (!tx_queue->timestamping) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
return;
}
/* Transmit timestamps are only available for 8XXX series. They result
* in up to three events per packet. These occur in order, and are:
* - the normal completion event (may be omitted)
* - the low part of the timestamp
* - the high part of the timestamp
*
* It's possible for multiple completion events to appear before the
* corresponding timestamps. So we can for example get:
* COMP N
* COMP N+1
* TS_LO N
* TS_HI N
* TS_LO N+1
* TS_HI N+1
*
* In addition it's also possible for the adjacent completions to be
* merged, so we may not see COMP N above. As such, the completion
* events are not very useful here.
*
* Each part of the timestamp is itself split across two 16 bit
* fields in the event.
*/
tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
switch (tx_ev_type) {
case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
/* Ignore this event - see above. */
break;
case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
ts_part = efx_ef10_extract_event_ts(event);
tx_queue->completed_timestamp_minor = ts_part;
break;
case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
ts_part = efx_ef10_extract_event_ts(event);
tx_queue->completed_timestamp_major = ts_part;
efx_xmit_done_single(tx_queue);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown tx event type %d (data "
EFX_QWORD_FMT ")\n",
channel->channel, tx_ev_type,
EFX_QWORD_VAL(*event));
break;
}
}
static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int subcode;
subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
switch (subcode) {
case ESE_DZ_DRV_TIMER_EV:
case ESE_DZ_DRV_WAKE_UP_EV:
break;
case ESE_DZ_DRV_START_UP_EV:
/* event queue init complete. ok. */
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, subcode,
EFX_QWORD_VAL(*event));
}
}
static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
u32 subcode;
subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
switch (subcode) {
case EFX_EF10_TEST:
channel->event_test_cpu = raw_smp_processor_id();
break;
case EFX_EF10_REFILL:
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here
*/
efx_fast_push_rx_descriptors(&channel->rx_queue, true);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %u"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, (unsigned) subcode,
EFX_QWORD_VAL(*event));
}
}
static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
struct efx_nic *efx = channel->efx;
efx_qword_t event, *p_event;
unsigned int read_ptr;
int ev_code;
int spent = 0;
if (quota <= 0)
return spent;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
break;
EFX_SET_QWORD(*p_event);
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
netif_vdbg(efx, drv, efx->net_dev,
"processing event on %d " EFX_QWORD_FMT "\n",
channel->channel, EFX_QWORD_VAL(event));
switch (ev_code) {
case ESE_DZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case ESE_DZ_EV_CODE_RX_EV:
spent += efx_ef10_handle_rx_event(channel, &event);
if (spent >= quota) {
/* XXX can we split a merged event to
* avoid going over-quota?
*/
spent = quota;
goto out;
}
break;
case ESE_DZ_EV_CODE_TX_EV:
efx_ef10_handle_tx_event(channel, &event);
break;
case ESE_DZ_EV_CODE_DRIVER_EV:
efx_ef10_handle_driver_event(channel, &event);
if (++spent == quota)
goto out;
break;
case EFX_EF10_DRVGEN_EV:
efx_ef10_handle_driver_generated_event(channel, &event);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, ev_code,
EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
efx_dword_t rptr;
if (EFX_EF10_WORKAROUND_35388(efx)) {
BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
(1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
(1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
ERF_DD_EVQ_IND_RPTR,
(channel->eventq_read_ptr &
channel->eventq_mask) >>
ERF_DD_EVQ_IND_RPTR_WIDTH);
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
ERF_DD_EVQ_IND_RPTR,
channel->eventq_read_ptr &
((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
channel->eventq_read_ptr &
channel->eventq_mask);
efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
}
}
static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
struct efx_nic *efx = channel->efx;
efx_qword_t event;
int rc;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_TEST);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc != 0)
goto fail;
return;
fail:
WARN_ON(true);
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
atomic_set(&efx->active_queues, 0);
}
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 mac_old[ETH_ALEN];
int rc, rc2;
/* Only reconfigure a PF-created vport */
if (is_zero_ether_addr(nic_data->vport_mac))
return 0;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
down_write(&efx->filter_sem);
efx_mcdi_filter_table_remove(efx);
up_write(&efx->filter_sem);
rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
if (rc)
goto restore_filters;
ether_addr_copy(mac_old, nic_data->vport_mac);
rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
nic_data->vport_mac);
if (rc)
goto restore_vadaptor;
rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
efx->net_dev->dev_addr);
if (!rc) {
ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
} else {
rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
if (rc2) {
/* Failed to add original MAC, so clear vport_mac */
eth_zero_addr(nic_data->vport_mac);
goto reset_nic;
}
}
restore_vadaptor:
rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
if (rc2)
goto reset_nic;
restore_filters:
down_write(&efx->filter_sem);
rc2 = efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
if (rc2)
goto reset_nic;
rc2 = efx_net_open(efx->net_dev);
if (rc2)
goto reset_nic;
efx_device_attach_if_not_resetting(efx);
return rc;
reset_nic:
netif_err(efx, drv, efx->net_dev,
"Failed to restore when changing MAC address - scheduling reset\n");
efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
return rc ? rc : rc2;
}
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
bool was_enabled = efx->port_enabled;
int rc;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
efx_mcdi_filter_table_remove(efx);
ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
efx->net_dev->dev_addr);
MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
efx->vport_id);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
sizeof(inbuf), NULL, 0, NULL);
efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
if (was_enabled)
efx_net_open(efx->net_dev);
efx_device_attach_if_not_resetting(efx);
#ifdef CONFIG_SFC_SRIOV
if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
if (rc == -EPERM) {
struct efx_nic *efx_pf;
/* Switch to PF and change MAC address on vport */
efx_pf = pci_get_drvdata(pci_dev_pf);
rc = efx_ef10_sriov_set_vf_mac(efx_pf,
nic_data->vf_index,
efx->net_dev->dev_addr);
} else if (!rc) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
unsigned int i;
/* MAC address successfully changed by VF (with MAC
* spoofing) so update the parent PF if possible.
*/
for (i = 0; i < efx_pf->vf_count; ++i) {
struct ef10_vf *vf = nic_data->vf + i;
if (vf->efx == efx) {
ether_addr_copy(vf->mac,
efx->net_dev->dev_addr);
return 0;
}
}
}
} else
#endif
if (rc == -EPERM) {
netif_err(efx, drv, efx->net_dev,
"Cannot change MAC address; use sfboot to enable"
" mac-spoofing on this interface\n");
} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
* fall-back to the method of changing the MAC address on the
* vport. This only applies to PFs because such versions of
* MCFW do not support VFs.
*/
rc = efx_ef10_vport_set_mac_address(efx);
} else if (rc) {
efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
sizeof(inbuf), NULL, 0, rc);
}
return rc;
}
static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
efx_mcdi_filter_sync_rx_mode(efx);
if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
return efx_mcdi_set_mtu(efx);
return efx_mcdi_set_mac(efx);
}
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
/* MC BISTs follow a different poll mechanism to phy BISTs.
* The BIST is done in the poll handler on the MC, and the MCDI command
* will block until the BIST is done.
