linux-stable/rust/kernel/sync/arc.rs
Linus Torvalds 639409a4ac workqueue: Add rust bindings for v6.7
to allow rust code to schedule work items on workqueues. While the current
 bindings don't cover all of the workqueue API, it provides enough for basic
 usage and can be expanded as needed.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZUBNNw4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGQWtAP4vD31xd8YOu8UnUyFP3rJaA3F5VwoVm6DK9Lo7
 otBe8wD9ExoJHTiZiJwucvqbx7/z3EbbJYro56pIea9/O59t+AU=
 =cTn3
 -----END PGP SIGNATURE-----

Merge tag 'wq-for-6.7-rust-bindings' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq

Pull workqueue rust bindings from Tejun Heo:
 "Add rust bindings to allow rust code to schedule work items on
  workqueues.

  While the current bindings don't cover all of the workqueue API, it
  provides enough for basic usage and can be expanded as needed"

* tag 'wq-for-6.7-rust-bindings' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  rust: workqueue: add examples
  rust: workqueue: add `try_spawn` helper method
  rust: workqueue: implement `WorkItemPointer` for pointer types
  rust: workqueue: add helper for defining work_struct fields
  rust: workqueue: define built-in queues
  rust: workqueue: add low-level workqueue bindings
  rust: sync: add `Arc::{from_raw, into_raw}`
2023-10-30 20:35:48 -10:00

679 lines
23 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! A reference-counted pointer.
//!
//! This module implements a way for users to create reference-counted objects and pointers to
//! them. Such a pointer automatically increments and decrements the count, and drops the
//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
//! threads.
//!
//! It is different from the standard library's [`Arc`] in a few ways:
//! 1. It is backed by the kernel's `refcount_t` type.
//! 2. It does not support weak references, which allows it to be half the size.
//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
//!
//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
use crate::{
bindings,
error::{self, Error},
init::{self, InPlaceInit, Init, PinInit},
try_init,
types::{ForeignOwnable, Opaque},
};
use alloc::boxed::Box;
use core::{
alloc::{AllocError, Layout},
fmt,
marker::{PhantomData, Unsize},
mem::{ManuallyDrop, MaybeUninit},
ops::{Deref, DerefMut},
pin::Pin,
ptr::{NonNull, Pointee},
};
use macros::pin_data;
mod std_vendor;
/// A reference-counted pointer to an instance of `T`.
///
/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
///
/// # Invariants
///
/// The reference count on an instance of [`Arc`] is always non-zero.
/// The object pointed to by [`Arc`] is always pinned.
///
/// # Examples
///
/// ```
/// use kernel::sync::Arc;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// // Create a ref-counted instance of `Example`.
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
///
/// // Get a new pointer to `obj` and increment the refcount.
/// let cloned = obj.clone();
///
/// // Assert that both `obj` and `cloned` point to the same underlying object.
/// assert!(core::ptr::eq(&*obj, &*cloned));
///
/// // Destroy `obj` and decrement its refcount.
/// drop(obj);
///
/// // Check that the values are still accessible through `cloned`.
/// assert_eq!(cloned.a, 10);
/// assert_eq!(cloned.b, 20);
///
/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
/// # Ok::<(), Error>(())
/// ```
///
/// Using `Arc<T>` as the type of `self`:
///
/// ```
/// use kernel::sync::Arc;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// impl Example {
/// fn take_over(self: Arc<Self>) {
/// // ...
/// }
///
/// fn use_reference(self: &Arc<Self>) {
/// // ...
/// }
/// }
///
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
/// obj.use_reference();
/// obj.take_over();
/// # Ok::<(), Error>(())
/// ```
///
/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// trait MyTrait {
/// // Trait has a function whose `self` type is `Arc<Self>`.
/// fn example1(self: Arc<Self>) {}
///
/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
/// fn example2(self: ArcBorrow<'_, Self>) {}
/// }
///
/// struct Example;
/// impl MyTrait for Example {}
///
/// // `obj` has type `Arc<Example>`.
