linux-stable/arch/x86/kernel/umip.c
Linus Torvalds c6536676c7 - turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
 
 - Add an insn_decode() API which all users of the instruction decoder
 should preferrably use. Its goal is to keep the details of the
 instruction decoder away from its users and simplify and streamline how
 one decodes insns in the kernel. Convert its users to it.
 
 - kprobes improvements and fixes
 
 - Set the maximum DIE per package variable on Hygon
 
 - Rip out the dynamic NOP selection and simplify all the machinery around
 selecting NOPs. Use the simplified NOPs in objtool now too.
 
 - Add Xeon Sapphire Rapids to list of CPUs that support PPIN
 
 - Simplify the retpolines by folding the entire thing into an
 alternative now that objtool can handle alternatives with stack
 ops. Then, have objtool rewrite the call to the retpoline with the
 alternative which then will get patched at boot time.
 
 - Document Intel uarch per models in intel-family.h
 
 - Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
 exception on Intel.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
 VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
 cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
 kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
 iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
 nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
 PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
 EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
 wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
 mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
 Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
 O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
 =bm4S
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 updates from Borislav Petkov:

 - Turn the stack canary into a normal __percpu variable on 32-bit which
   gets rid of the LAZY_GS stuff and a lot of code.

 - Add an insn_decode() API which all users of the instruction decoder
   should preferrably use. Its goal is to keep the details of the
   instruction decoder away from its users and simplify and streamline
   how one decodes insns in the kernel. Convert its users to it.

 - kprobes improvements and fixes

 - Set the maximum DIE per package variable on Hygon

 - Rip out the dynamic NOP selection and simplify all the machinery
   around selecting NOPs. Use the simplified NOPs in objtool now too.

 - Add Xeon Sapphire Rapids to list of CPUs that support PPIN

 - Simplify the retpolines by folding the entire thing into an
   alternative now that objtool can handle alternatives with stack ops.
   Then, have objtool rewrite the call to the retpoline with the
   alternative which then will get patched at boot time.

 - Document Intel uarch per models in intel-family.h

 - Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
   exception on Intel.

* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
  x86, sched: Treat Intel SNC topology as default, COD as exception
  x86/cpu: Comment Skylake server stepping too
  x86/cpu: Resort and comment Intel models
  objtool/x86: Rewrite retpoline thunk calls
  objtool: Skip magical retpoline .altinstr_replacement
  objtool: Cache instruction relocs
  objtool: Keep track of retpoline call sites
  objtool: Add elf_create_undef_symbol()
  objtool: Extract elf_symbol_add()
  objtool: Extract elf_strtab_concat()
  objtool: Create reloc sections implicitly
  objtool: Add elf_create_reloc() helper
  objtool: Rework the elf_rebuild_reloc_section() logic
  objtool: Fix static_call list generation
  objtool: Handle per arch retpoline naming
  objtool: Correctly handle retpoline thunk calls
  x86/retpoline: Simplify retpolines
  x86/alternatives: Optimize optimize_nops()
  x86: Add insn_decode_kernel()
  x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
  ...
2021-04-27 17:45:09 -07:00