*/
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
int rc;
MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
size_t outlen;
u32 result;
rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
return -EIO;
result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
switch (result) {
case MC_CMD_POLL_BIST_PASSED:
netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
return 0;
case MC_CMD_POLL_BIST_TIMEOUT:
netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
return -EIO;
case MC_CMD_POLL_BIST_FAILED:
netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
return -EIO;
default:
netif_err(efx, hw, efx->net_dev,
"BIST returned unknown result %u", result);
return -EIO;
}
}
static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
int rc;
netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
rc = efx_ef10_start_bist(efx, bist_type);
if (rc != 0)
return rc;
return efx_ef10_poll_bist(efx);
}
static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
int rc, rc2;
efx_reset_down(efx, RESET_TYPE_WORLD);
rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
NULL, 0, NULL, 0, NULL);
if (rc != 0)
goto out;
tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
out:
if (rc == -EPERM)
rc = 0;
rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
return rc ? rc : rc2;
}
#ifdef CONFIG_SFC_MTD
struct efx_ef10_nvram_type_info {
u16 type, type_mask;
u8 port;
const char *name;
};
static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
{ NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
{ NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
{ NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
{ NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
{ NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
};
#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
struct efx_mcdi_mtd_partition *part,
unsigned int type,
unsigned long *found)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
const struct efx_ef10_nvram_type_info *info;
size_t size, erase_size, outlen;
int type_idx = 0;
bool protected;
int rc;
for (type_idx = 0; ; type_idx++) {
if (type_idx == EF10_NVRAM_PARTITION_COUNT)
return -ENODEV;
info = efx_ef10_nvram_types + type_idx;
if ((type & ~info->type_mask) == info->type)
break;
}
if (info->port != efx_port_num(efx))
return -ENODEV;
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
if (rc)
return rc;
if (protected &&
(type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
/* Hide protected partitions that don't provide defaults. */
return -ENODEV;
if (protected)
/* Protected partitions are read only. */
erase_size = 0;
/* If we've already exposed a partition of this type, hide this
* duplicate. All operations on MTDs are keyed by the type anyway,
* so we can't act on the duplicate.
*/
if (__test_and_set_bit(type_idx, found))
return -EEXIST;
part->nvram_type = type;
MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
return -EIO;
if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
part->fw_subtype = MCDI_DWORD(outbuf,
NVRAM_METADATA_OUT_SUBTYPE);
part->common.dev_type_name = "EF10 NVRAM manager";
part->common.type_name = info->name;
part->common.mtd.type = MTD_NORFLASH;
part->common.mtd.flags = MTD_CAP_NORFLASH;
part->common.mtd.size = size;
part->common.mtd.erasesize = erase_size;
/* sfc_status is read-only */
if (!erase_size)
part->common.mtd.flags |= MTD_NO_ERASE;
return 0;
}
static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
struct efx_mcdi_mtd_partition *parts;
size_t outlen, n_parts_total, i, n_parts;
unsigned int type;
int rc;
ASSERT_RTNL();
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
return -EIO;
n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
if (n_parts_total >
MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
return -EIO;
parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
n_parts = 0;
for (i = 0; i < n_parts_total; i++) {
type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
i);
rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
found);
if (rc == -EEXIST || rc == -ENODEV)
continue;
if (rc)
goto fail;
n_parts++;
}
rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
if (rc)
kfree(parts);
return rc;
}
#endif /* CONFIG_SFC_MTD */
static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
u32 host_time) {}
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
channel->sync_events_state == SYNC_EVENTS_VALID ||
(temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
return 0;
channel->sync_events_state = SYNC_EVENTS_REQUESTED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
if (rc != 0)
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
return rc;
}
static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
(temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
return 0;
if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
channel->sync_events_state = SYNC_EVENTS_DISABLED;
return 0;
}
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
return rc;
}
static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
bool temp)
{
int (*set)(struct efx_channel *channel, bool temp);
struct efx_channel *channel;
set = en ?
