linux-stable/drivers/rtc/rtc-abx80x.c
Sean Anderson e90ff8ede7 rtc: abx80x: Add nvmem support
This adds support for the 256-byte internal RAM. There are two windows
which can be used to access this RAM: 64 bytes at 0x40 (the "standard"
address space) and 128 bytes at 0x80 (the "alternate" address space). We
use the standard address space because it is also accessible over SPI
(if such a port is ever done). We are limited to 32-byte reads for SMBus
compatibility, so there's no advantage to using the alternate address
space.

There are some reserved bits in the EXTRAM register, and the datasheet
doesn't say what to do with them. I've opted to skip a read/modify/write
and just write the whole thing. If this driver is ever converted to
regmap, this would be a good place to use regmap_update_bits.

Signed-off-by: Sean Anderson <sean.anderson@seco.com>
Link: https://lore.kernel.org/r/20221222214532.1873718-1-sean.anderson@seco.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2023-02-24 00:02:30 +01:00

1004 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* A driver for the I2C members of the Abracon AB x8xx RTC family,
* and compatible: AB 1805 and AB 0805
*
* Copyright 2014-2015 Macq S.A.
*
* Author: Philippe De Muyter <phdm@macqel.be>
* Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
*
*/
#include <linux/bcd.h>
#include <linux/bitfield.h>
#include <linux/i2c.h>
#include <linux/kstrtox.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/rtc.h>
#include <linux/watchdog.h>
#define ABX8XX_REG_HTH 0x00
#define ABX8XX_REG_SC 0x01
#define ABX8XX_REG_MN 0x02
#define ABX8XX_REG_HR 0x03
#define ABX8XX_REG_DA 0x04
#define ABX8XX_REG_MO 0x05
#define ABX8XX_REG_YR 0x06
#define ABX8XX_REG_WD 0x07
#define ABX8XX_REG_AHTH 0x08
#define ABX8XX_REG_ASC 0x09
#define ABX8XX_REG_AMN 0x0a
#define ABX8XX_REG_AHR 0x0b
#define ABX8XX_REG_ADA 0x0c
#define ABX8XX_REG_AMO 0x0d
#define ABX8XX_REG_AWD 0x0e
#define ABX8XX_REG_STATUS 0x0f
#define ABX8XX_STATUS_AF BIT(2)
#define ABX8XX_STATUS_BLF BIT(4)
#define ABX8XX_STATUS_WDT BIT(6)
#define ABX8XX_REG_CTRL1 0x10
#define ABX8XX_CTRL_WRITE BIT(0)
#define ABX8XX_CTRL_ARST BIT(2)
#define ABX8XX_CTRL_12_24 BIT(6)
#define ABX8XX_REG_CTRL2 0x11
#define ABX8XX_CTRL2_RSVD BIT(5)
#define ABX8XX_REG_IRQ 0x12
#define ABX8XX_IRQ_AIE BIT(2)
#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
#define ABX8XX_REG_CD_TIMER_CTL 0x18
#define ABX8XX_REG_OSC 0x1c
#define ABX8XX_OSC_FOS BIT(3)
#define ABX8XX_OSC_BOS BIT(4)
#define ABX8XX_OSC_ACAL_512 BIT(5)
#define ABX8XX_OSC_ACAL_1024 BIT(6)
#define ABX8XX_OSC_OSEL BIT(7)
#define ABX8XX_REG_OSS 0x1d
#define ABX8XX_OSS_OF BIT(1)
#define ABX8XX_OSS_OMODE BIT(4)
#define ABX8XX_REG_WDT 0x1b
#define ABX8XX_WDT_WDS BIT(7)
#define ABX8XX_WDT_BMB_MASK 0x7c
#define ABX8XX_WDT_BMB_SHIFT 2
#define ABX8XX_WDT_MAX_TIME (ABX8XX_WDT_BMB_MASK >> ABX8XX_WDT_BMB_SHIFT)
#define ABX8XX_WDT_WRB_MASK 0x03
#define ABX8XX_WDT_WRB_1HZ 0x02
#define ABX8XX_REG_CFG_KEY 0x1f
#define ABX8XX_CFG_KEY_OSC 0xa1
#define ABX8XX_CFG_KEY_MISC 0x9d
#define ABX8XX_REG_ID0 0x28
#define ABX8XX_REG_OUT_CTRL 0x30
#define ABX8XX_OUT_CTRL_EXDS BIT(4)
#define ABX8XX_REG_TRICKLE 0x20
#define ABX8XX_TRICKLE_CHARGE_ENABLE 0xa0