/// let obj: Arc<Example> = Arc::try_new(Example)?;
///
/// // `coerced` has type `Arc<dyn MyTrait>`.
/// let coerced: Arc<dyn MyTrait> = obj;
/// # Ok::<(), Error>(())
/// ```
pub struct Arc<T: ?Sized> {
ptr: NonNull<ArcInner<T>>,
_p: PhantomData<ArcInner<T>>,
}
#[pin_data]
#[repr(C)]
struct ArcInner<T: ?Sized> {
refcount: Opaque<bindings::refcount_t>,
data: T,
}
// This is to allow [`Arc`] (and variants) to be used as the type of `self`.
impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
// dynamically-sized type (DST) `U`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
// mutable reference when the reference count reaches zero and `T` is dropped.
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
// the reference count reaches zero and `T` is dropped.
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Constructs a new reference counted instance of `T`.
pub fn try_new(contents: T) -> Result<Self, AllocError> {
// INVARIANT: The refcount is initialised to a non-zero value.
let value = ArcInner {
// SAFETY: There are no safety requirements for this FFI call.
refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
data: contents,
};
let inner = Box::try_new(value)?;
// SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
// `Arc` object.
Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
}
/// Use the given initializer to in-place initialize a `T`.
///
/// If `T: !Unpin` it will not be able to move afterwards.
#[inline]
pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
where
Error: From<E>,
{
UniqueArc::pin_init(init).map(|u| u.into())
}
/// Use the given initializer to in-place initialize a `T`.
///
/// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
#[inline]
pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
where
Error: From<E>,
{
UniqueArc::init(init).map(|u| u.into())
}
}
impl<T: ?Sized> Arc<T> {
/// Constructs a new [`Arc`] from an existing [`ArcInner`].
///
/// # Safety
///
/// The caller must ensure that `inner` points to a valid location and has a non-zero reference
/// count, one of which will be owned by the new [`Arc`] instance.
unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
// INVARIANT: By the safety requirements, the invariants hold.
Arc {
ptr: inner,
_p: PhantomData,
}
}
/// Convert the [`Arc`] into a raw pointer.
///
/// The raw pointer has ownership of the refcount that this Arc object owned.
pub fn into_raw(self) -> *const T {
let ptr = self.ptr.as_ptr();
core::mem::forget(self);
// SAFETY: The pointer is valid.
unsafe { core::ptr::addr_of!((*ptr).data) }
}
/// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
///
/// # Safety
///
/// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
/// must not be called more than once for each previous call to [`Arc::into_raw`].
pub unsafe fn from_raw(ptr: *const T) -> Self {
let refcount_layout = Layout::new::<bindings::refcount_t>();
// SAFETY: The caller guarantees that the pointer is valid.
let val_layout = Layout::for_value(unsafe { &*ptr });
// SAFETY: We're computing the layout of a real struct that existed when compiling this
// binary, so its layout is not so large that it can trigger arithmetic overflow.
let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
let metadata: <T as Pointee>::Metadata = core::ptr::metadata(ptr);
// SAFETY: The metadata of `T` and `ArcInner<T>` is the same because `ArcInner` is a struct
// with `T` as its last field.
//
// This is documented at:
// <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
let metadata: <ArcInner<T> as Pointee>::Metadata =
unsafe { core::mem::transmute_copy(&metadata) };
// SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
// pointer, since it originates from a previous call to `Arc::into_raw` and is still valid.
let ptr = unsafe { (ptr as *mut u8).sub(val_offset) as *mut () };
let ptr = core::ptr::from_raw_parts_mut(ptr, metadata);
// SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
// reference count held then will be owned by the new `Arc` object.
unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
}
/// Returns an [`ArcBorrow`] from the given [`Arc`].
