linux-stable/drivers/edac/amd64_edac.h
Borislav Petkov 151fa71c58 amd64_edac: Fix DRAM base macros
Return unsigned u8 values only.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-03-17 14:46:30 +01:00

459 lines
13 KiB
C

/*
* AMD64 class Memory Controller kernel module
*
* Copyright (c) 2009 SoftwareBitMaker.
* Copyright (c) 2009 Advanced Micro Devices, Inc.
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Originally Written by Thayne Harbaugh
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* - K8 CPU Revision D and greater support
*
* Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
* - Module largely rewritten, with new (and hopefully correct)
* code for dealing with node and chip select interleaving,
* various code cleanup, and bug fixes
* - Added support for memory hoisting using DRAM hole address
* register
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* -K8 Rev (1207) revision support added, required Revision
* specific mini-driver code to support Rev F as well as
* prior revisions
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* -Family 10h revision support added. New PCI Device IDs,
* indicating new changes. Actual registers modified
* were slight, less than the Rev E to Rev F transition
* but changing the PCI Device ID was the proper thing to
* do, as it provides for almost automactic family
* detection. The mods to Rev F required more family
* information detection.
*
* Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
* - misc fixes and code cleanups
*
* This module is based on the following documents
* (available from http://www.amd.com/):
*
* Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
* Opteron Processors
* AMD publication #: 26094
*` Revision: 3.26
*
* Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
* Processors
* AMD publication #: 32559
* Revision: 3.00
* Issue Date: May 2006
*
* Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
* Processors
* AMD publication #: 31116
* Revision: 3.00
* Issue Date: September 07, 2007
*
* Sections in the first 2 documents are no longer in sync with each other.
* The Family 10h BKDG was totally re-written from scratch with a new
* presentation model.
* Therefore, comments that refer to a Document section might be off.
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/edac.h>
#include <asm/msr.h>
#include "edac_core.h"
#include "mce_amd.h"
#define amd64_debug(fmt, arg...) \
edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
#define amd64_info(fmt, arg...) \
edac_printk(KERN_INFO, "amd64", fmt, ##arg)
#define amd64_notice(fmt, arg...) \
edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
#define amd64_warn(fmt, arg...) \
edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
#define amd64_err(fmt, arg...) \
edac_printk(KERN_ERR, "amd64", fmt, ##arg)
#define amd64_mc_warn(mci, fmt, arg...) \
edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
#define amd64_mc_err(mci, fmt, arg...) \
edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
/*
* Throughout the comments in this code, the following terms are used:
*
* SysAddr, DramAddr, and InputAddr
*
* These terms come directly from the amd64 documentation
* (AMD publication #26094). They are defined as follows:
*
* SysAddr:
* This is a physical address generated by a CPU core or a device
* doing DMA. If generated by a CPU core, a SysAddr is the result of
* a virtual to physical address translation by the CPU core's address
* translation mechanism (MMU).
*
* DramAddr:
* A DramAddr is derived from a SysAddr by subtracting an offset that
* depends on which node the SysAddr maps to and whether the SysAddr
* is within a range affected by memory hoisting. The DRAM Base
* (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
* determine which node a SysAddr maps to.
*
* If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
* is within the range of addresses specified by this register, then
* a value x from the DHAR is subtracted from the SysAddr to produce a
* DramAddr. Here, x represents the base address for the node that
* the SysAddr maps to plus an offset due to memory hoisting. See
* section 3.4.8 and the comments in amd64_get_dram_hole_info() and
* sys_addr_to_dram_addr() below for more information.
*
* If the SysAddr is not affected by the DHAR then a value y is
* subtracted from the SysAddr to produce a DramAddr. Here, y is the
* base address for the node that the SysAddr maps to. See section
* 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
* information.
*
* InputAddr:
* A DramAddr is translated to an InputAddr before being passed to the
* memory controller for the node that the DramAddr is associated
* with. The memory controller then maps the InputAddr to a csrow.
* If node interleaving is not in use, then the InputAddr has the same
* value as the DramAddr. Otherwise, the InputAddr is produced by
* discarding the bits used for node interleaving from the DramAddr.
* See section 3.4.4 for more information.
*
* The memory controller for a given node uses its DRAM CS Base and
* DRAM CS Mask registers to map an InputAddr to a csrow. See
* sections 3.5.4 and 3.5.5 for more information.
