linux-stable/drivers/media/i2c/dw9768.c
Sakari Ailus 5f9a089b6d dw9768: Enable low-power probe on ACPI
Add support for low-power probe to the driver. Also fix runtime PM API
usage in the driver.

Much of the hassle comes from different factors affecting device power
states during probe for ACPI and DT.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Fixes: 859891228e ("media: i2c: dw9768: Add DW9768 VCM driver")
2022-10-27 14:38:03 +03:00

559 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2020 MediaTek Inc.
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define DW9768_NAME "dw9768"
#define DW9768_MAX_FOCUS_POS (1024 - 1)
/*
* This sets the minimum granularity for the focus positions.
* A value of 1 gives maximum accuracy for a desired focus position
*/
#define DW9768_FOCUS_STEPS 1
/*
* Ring control and Power control register
* Bit[1] RING_EN
* 0: Direct mode
* 1: AAC mode (ringing control mode)
* Bit[0] PD
* 0: Normal operation mode
* 1: Power down mode
* DW9768 requires waiting time of Topr after PD reset takes place.
*/
#define DW9768_RING_PD_CONTROL_REG 0x02
#define DW9768_PD_MODE_OFF 0x00
#define DW9768_PD_MODE_EN BIT(0)
#define DW9768_AAC_MODE_EN BIT(1)
/*
* DW9768 separates two registers to control the VCM position.
* One for MSB value, another is LSB value.
* DAC_MSB: D[9:8] (ADD: 0x03)
* DAC_LSB: D[7:0] (ADD: 0x04)
* D[9:0] DAC data input: positive output current = D[9:0] / 1023 * 100[mA]
*/
#define DW9768_MSB_ADDR 0x03
#define DW9768_LSB_ADDR 0x04
#define DW9768_STATUS_ADDR 0x05
/*
* AAC mode control & prescale register
* Bit[7:5] Namely AC[2:0], decide the VCM mode and operation time.
* 001 AAC2 0.48 x Tvib
* 010 AAC3 0.70 x Tvib
* 011 AAC4 0.75 x Tvib
* 101 AAC8 1.13 x Tvib
* Bit[2:0] Namely PRESC[2:0], set the internal clock dividing rate as follow.
* 000 2
* 001 1
* 010 1/2
* 011 1/4
* 100 8
* 101 4
*/
#define DW9768_AAC_PRESC_REG 0x06
#define DW9768_AAC_MODE_SEL_MASK GENMASK(7, 5)
#define DW9768_CLOCK_PRE_SCALE_SEL_MASK GENMASK(2, 0)
/*
* VCM period of vibration register
* Bit[5:0] Defined as VCM rising periodic time (Tvib) together with PRESC[2:0]
* Tvib = (6.3ms + AACT[5:0] * 0.1ms) * Dividing Rate
* Dividing Rate is the internal clock dividing rate that is defined at
* PRESCALE register (ADD: 0x06)
*/
#define DW9768_AAC_TIME_REG 0x07
/*
* DW9768 requires waiting time (delay time) of t_OPR after power-up,
* or in the case of PD reset taking place.
*/
#define DW9768_T_OPR_US 1000
#define DW9768_TVIB_MS_BASE10 (64 - 1)
#define DW9768_AAC_MODE_DEFAULT 2
#define DW9768_AAC_TIME_DEFAULT 0x20
#define DW9768_CLOCK_PRE_SCALE_DEFAULT 1
/*
* This acts as the minimum granularity of lens movement.
* Keep this value power of 2, so the control steps can be
* uniformly adjusted for gradual lens movement, with desired
* number of control steps.