///
/// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
/// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
#[inline]
pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
// SAFETY: The constraint that the lifetime of the shared reference must outlive that of
// the returned `ArcBorrow` ensures that the object remains alive and that no mutable
// reference can be created.
unsafe { ArcBorrow::new(self.ptr) }
}
/// Compare whether two [`Arc`] pointers reference the same underlying object.
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
}
}
impl<T: 'static> ForeignOwnable for Arc<T> {
type Borrowed<'a> = ArcBorrow<'a, T>;
fn into_foreign(self) -> *const core::ffi::c_void {
ManuallyDrop::new(self).ptr.as_ptr() as _
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
// SAFETY: By the safety requirement of this function, we know that `ptr` came from
// a previous call to `Arc::into_foreign`.
let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
// SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
// for the lifetime of the returned value.
unsafe { ArcBorrow::new(inner) }
}
unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
// SAFETY: By the safety requirement of this function, we know that `ptr` came from
// a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
// holds a reference count increment that is transferrable to us.
unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
// safe to dereference it.
unsafe { &self.ptr.as_ref().data }
}
}
impl<T: ?Sized> AsRef<T> for Arc<T> {
fn as_ref(&self) -> &T {
self.deref()
}
}
impl<T: ?Sized> Clone for Arc<T> {
fn clone(&self) -> Self {
// INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
// SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
// safe to increment the refcount.
unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
// SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
unsafe { Self::from_inner(self.ptr) }
}
}
impl<T: ?Sized> Drop for Arc<T> {
fn drop(&mut self) {
// SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
// touch `refcount` after it's decremented to a non-zero value because another thread/CPU
// may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
// freed/invalid memory as long as it is never dereferenced.
let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
// INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
// this instance is being dropped, so the broken invariant is not observable.
// SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
if is_zero {
// The count reached zero, we must free the memory.
//
// SAFETY: The pointer was initialised from the result of `Box::leak`.
unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
}
}
}
impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
fn from(item: UniqueArc<T>) -> Self {
item.inner
}
}
impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
fn from(item: Pin<UniqueArc<T>>) -> Self {
// SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
unsafe { Pin::into_inner_unchecked(item).inner }
}
}
/// A borrowed reference to an [`Arc`] instance.
///
/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
/// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
///
/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
/// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
/// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
/// needed.
///
/// # Invariants
///
/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
/// lifetime of the [`ArcBorrow`] instance.
///
/// # Example
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// struct Example;
///
/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
/// e.into()
/// }
///
/// let obj = Arc::try_new(Example)?;
/// let cloned = do_something(obj.as_arc_borrow());
///
/// // Assert that both `obj` and `cloned` point to the same underlying object.
/// assert!(core::ptr::eq(&*obj, &*cloned));
/// # Ok::<(), Error>(())
/// ```
///
/// Using `ArcBorrow<T>` as the type of `self`:
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// impl Example {
/// fn use_reference(self: ArcBorrow<'_, Self>) {
/// // ...
/// }
/// }
///
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
/// obj.as_arc_borrow().use_reference();
/// # Ok::<(), Error>(())
/// ```
pub struct ArcBorrow<'a, T: ?Sized + 'a> {
inner: NonNull<ArcInner<T>>,
_p: PhantomData<&'a ()>,
}
// This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
// `ArcBorrow<U>`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
for ArcBorrow<'_, T>
{
}
impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
impl<T: ?Sized> ArcBorrow<'_, T> {
/// Creates a new [`ArcBorrow`] instance.
///
/// # Safety
///
/// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
/// 1. That `inner` remains valid;
/// 2. That no mutable references to `inner` are created.
unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
// INVARIANT: The safety requirements guarantee the invariants.
Self {
inner,
_p: PhantomData,
}
}
}
impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
fn from(b: ArcBorrow<'_, T>) -> Self {
// SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
// guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
// increment.
ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
.deref()
.clone()
}
}
impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariant, the underlying object is still alive with no mutable
// references to it, so it is safe to create a shared reference.
unsafe { &self.inner.as_ref().data }
}
}
/// A refcounted object that is known to have a refcount of 1.