*/
#define EDAC_AMD64_VERSION "3.4.0"
#define EDAC_MOD_STR "amd64_edac"
/* Extended Model from CPUID, for CPU Revision numbers */
#define K8_REV_D 1
#define K8_REV_E 2
#define K8_REV_F 4
/* Hardware limit on ChipSelect rows per MC and processors per system */
#define NUM_CHIPSELECTS 8
#define DRAM_RANGES 8
#define ON true
#define OFF false
/*
* Create a contiguous bitmask starting at bit position @lo and ending at
* position @hi. For example
*
* GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
*/
#define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))
/*
* PCI-defined configuration space registers
*/
#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
/*
* Function 1 - Address Map
*/
#define DRAM_BASE_LO 0x40
#define DRAM_LIMIT_LO 0x44
#define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7))
#define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3))
#define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
#define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7))
#define DHAR 0xf0
#define dhar_valid(pvt) ((pvt)->dhar & BIT(0))
#define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
#define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
#define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
/* NOTE: Extra mask bit vs K8 */
#define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16)
#define DCT_CFG_SEL 0x10C
#define DRAM_BASE_HI 0x140
#define DRAM_LIMIT_HI 0x144
/*
* Function 2 - DRAM controller
*/
#define DCSB0 0x40
#define DCSB1 0x140
#define DCSB_CS_ENABLE BIT(0)
#define DCSM0 0x60
#define DCSM1 0x160
#define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
#define DBAM0 0x80
#define DBAM1 0x180
/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
#define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
#define DBAM_MAX_VALUE 11
#define DCLR0 0x90
#define DCLR1 0x190
#define REVE_WIDTH_128 BIT(16)
#define WIDTH_128 BIT(11)
#define DCHR0 0x94
#define DCHR1 0x194
#define DDR3_MODE BIT(8)
#define DCT_SEL_LO 0x110
#define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800)
#define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3)
#define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
#define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
#define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
#define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5))
#define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10))
#define SWAP_INTLV_REG 0x10c
#define DCT_SEL_HI 0x114
/*
* Function 3 - Misc Control
*/
#define NBCTL 0x40
#define NBCFG 0x44
#define NBCFG_CHIPKILL BIT(23)
#define NBCFG_ECC_ENABLE BIT(22)
/* F3x48: NBSL */
#define F10_NBSL_EXT_ERR_ECC 0x8
#define NBSL_PP_OBS 0x2
#define SCRCTRL 0x58
#define F10_ONLINE_SPARE 0xB0
#define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
#define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
#define F10_NB_ARRAY_ADDR 0xB8
#define F10_NB_ARRAY_DRAM_ECC BIT(31)
/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
#define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
#define F10_NB_ARRAY_DATA 0xBC
#define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
(BIT(((word) & 0xF) + 20) | \
BIT(17) | bits)
#define SET_NB_DRAM_INJECTION_READ(word, bits) \
(BIT(((word) & 0xF) + 20) | \
BIT(16) | bits)
#define NBCAP 0xE8
#define NBCAP_CHIPKILL BIT(4)
#define NBCAP_SECDED BIT(3)
#define NBCAP_DCT_DUAL BIT(0)
#define EXT_NB_MCA_CFG 0x180
/* MSRs */
#define MSR_MCGCTL_NBE BIT(4)
/* AMD sets the first MC device at device ID 0x18. */
static inline u8 get_node_id(struct pci_dev *pdev)
{
return PCI_SLOT(pdev->devfn) - 0x18;
}
enum amd_families {
K8_CPUS = 0,
F10_CPUS,
F15_CPUS,
NUM_FAMILIES,
};
/* Error injection control structure */
struct error_injection {
u32 section;
u32 word;
u32 bit_map;
};
/* low and high part of PCI config space regs */
struct reg_pair {
u32 lo, hi;
};
/*
* See F1x[1, 0][7C:40] DRAM Base/Limit Registers
*/
struct dram_range {
struct reg_pair base;
struct reg_pair lim;
};
/* A DCT chip selects collection */
struct chip_select {
u32 csbases[NUM_CHIPSELECTS];
u8 b_cnt;
u32 csmasks[NUM_CHIPSELECTS];
u8 m_cnt;
};
struct amd64_pvt {
struct low_ops *ops;
/* pci_device handles which we utilize */
struct pci_dev *F1, *F2, *F3;
unsigned mc_node_id; /* MC index of this MC node */
int ext_model; /* extended model value of this node */
int channel_count;
/* Raw registers */
u32 dclr0; /* DRAM Configuration Low DCT0 reg */
u32 dclr1; /* DRAM Configuration Low DCT1 reg */
u32 dchr0; /* DRAM Configuration High DCT0 reg */
u32 dchr1; /* DRAM Configuration High DCT1 reg */
u32 nbcap; /* North Bridge Capabilities */
u32 nbcfg; /* F10 North Bridge Configuration */
u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
u32 dhar; /* DRAM Hoist reg */
u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
/* one for each DCT */
struct chip_select csels[2];
/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
struct dram_range ranges[DRAM_RANGES];
u64 top_mem; /* top of memory below 4GB */
u64 top_mem2; /* top of memory above 4GB */
u32 dct_sel_lo; /* DRAM Controller Select Low */
u32 dct_sel_hi; /* DRAM Controller Select High */
u32 online_spare; /* On-Line spare Reg */
/* x4 or x8 syndromes in use */
u8 ecc_sym_sz;
/* place to store error injection parameters prior to issue */
struct error_injection injection;
};
static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i)
{
u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
if (boot_cpu_data.x86 == 0xf)
return addr;
return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
}
static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i)
{
u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
if (boot_cpu_data.x86 == 0xf)
return lim;
return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
}
static inline u16 extract_syndrome(u64 status)
{
return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
}
/*
* per-node ECC settings descriptor
*/
struct ecc_settings {
u32 old_nbctl;
bool nbctl_valid;
struct flags {
unsigned long nb_mce_enable:1;
unsigned long nb_ecc_prev:1;
} flags;
};
#ifdef CONFIG_EDAC_DEBUG
#define NUM_DBG_ATTRS 5
#else
#define NUM_DBG_ATTRS 0
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
#define NUM_INJ_ATTRS 5
#else
#define NUM_INJ_ATTRS 0
#endif
extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
amd64_inj_attrs[NUM_INJ_ATTRS];
/*
* Each of the PCI Device IDs types have their own set of hardware accessor
* functions and per device encoding/decoding logic.
*/
struct low_ops {
int (*early_channel_count) (struct amd64_pvt *pvt);
void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr,
u16 syndrome);
int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset,
u32 *val, const char *func);
};
struct amd64_family_type {
const char *ctl_name;
u16 f1_id, f3_id;
struct low_ops ops;
};
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 val, const char *func);
#define amd64_read_pci_cfg(pdev, offset, val) \
__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
#define amd64_write_pci_cfg(pdev, offset, val) \
__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
#define amd64_read_dct_pci_cfg(pvt, offset, val) \
pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size);