*/
#define DW9768_MOVE_STEPS 16
static const char * const dw9768_supply_names[] = {
"vin", /* Digital I/O power */
"vdd", /* Digital core power */
};
/* dw9768 device structure */
struct dw9768 {
struct regulator_bulk_data supplies[ARRAY_SIZE(dw9768_supply_names)];
struct v4l2_ctrl_handler ctrls;
struct v4l2_ctrl *focus;
struct v4l2_subdev sd;
u32 aac_mode;
u32 aac_timing;
u32 clock_presc;
u32 move_delay_us;
};
static inline struct dw9768 *sd_to_dw9768(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct dw9768, sd);
}
struct regval_list {
u8 reg_num;
u8 value;
};
struct dw9768_aac_mode_ot_multi {
u32 aac_mode_enum;
u32 ot_multi_base100;
};
struct dw9768_clk_presc_dividing_rate {
u32 clk_presc_enum;
u32 dividing_rate_base100;
};
static const struct dw9768_aac_mode_ot_multi aac_mode_ot_multi[] = {
{1, 48},
{2, 70},
{3, 75},
{5, 113},
};
static const struct dw9768_clk_presc_dividing_rate presc_dividing_rate[] = {
{0, 200},
{1, 100},
{2, 50},
{3, 25},
{4, 800},
{5, 400},
};
static u32 dw9768_find_ot_multi(u32 aac_mode_param)
{
u32 cur_ot_multi_base100 = 70;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(aac_mode_ot_multi); i++) {
if (aac_mode_ot_multi[i].aac_mode_enum == aac_mode_param) {
cur_ot_multi_base100 =
aac_mode_ot_multi[i].ot_multi_base100;
}
}
return cur_ot_multi_base100;
}
static u32 dw9768_find_dividing_rate(u32 presc_param)
{
u32 cur_clk_dividing_rate_base100 = 100;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(presc_dividing_rate); i++) {
if (presc_dividing_rate[i].clk_presc_enum == presc_param) {
cur_clk_dividing_rate_base100 =
presc_dividing_rate[i].dividing_rate_base100;
}
}
return cur_clk_dividing_rate_base100;
}
/*
* DW9768_AAC_PRESC_REG & DW9768_AAC_TIME_REG determine VCM operation time.
* For current VCM mode: AAC3, Operation Time would be 0.70 x Tvib.
* Tvib = (6.3ms + AACT[5:0] * 0.1MS) * Dividing Rate.
* Below is calculation of the operation delay for each step.
*/
static inline u32 dw9768_cal_move_delay(u32 aac_mode_param, u32 presc_param,
u32 aac_timing_param)
{
u32 Tvib_us;
u32 ot_multi_base100;
u32 clk_dividing_rate_base100;
ot_multi_base100 = dw9768_find_ot_multi(aac_mode_param);
clk_dividing_rate_base100 = dw9768_find_dividing_rate(presc_param);
Tvib_us = (DW9768_TVIB_MS_BASE10 + aac_timing_param) *
clk_dividing_rate_base100;
return Tvib_us * ot_multi_base100 / 100;
}
static int dw9768_mod_reg(struct dw9768 *dw9768, u8 reg, u8 mask, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd);
int ret;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
return ret;
val = ((unsigned char)ret & ~mask) | (val & mask);
return i2c_smbus_write_byte_data(client, reg, val);
}
static int dw9768_set_dac(struct dw9768 *dw9768, u16 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd);
/* Write VCM position to registers */
return i2c_smbus_write_word_swapped(client, DW9768_MSB_ADDR, val);
}
static int dw9768_init(struct dw9768 *dw9768)
{
struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd);
int ret, val;
/* Reset DW9768_RING_PD_CONTROL_REG to default status 0x00 */
ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG,
DW9768_PD_MODE_OFF);
if (ret < 0)
return ret;
/*
* DW9769 requires waiting delay time of t_OPR
* after PD reset takes place.