///
/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
///
/// # Invariants
///
/// `inner` always has a reference count of 1.
///
/// # Examples
///
/// In the following example, we make changes to the inner object before turning it into an
/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
/// cannot fail.
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
/// x.a += 1;
/// x.b += 1;
/// Ok(x.into())
/// }
///
/// # test().unwrap();
/// ```
///
/// In the following example we first allocate memory for a ref-counted `Example` but we don't
/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let x = UniqueArc::try_new_uninit()?;
/// Ok(x.write(Example { a: 10, b: 20 }).into())
/// }
///
/// # test().unwrap();
/// ```
///
/// In the last example below, the caller gets a pinned instance of `Example` while converting to
/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
/// initialisation, for example, when initialising fields that are wrapped in locks.
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
/// // We can modify `pinned` because it is `Unpin`.
/// pinned.as_mut().a += 1;
/// Ok(pinned.into())
/// }
///
/// # test().unwrap();
/// ```
pub struct UniqueArc<T: ?Sized> {
inner: Arc<T>,
}
impl<T> UniqueArc<T> {
/// Tries to allocate a new [`UniqueArc`] instance.
pub fn try_new(value: T) -> Result<Self, AllocError> {
Ok(Self {
// INVARIANT: The newly-created object has a ref-count of 1.
inner: Arc::try_new(value)?,
})
}
/// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
// INVARIANT: The refcount is initialised to a non-zero value.
let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
// SAFETY: There are no safety requirements for this FFI call.
refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
data <- init::uninit::<T, AllocError>(),
}? AllocError))?;
Ok(UniqueArc {
// INVARIANT: The newly-created object has a ref-count of 1.
// SAFETY: The pointer from the `Box` is valid.
inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
})
}
}
impl<T> UniqueArc<MaybeUninit<T>> {
/// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
pub fn write(mut self, value: T) -> UniqueArc<T> {
self.deref_mut().write(value);
// SAFETY: We just wrote the value to be initialized.
unsafe { self.assume_init() }
}
/// Unsafely assume that `self` is initialized.
///
/// # Safety
///
/// The caller guarantees that the value behind this pointer has been initialized. It is
/// *immediate* UB to call this when the value is not initialized.
pub unsafe fn assume_init(self) -> UniqueArc<T> {
let inner = ManuallyDrop::new(self).inner.ptr;
UniqueArc {
// SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
// dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
inner: unsafe { Arc::from_inner(inner.cast()) },
}
}
/// Initialize `self` using the given initializer.
pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
// SAFETY: The supplied pointer is valid for initialization.
match unsafe { init.__init(self.as_mut_ptr()) } {
// SAFETY: Initialization completed successfully.
Ok(()) => Ok(unsafe { self.assume_init() }),
Err(err) => Err(err),
}
}
/// Pin-initialize `self` using the given pin-initializer.
pub fn pin_init_with<E>(
mut self,
init: impl PinInit<T, E>,
) -> core::result::Result<Pin<UniqueArc<T>>, E> {
// SAFETY: The supplied pointer is valid for initialization and we will later pin the value
// to ensure it does not move.
match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
// SAFETY: Initialization completed successfully.
Ok(()) => Ok(unsafe { self.assume_init() }.into()),
Err(err) => Err(err),
}
}
}
impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
fn from(obj: UniqueArc<T>) -> Self {
// SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
// is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
unsafe { Pin::new_unchecked(obj) }
}
}
impl<T: ?Sized> Deref for UniqueArc<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
impl<T: ?Sized> DerefMut for UniqueArc<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
// it is safe to dereference it. Additionally, we know there is only one reference when
// it's inside a `UniqueArc`, so it is safe to get a mutable reference.
unsafe { &mut self.inner.ptr.as_mut().data }
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.deref(), f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.deref(), f)
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}