efx_ef10_rx_enable_timestamping :
efx_ef10_rx_disable_timestamping;
channel = efx_ptp_channel(efx);
if (channel) {
int rc = set(channel, temp);
if (en && rc != 0) {
efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
return rc;
}
}
return 0;
}
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
struct hwtstamp_config *init)
{
return -EOPNOTSUPP;
}
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
struct hwtstamp_config *init)
{
int rc;
switch (init->rx_filter) {
case HWTSTAMP_FILTER_NONE:
efx_ef10_ptp_set_ts_sync_events(efx, false, false);
/* if TX timestamping is still requested then leave PTP on */
return efx_ptp_change_mode(efx,
init->tx_type != HWTSTAMP_TX_OFF, 0);
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_NTP_ALL:
init->rx_filter = HWTSTAMP_FILTER_ALL;
rc = efx_ptp_change_mode(efx, true, 0);
if (!rc)
rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
if (rc)
efx_ptp_change_mode(efx, false, 0);
return rc;
default:
return -ERANGE;
}
}
static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
struct netdev_phys_item_id *ppid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (!is_valid_ether_addr(nic_data->port_id))
return -EOPNOTSUPP;
ppid->id_len = ETH_ALEN;
memcpy(ppid->id, nic_data->port_id, ppid->id_len);
return 0;
}
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
if (proto != htons(ETH_P_8021Q))
return -EINVAL;
return efx_ef10_add_vlan(efx, vid);
}
static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
if (proto != htons(ETH_P_8021Q))
return -EINVAL;
return efx_ef10_del_vlan(efx, vid);
}
/* We rely on the MCDI wiping out our TX rings if it made any changes to the
* ports table, ensuring that any TSO descriptors that were made on a now-
* removed tunnel port will be blown away and won't break things when we try
* to transmit them using the new ports table.
*/
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
bool will_reset = false;
size_t num_entries = 0;
size_t inlen, outlen;
size_t i;
int rc;
efx_dword_t flags_and_num_entries;
WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
nic_data->udp_tunnels_dirty = false;
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
efx_device_attach_if_not_resetting(efx);
return 0;
}
BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
if (nic_data->udp_tunnels[i].type !=
TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
efx_dword_t entry;
EFX_POPULATE_DWORD_2(entry,
TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
ntohs(nic_data->udp_tunnels[i].port),
TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
nic_data->udp_tunnels[i].type);
*_MCDI_ARRAY_DWORD(inbuf,
SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
num_entries++) = entry;
}
}
BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
EFX_WORD_1_LBN);
BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
EFX_WORD_1_WIDTH);
EFX_POPULATE_DWORD_2(flags_and_num_entries,
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
!!unloading,
EFX_WORD_1, num_entries);
*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
flags_and_num_entries;
inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
if (rc == -EIO) {
/* Most likely the MC rebooted due to another function also
* setting its tunnel port list. Mark the tunnel port list as
* dirty, so it will be pushed upon coming up from the reboot.
*/
nic_data->udp_tunnels_dirty = true;
return 0;
}
if (rc) {
/* expected not available on unprivileged functions */
if (rc != -EPERM)
netif_warn(efx, drv, efx->net_dev,
"Unable to set UDP tunnel ports; rc=%d.\n", rc);
} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
(1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
netif_info(efx, drv, efx->net_dev,
"Rebooting MC due to UDP tunnel port list change\n");
will_reset = true;
if (unloading)
/* Delay for the MC reset to complete. This will make
* unloading other functions a bit smoother. This is a
* race, but the other unload will work whichever way
* it goes, this just avoids an unnecessary error
* message.
*/
msleep(100);
}
if (!will_reset && !unloading) {
/* The caller will have detached, relying on the MC reset to
* trigger a re-attach. Since there won't be an MC reset, we
* have to do the attach ourselves.
*/
efx_device_attach_if_not_resetting(efx);
}
return rc;
}
static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc = 0;
mutex_lock(&nic_data->udp_tunnels_lock);
if (nic_data->udp_tunnels_dirty) {
/* Make sure all TX are stopped while we modify the table, else
* we might race against an efx_features_check().
*/
efx_device_detach_sync(efx);
rc = efx_ef10_set_udp_tnl_ports(efx, false);
}
mutex_unlock(&nic_data->udp_tunnels_lock);
return rc;
}
static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
unsigned int table, unsigned int entry,
struct udp_tunnel_info *ti)
{
struct efx_nic *efx = netdev_priv(dev);
struct efx_ef10_nic_data *nic_data;
int efx_tunnel_type, rc;
if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
else
efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
nic_data = efx->nic_data;
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
return -EOPNOTSUPP;
mutex_lock(&nic_data->udp_tunnels_lock);
/* Make sure all TX are stopped while we add to the table, else we
* might race against an efx_features_check().