413 lines
14 KiB
C

/*
* umip.c Emulation for instruction protected by the User-Mode Instruction
* Prevention feature
*
* Copyright (c) 2017, Intel Corporation.
* Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
*/
#include <linux/uaccess.h>
#include <asm/umip.h>
#include <asm/traps.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <linux/ratelimit.h>
#undef pr_fmt
#define pr_fmt(fmt) "umip: " fmt
/** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
*
* User-Mode Instruction Prevention is a security feature present in recent
* x86 processors that, when enabled, prevents a group of instructions (SGDT,
* SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
* protection fault if the instruction is executed with CPL > 0.
*
* Rather than relaying to the user space the general protection fault caused by
* the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
* trapped and emulate the result of such instructions to provide dummy values.
* This allows to both conserve the current kernel behavior and not reveal the
* system resources that UMIP intends to protect (i.e., the locations of the
* global descriptor and interrupt descriptor tables, the segment selectors of
* the local descriptor table, the value of the task state register and the
* contents of the CR0 register).
*
* This emulation is needed because certain applications (e.g., WineHQ and
* DOSEMU2) rely on this subset of instructions to function.
*
* The instructions protected by UMIP can be split in two groups. Those which
* return a kernel memory address (SGDT and SIDT) and those which return a
* value (SLDT, STR and SMSW).
*
* For the instructions that return a kernel memory address, applications
* such as WineHQ rely on the result being located in the kernel memory space,
* not the actual location of the table. The result is emulated as a hard-coded
* value that, lies close to the top of the kernel memory. The limit for the GDT
* and the IDT are set to zero.
*
* The instruction SMSW is emulated to return the value that the register CR0
* has at boot time as set in the head_32.
* SLDT and STR are emulated to return the values that the kernel programmatically
* assigns:
* - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
* - STR returns (GDT_ENTRY_TSS * 8).
*
* Emulation is provided for both 32-bit and 64-bit processes.
*
* Care is taken to appropriately emulate the results when segmentation is
* used. That is, rather than relying on USER_DS and USER_CS, the function
* insn_get_addr_ref() inspects the segment descriptor pointed by the
* registers in pt_regs. This ensures that we correctly obtain the segment
* base address and the address and operand sizes even if the user space
* application uses a local descriptor table.
*/
#define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
#define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
/*
* The SGDT and SIDT instructions store the contents of the global descriptor
* table and interrupt table registers, respectively. The destination is a
* memory operand of X+2 bytes. X bytes are used to store the base address of
* the table and 2 bytes are used to store the limit. In 32-bit processes X
* has a value of 4, in 64-bit processes X has a value of 8.
*/
#define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
#define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
#define UMIP_GDT_IDT_LIMIT_SIZE 2
#define UMIP_INST_SGDT 0 /* 0F 01 /0 */
#define UMIP_INST_SIDT 1 /* 0F 01 /1 */
#define UMIP_INST_SMSW 2 /* 0F 01 /4 */
#define UMIP_INST_SLDT 3 /* 0F 00 /0 */
#define UMIP_INST_STR 4 /* 0F 00 /1 */
static const char * const umip_insns[5] = {
[UMIP_INST_SGDT] = "SGDT",
[UMIP_INST_SIDT] = "SIDT",
[UMIP_INST_SMSW] = "SMSW",
[UMIP_INST_SLDT] = "SLDT",
[UMIP_INST_STR] = "STR",
};
#define umip_pr_err(regs, fmt, ...) \
umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
#define umip_pr_warn(regs, fmt, ...) \
umip_printk(regs, KERN_WARNING, fmt, ##__VA_ARGS__)
/**
* umip_printk() - Print a rate-limited message
* @regs: Register set with the context in which the warning is printed
* @log_level: Kernel log level to print the message
* @fmt: The text string to print
*
* Print the text contained in @fmt. The print rate is limited to bursts of 5
* messages every two minutes. The purpose of this customized version of