*/
usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100);
/* Set DW9768_RING_PD_CONTROL_REG to DW9768_AAC_MODE_EN(0x01) */
ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG,
DW9768_AAC_MODE_EN);
if (ret < 0)
return ret;
/* Set AAC mode */
ret = dw9768_mod_reg(dw9768, DW9768_AAC_PRESC_REG,
DW9768_AAC_MODE_SEL_MASK,
dw9768->aac_mode << 5);
if (ret < 0)
return ret;
/* Set clock presc */
if (dw9768->clock_presc != DW9768_CLOCK_PRE_SCALE_DEFAULT) {
ret = dw9768_mod_reg(dw9768, DW9768_AAC_PRESC_REG,
DW9768_CLOCK_PRE_SCALE_SEL_MASK,
dw9768->clock_presc);
if (ret < 0)
return ret;
}
/* Set AAC Timing */
if (dw9768->aac_timing != DW9768_AAC_TIME_DEFAULT) {
ret = i2c_smbus_write_byte_data(client, DW9768_AAC_TIME_REG,
dw9768->aac_timing);
if (ret < 0)
return ret;
}
for (val = dw9768->focus->val % DW9768_MOVE_STEPS;
val <= dw9768->focus->val;
val += DW9768_MOVE_STEPS) {
ret = dw9768_set_dac(dw9768, val);
if (ret) {
dev_err(&client->dev, "I2C failure: %d", ret);
return ret;
}
usleep_range(dw9768->move_delay_us,
dw9768->move_delay_us + 1000);
}
return 0;
}
static int dw9768_release(struct dw9768 *dw9768)
{
struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd);
int ret, val;
val = round_down(dw9768->focus->val, DW9768_MOVE_STEPS);
for ( ; val >= 0; val -= DW9768_MOVE_STEPS) {
ret = dw9768_set_dac(dw9768, val);
if (ret) {
dev_err(&client->dev, "I2C write fail: %d", ret);
return ret;
}
usleep_range(dw9768->move_delay_us,
dw9768->move_delay_us + 1000);
}
ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG,
DW9768_PD_MODE_EN);
if (ret < 0)
return ret;
/*
* DW9769 requires waiting delay time of t_OPR
* after PD reset takes place.
*/
usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100);
return 0;
}
static int dw9768_runtime_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct dw9768 *dw9768 = sd_to_dw9768(sd);
dw9768_release(dw9768);
regulator_bulk_disable(ARRAY_SIZE(dw9768_supply_names),
dw9768->supplies);
return 0;
}
static int dw9768_runtime_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct dw9768 *dw9768 = sd_to_dw9768(sd);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(dw9768_supply_names),
dw9768->supplies);
if (ret < 0) {
dev_err(dev, "failed to enable regulators\n");
return ret;
}
/*
* The datasheet refers to t_OPR that needs to be waited before sending
* I2C commands after power-up.
*/
usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100);
ret = dw9768_init(dw9768);
if (ret < 0)
goto disable_regulator;
return 0;
disable_regulator:
regulator_bulk_disable(ARRAY_SIZE(dw9768_supply_names),
dw9768->supplies);
return ret;
}
static int dw9768_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct dw9768 *dw9768 = container_of(ctrl->handler,
struct dw9768, ctrls);
if (ctrl->id == V4L2_CID_FOCUS_ABSOLUTE)
return dw9768_set_dac(dw9768, ctrl->val);
return 0;
}
static const struct v4l2_ctrl_ops dw9768_ctrl_ops = {
.s_ctrl = dw9768_set_ctrl,
};
static int dw9768_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
return pm_runtime_resume_and_get(sd->dev);
}
static int dw9768_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
pm_runtime_put(sd->dev);
return 0;
}
static const struct v4l2_subdev_internal_ops dw9768_int_ops = {
.open = dw9768_open,
.close = dw9768_close,
};
static const struct v4l2_subdev_ops dw9768_ops = { };
static int dw9768_init_controls(struct dw9768 *dw9768)
{
struct v4l2_ctrl_handler *hdl = &dw9768->ctrls;
const struct v4l2_ctrl_ops *ops = &dw9768_ctrl_ops;
v4l2_ctrl_handler_init(hdl, 1);
dw9768->focus = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_FOCUS_ABSOLUTE, 0,
DW9768_MAX_FOCUS_POS,
DW9768_FOCUS_STEPS, 0);
if (hdl->error)
return hdl->error;
dw9768->sd.ctrl_handler = hdl;
return 0;
}