*/
efx_device_detach_sync(efx);
nic_data->udp_tunnels[entry].type = efx_tunnel_type;
nic_data->udp_tunnels[entry].port = ti->port;
rc = efx_ef10_set_udp_tnl_ports(efx, false);
mutex_unlock(&nic_data->udp_tunnels_lock);
return rc;
}
/* Called under the TX lock with the TX queue running, hence no-one can be
* in the middle of updating the UDP tunnels table. However, they could
* have tried and failed the MCDI, in which case they'll have set the dirty
* flag before dropping their locks.
*/
static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t i;
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
return false;
if (nic_data->udp_tunnels_dirty)
/* SW table may not match HW state, so just assume we can't
* use any UDP tunnel offloads.
*/
return false;
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
if (nic_data->udp_tunnels[i].type !=
TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
nic_data->udp_tunnels[i].port == port)
return true;
return false;
}
static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
unsigned int table, unsigned int entry,
struct udp_tunnel_info *ti)
{
struct efx_nic *efx = netdev_priv(dev);
struct efx_ef10_nic_data *nic_data;
int rc;
nic_data = efx->nic_data;
mutex_lock(&nic_data->udp_tunnels_lock);
/* Make sure all TX are stopped while we remove from the table, else we
* might race against an efx_features_check().
*/
efx_device_detach_sync(efx);
nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
nic_data->udp_tunnels[entry].port = 0;
rc = efx_ef10_set_udp_tnl_ports(efx, false);
mutex_unlock(&nic_data->udp_tunnels_lock);
return rc;
}
static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
.set_port = efx_ef10_udp_tnl_set_port,
.unset_port = efx_ef10_udp_tnl_unset_port,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
.tables = {
{
.n_entries = 16,
.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
UDP_TUNNEL_TYPE_GENEVE,
},
},
};
/* EF10 may have multiple datapath firmware variants within a
* single version. Report which variants are running.
*/
static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
size_t len)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
return scnprintf(buf, len, " rx%x tx%x",
nic_data->rx_dpcpu_fw_id,
nic_data->tx_dpcpu_fw_id);
}
static unsigned int ef10_check_caps(const struct efx_nic *efx,
u8 flag,
u32 offset)
{
const struct efx_ef10_nic_data *nic_data = efx->nic_data;
switch (offset) {
case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
return nic_data->datapath_caps & BIT_ULL(flag);
case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
return nic_data->datapath_caps2 & BIT_ULL(flag);
default:
return 0;
}
}
#define EF10_OFFLOAD_FEATURES \
(NETIF_F_IP_CSUM | \
NETIF_F_HW_VLAN_CTAG_FILTER | \
NETIF_F_IPV6_CSUM | \
NETIF_F_RXHASH | \
NETIF_F_NTUPLE)
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
.is_vf = true,
.mem_bar = efx_ef10_vf_mem_bar,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_vf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_ef10_fini_nic,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_vf,
.start_stats = efx_port_dummy_op_void,
.pull_stats = efx_port_dummy_op_void,
.stop_stats = efx_port_dummy_op_void,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol_vf,
.set_wol = efx_ef10_set_wol_vf,
.resume_wol = efx_port_dummy_op_void,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_mcdi_tx_remove,
.tx_write = efx_ef10_tx_write,
.tx_limit_len = efx_ef10_tx_limit_len,
.tx_enqueue = __efx_enqueue_skb,
.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
.rx_probe = efx_mcdi_rx_probe,
.rx_init = efx_mcdi_rx_init,
.rx_remove = efx_mcdi_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.rx_packet = __efx_rx_packet,
.ev_probe = efx_mcdi_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_mcdi_ev_fini,
.ev_remove = efx_mcdi_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_mcdi_filter_table_restore,