* printk() is to print messages when user space processes use any of the
* UMIP-protected instructions. Thus, the printed text is prepended with the
* task name and process ID number of the current task as well as the
* instruction and stack pointers in @regs as seen when entering kernel mode.
*
* Returns:
*
* None.
*/
static __printf(3, 4)
void umip_printk(const struct pt_regs *regs, const char *log_level,
const char *fmt, ...)
{
/* Bursts of 5 messages every two minutes */
static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
struct task_struct *tsk = current;
struct va_format vaf;
va_list args;
if (!__ratelimit(&ratelimit))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
va_end(args);
}
/**
* identify_insn() - Identify a UMIP-protected instruction
* @insn: Instruction structure with opcode and ModRM byte.
*
* From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
* instruction that can be emulated.
*
* Returns:
*
* On success, a constant identifying a specific UMIP-protected instruction that
* can be emulated.
*
* -EINVAL on error or when not an UMIP-protected instruction that can be
* emulated.
*/
static int identify_insn(struct insn *insn)
{
/* By getting modrm we also get the opcode. */
insn_get_modrm(insn);
if (!insn->modrm.nbytes)
return -EINVAL;
/* All the instructions of interest start with 0x0f. */
if (insn->opcode.bytes[0] != 0xf)
return -EINVAL;
if (insn->opcode.bytes[1] == 0x1) {
switch (X86_MODRM_REG(insn->modrm.value)) {
case 0:
return UMIP_INST_SGDT;
case 1:
return UMIP_INST_SIDT;
case 4:
return UMIP_INST_SMSW;
default:
return -EINVAL;
}
} else if (insn->opcode.bytes[1] == 0x0) {
if (X86_MODRM_REG(insn->modrm.value) == 0)
return UMIP_INST_SLDT;
else if (X86_MODRM_REG(insn->modrm.value) == 1)
return UMIP_INST_STR;
else
return -EINVAL;
} else {
return -EINVAL;
}
}
/**
* emulate_umip_insn() - Emulate UMIP instructions and return dummy values
* @insn: Instruction structure with operands
* @umip_inst: A constant indicating the instruction to emulate
* @data: Buffer into which the dummy result is stored
* @data_size: Size of the emulated result
* @x86_64: true if process is 64-bit, false otherwise
*
* Emulate an instruction protected by UMIP and provide a dummy result. The
* result of the emulation is saved in @data. The size of the results depends
* on both the instruction and type of operand (register vs memory address).
* The size of the result is updated in @data_size. Caller is responsible
* of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
* UMIP_GDT_IDT_LIMIT_SIZE bytes.
*
* Returns:
*
* 0 on success, -EINVAL on error while emulating.
*/
static int emulate_umip_insn(struct insn *insn, int umip_inst,
unsigned char *data, int *data_size, bool x86_64)
{
if (!data || !data_size || !insn)
return -EINVAL;
/*
* These two instructions return the base address and limit of the
* global and interrupt descriptor table, respectively. According to the
* Intel Software Development manual, the base address can be 24-bit,
* 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
* 16-bit, the returned value of the base address is supposed to be a
* zero-extended 24-byte number. However, it seems that a 32-byte number
* is always returned irrespective of the operand size.
*/
if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
u64 dummy_base_addr;
u16 dummy_limit = 0;
/* SGDT and SIDT do not use registers operands. */
if (X86_MODRM_MOD(insn->modrm.value) == 3)
return -EINVAL;
if (umip_inst == UMIP_INST_SGDT)
dummy_base_addr = UMIP_DUMMY_GDT_BASE;
else
dummy_base_addr = UMIP_DUMMY_IDT_BASE;
/*
* 64-bit processes use the entire dummy base address.
* 32-bit processes use the lower 32 bits of the base address.
* dummy_base_addr is always 64 bits, but we memcpy the correct
* number of bytes from it to the destination.
*/
if (x86_64)
*data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
else
*data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
memcpy(data + 2, &dummy_base_addr, *data_size);
*data_size += UMIP_GDT_IDT_LIMIT_SIZE;
memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
} else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT ||
umip_inst == UMIP_INST_STR) {
unsigned long dummy_value;
if (umip_inst == UMIP_INST_SMSW) {
dummy_value = CR0_STATE;