static int dw9768_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct dw9768 *dw9768;
bool full_power;
unsigned int i;
int ret;
dw9768 = devm_kzalloc(dev, sizeof(*dw9768), GFP_KERNEL);
if (!dw9768)
return -ENOMEM;
/* Initialize subdev */
v4l2_i2c_subdev_init(&dw9768->sd, client, &dw9768_ops);
dw9768->aac_mode = DW9768_AAC_MODE_DEFAULT;
dw9768->aac_timing = DW9768_AAC_TIME_DEFAULT;
dw9768->clock_presc = DW9768_CLOCK_PRE_SCALE_DEFAULT;
/* Optional indication of AAC mode select */
fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,aac-mode",
&dw9768->aac_mode);
/* Optional indication of clock pre-scale select */
fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,clock-presc",
&dw9768->clock_presc);
/* Optional indication of AAC Timing */
fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,aac-timing",
&dw9768->aac_timing);
dw9768->move_delay_us = dw9768_cal_move_delay(dw9768->aac_mode,
dw9768->clock_presc,
dw9768->aac_timing);
for (i = 0; i < ARRAY_SIZE(dw9768_supply_names); i++)
dw9768->supplies[i].supply = dw9768_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dw9768_supply_names),
dw9768->supplies);
if (ret) {
dev_err(dev, "failed to get regulators\n");
return ret;
}
/* Initialize controls */
ret = dw9768_init_controls(dw9768);
if (ret)
goto err_free_handler;
/* Initialize subdev */
dw9768->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
dw9768->sd.internal_ops = &dw9768_int_ops;
ret = media_entity_pads_init(&dw9768->sd.entity, 0, NULL);
if (ret < 0)
goto err_free_handler;
dw9768->sd.entity.function = MEDIA_ENT_F_LENS;
/*
* Figure out whether we're going to power up the device here. Generally
* this is done if CONFIG_PM is disabled in a DT system or the device is
* to be powered on in an ACPI system. Similarly for power off in
* remove.
*/
pm_runtime_enable(dev);
full_power = (is_acpi_node(dev_fwnode(dev)) &&
acpi_dev_state_d0(dev)) ||
(is_of_node(dev_fwnode(dev)) && !pm_runtime_enabled(dev));
if (full_power) {
ret = dw9768_runtime_resume(dev);
if (ret < 0) {
dev_err(dev, "failed to power on: %d\n", ret);
goto err_clean_entity;
}
pm_runtime_set_active(dev);
}
ret = v4l2_async_register_subdev(&dw9768->sd);
if (ret < 0) {
dev_err(dev, "failed to register V4L2 subdev: %d", ret);
goto err_power_off;
}
pm_runtime_idle(dev);
return 0;
err_power_off:
if (full_power) {
dw9768_runtime_suspend(dev);
pm_runtime_set_suspended(dev);
}
err_clean_entity:
pm_runtime_disable(dev);
media_entity_cleanup(&dw9768->sd.entity);
err_free_handler:
v4l2_ctrl_handler_free(&dw9768->ctrls);
return ret;
}
static void dw9768_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct dw9768 *dw9768 = sd_to_dw9768(sd);
struct device *dev = &client->dev;
v4l2_async_unregister_subdev(&dw9768->sd);
v4l2_ctrl_handler_free(&dw9768->ctrls);
media_entity_cleanup(&dw9768->sd.entity);
if ((is_acpi_node(dev_fwnode(dev)) && acpi_dev_state_d0(dev)) ||
(is_of_node(dev_fwnode(dev)) && !pm_runtime_enabled(dev))) {
dw9768_runtime_suspend(dev);
pm_runtime_set_suspended(dev);
}
pm_runtime_disable(dev);
}
static const struct of_device_id dw9768_of_table[] = {
{ .compatible = "dongwoon,dw9768" },
{ .compatible = "giantec,gt9769" },
{}
};
MODULE_DEVICE_TABLE(of, dw9768_of_table);
static const struct dev_pm_ops dw9768_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw9768_runtime_suspend, dw9768_runtime_resume, NULL)
};
static struct i2c_driver dw9768_i2c_driver = {
.driver = {
.name = DW9768_NAME,
.pm = &dw9768_pm_ops,
.of_match_table = dw9768_of_table,
},
.probe_new = dw9768_probe,
.remove = dw9768_remove,
};
module_i2c_driver(dw9768_i2c_driver);
MODULE_AUTHOR("Dongchun Zhu <dongchun.zhu@mediatek.com>");
MODULE_DESCRIPTION("DW9768 VCM driver");
MODULE_LICENSE("GPL v2");