.filter_table_remove = efx_mcdi_filter_table_remove,
.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
.filter_insert = efx_mcdi_filter_insert,
.filter_remove_safe = efx_mcdi_filter_remove_safe,
.filter_get_safe = efx_mcdi_filter_get_safe,
.filter_clear_rx = efx_mcdi_filter_clear_rx,
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_port_dummy_op_int,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
#ifdef CONFIG_SFC_SRIOV
.vswitching_probe = efx_ef10_vswitching_probe_vf,
.vswitching_restore = efx_ef10_vswitching_restore_vf,
.vswitching_remove = efx_ef10_vswitching_remove_vf,
#endif
.get_mac_address = efx_ef10_get_mac_address_vf,
.set_mac_address = efx_ef10_set_mac_address,
.get_phys_port_id = efx_ef10_get_phys_port_id,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.min_interrupt_mode = EFX_INT_MODE_MSIX,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
.rx_hash_key_size = 40,
.check_caps = ef10_check_caps,
.print_additional_fwver = efx_ef10_print_additional_fwver,
.sensor_event = efx_mcdi_sensor_event,
};
const struct efx_nic_type efx_hunt_a0_nic_type = {
.is_vf = false,
.mem_bar = efx_ef10_pf_mem_bar,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_pf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_ef10_fini_nic,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_pf,
.start_stats = efx_mcdi_mac_start_stats,
.pull_stats = efx_mcdi_mac_pull_stats,
.stop_stats = efx_mcdi_mac_stop_stats,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol,
.set_wol = efx_ef10_set_wol,
.resume_wol = efx_port_dummy_op_void,
.test_chip = efx_ef10_test_chip,
.test_nvram = efx_mcdi_nvram_test_all,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_mcdi_tx_remove,
.tx_write = efx_ef10_tx_write,
.tx_limit_len = efx_ef10_tx_limit_len,
.tx_enqueue = __efx_enqueue_skb,
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
.rx_probe = efx_mcdi_rx_probe,
.rx_init = efx_mcdi_rx_init,
.rx_remove = efx_mcdi_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.rx_packet = __efx_rx_packet,
.ev_probe = efx_mcdi_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_mcdi_ev_fini,
.ev_remove = efx_mcdi_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_mcdi_filter_table_restore,
.filter_table_remove = efx_mcdi_filter_table_remove,
.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
.filter_insert = efx_mcdi_filter_insert,
.filter_remove_safe = efx_mcdi_filter_remove_safe,
.filter_get_safe = efx_mcdi_filter_get_safe,
.filter_clear_rx = efx_mcdi_filter_clear_rx,
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_ef10_mtd_probe,
.mtd_rename = efx_mcdi_mtd_rename,
.mtd_read = efx_mcdi_mtd_read,
.mtd_erase = efx_mcdi_mtd_erase,
.mtd_write = efx_mcdi_mtd_write,
.mtd_sync = efx_mcdi_mtd_sync,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time,
.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
#ifdef CONFIG_SFC_SRIOV
.sriov_configure = efx_ef10_sriov_configure,
.sriov_init = efx_ef10_sriov_init,
.sriov_fini = efx_ef10_sriov_fini,
.sriov_wanted = efx_ef10_sriov_wanted,
.sriov_reset = efx_ef10_sriov_reset,
.sriov_flr = efx_ef10_sriov_flr,
.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
.vswitching_probe = efx_ef10_vswitching_probe_pf,
.vswitching_restore = efx_ef10_vswitching_restore_pf,
.vswitching_remove = efx_ef10_vswitching_remove_pf,
#endif
.get_mac_address = efx_ef10_get_mac_address_pf,
.set_mac_address = efx_ef10_set_mac_address,
.tso_versions = efx_ef10_tso_versions,
.get_phys_port_id = efx_ef10_get_phys_port_id,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.option_descriptors = true,
.min_interrupt_mode = EFX_INT_MODE_LEGACY,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
.rx_hash_key_size = 40,
.check_caps = ef10_check_caps,
.print_additional_fwver = efx_ef10_print_additional_fwver,
.sensor_event = efx_mcdi_sensor_event,
};