} else if (umip_inst == UMIP_INST_STR) {
dummy_value = GDT_ENTRY_TSS * 8;
} else if (umip_inst == UMIP_INST_SLDT) {
#ifdef CONFIG_MODIFY_LDT_SYSCALL
down_read(&current->mm->context.ldt_usr_sem);
if (current->mm->context.ldt)
dummy_value = GDT_ENTRY_LDT * 8;
else
dummy_value = 0;
up_read(&current->mm->context.ldt_usr_sem);
#else
dummy_value = 0;
#endif
}
/*
* For these 3 instructions, the number
* of bytes to be copied in the result buffer is determined
* by whether the operand is a register or a memory location.
* If operand is a register, return as many bytes as the operand
* size. If operand is memory, return only the two least
* significant bytes.
*/
if (X86_MODRM_MOD(insn->modrm.value) == 3)
*data_size = insn->opnd_bytes;
else
*data_size = 2;
memcpy(data, &dummy_value, *data_size);
} else {
return -EINVAL;
}
return 0;
}
/**
* force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
* @addr: Address that caused the signal
* @regs: Register set containing the instruction pointer
*
* Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
* intended to be used to provide a segmentation fault when the result of the
* UMIP emulation could not be copied to the user space memory.
*
* Returns: none
*/
static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
tsk->thread.cr2 = (unsigned long)addr;
tsk->thread.error_code = X86_PF_USER | X86_PF_WRITE;
tsk->thread.trap_nr = X86_TRAP_PF;
force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
return;
umip_pr_err(regs, "segfault in emulation. error%x\n",
X86_PF_USER | X86_PF_WRITE);
}
/**
* fixup_umip_exception() - Fixup a general protection fault caused by UMIP
* @regs: Registers as saved when entering the #GP handler
*
* The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
* fault if executed with CPL > 0 (i.e., from user space). This function fixes
* the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
* and SLDT are not fixed up.
*
* If operands are memory addresses, results are copied to user-space memory as
* indicated by the instruction pointed by eIP using the registers indicated in
* the instruction operands. If operands are registers, results are copied into
* the context that was saved when entering kernel mode.
*
* Returns:
*
* True if emulation was successful; false if not.
*/
bool fixup_umip_exception(struct pt_regs *regs)
{
int nr_copied, reg_offset, dummy_data_size, umip_inst;
/* 10 bytes is the maximum size of the result of UMIP instructions */
unsigned char dummy_data[10] = { 0 };
unsigned char buf[MAX_INSN_SIZE];
unsigned long *reg_addr;
void __user *uaddr;
struct insn insn;
if (!regs)
return false;
nr_copied = insn_fetch_from_user(regs, buf);
/*
* The insn_fetch_from_user above could have failed if user code
* is protected by a memory protection key. Give up on emulation
* in such a case. Should we issue a page fault?
*/
if (!nr_copied)
return false;
if (!insn_decode_from_regs(&insn, regs, buf, nr_copied))
return false;
umip_inst = identify_insn(&insn);
if (umip_inst < 0)
return false;
umip_pr_warn(regs, "%s instruction cannot be used by applications.\n",
umip_insns[umip_inst]);
umip_pr_warn(regs, "For now, expensive software emulation returns the result.\n");
if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
user_64bit_mode(regs)))
return false;
/*
* If operand is a register, write result to the copy of the register
* value that was pushed to the stack when entering into kernel mode.
* Upon exit, the value we write will be restored to the actual hardware
* register.
*/
if (X86_MODRM_MOD(insn.modrm.value) == 3) {
reg_offset = insn_get_modrm_rm_off(&insn, regs);
/*
* Negative values are usually errors. In memory addressing,
* the exception is -EDOM. Since we expect a register operand,
* all negative values are errors.
*/
if (reg_offset < 0)
return false;
reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
memcpy(reg_addr, dummy_data, dummy_data_size);
} else {
uaddr = insn_get_addr_ref(&insn, regs);
if ((unsigned long)uaddr == -1L)
return false;
nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
if (nr_copied > 0) {
/*
* If copy fails, send a signal and tell caller that
* fault was fixed up.
*/
force_sig_info_umip_fault(uaddr, regs);
return true;
}
}
/* increase IP to let the program keep going */
regs->ip += insn.length;
return true;
}