#define ABX8XX_TRICKLE_STANDARD_DIODE 0x8
#define ABX8XX_TRICKLE_SCHOTTKY_DIODE 0x4
#define ABX8XX_REG_EXTRAM 0x3f
#define ABX8XX_EXTRAM_XADS GENMASK(1, 0)
#define ABX8XX_SRAM_BASE 0x40
#define ABX8XX_SRAM_WIN_SIZE 0x40
#define ABX8XX_RAM_SIZE 256
#define NVMEM_ADDR_LOWER GENMASK(5, 0)
#define NVMEM_ADDR_UPPER GENMASK(7, 6)
static u8 trickle_resistors[] = {0, 3, 6, 11};
enum abx80x_chip {AB0801, AB0803, AB0804, AB0805,
AB1801, AB1803, AB1804, AB1805, RV1805, ABX80X};
struct abx80x_cap {
u16 pn;
bool has_tc;
bool has_wdog;
};
static struct abx80x_cap abx80x_caps[] = {
[AB0801] = {.pn = 0x0801},
[AB0803] = {.pn = 0x0803},
[AB0804] = {.pn = 0x0804, .has_tc = true, .has_wdog = true},
[AB0805] = {.pn = 0x0805, .has_tc = true, .has_wdog = true},
[AB1801] = {.pn = 0x1801},
[AB1803] = {.pn = 0x1803},
[AB1804] = {.pn = 0x1804, .has_tc = true, .has_wdog = true},
[AB1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
[RV1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
[ABX80X] = {.pn = 0}
};
struct abx80x_priv {
struct rtc_device *rtc;
struct i2c_client *client;
struct watchdog_device wdog;
};
static int abx80x_write_config_key(struct i2c_client *client, u8 key)
{
if (i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY, key) < 0) {
dev_err(&client->dev, "Unable to write configuration key\n");
return -EIO;
}
return 0;
}
static int abx80x_is_rc_mode(struct i2c_client *client)
{
int flags = 0;
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0) {
dev_err(&client->dev,
"Failed to read autocalibration attribute\n");
return flags;
}
return (flags & ABX8XX_OSS_OMODE) ? 1 : 0;
}
static int abx80x_enable_trickle_charger(struct i2c_client *client,
u8 trickle_cfg)
{
int err;
/*
* Write the configuration key register to enable access to the Trickle
* register
*/
if (abx80x_write_config_key(client, ABX8XX_CFG_KEY_MISC) < 0)
return -EIO;
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_TRICKLE,
ABX8XX_TRICKLE_CHARGE_ENABLE |
trickle_cfg);
if (err < 0) {
dev_err(&client->dev, "Unable to write trickle register\n");
return -EIO;
}
return 0;
}
static int abx80x_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[8];
int err, flags, rc_mode = 0;
/* Read the Oscillator Failure only in XT mode */
rc_mode = abx80x_is_rc_mode(client);
if (rc_mode < 0)
return rc_mode;
if (!rc_mode) {
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0)
return flags;
if (flags & ABX8XX_OSS_OF) {
dev_err(dev, "Oscillator failure, data is invalid.\n");
return -EINVAL;
}
}
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_HTH,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to read date\n");
return -EIO;
}
tm->tm_sec = bcd2bin(buf[ABX8XX_REG_SC] & 0x7F);
tm->tm_min = bcd2bin(buf[ABX8XX_REG_MN] & 0x7F);
tm->tm_hour = bcd2bin(buf[ABX8XX_REG_HR] & 0x3F);
tm->tm_wday = buf[ABX8XX_REG_WD] & 0x7;
tm->tm_mday = bcd2bin(buf[ABX8XX_REG_DA] & 0x3F);
tm->tm_mon = bcd2bin(buf[ABX8XX_REG_MO] & 0x1F) - 1;
tm->tm_year = bcd2bin(buf[ABX8XX_REG_YR]) + 100;
return 0;
}
static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[8];
int err, flags;
if (tm->tm_year < 100)
return -EINVAL;
buf[ABX8XX_REG_HTH] = 0;
buf[ABX8XX_REG_SC] = bin2bcd(tm->tm_sec);
buf[ABX8XX_REG_MN] = bin2bcd(tm->tm_min);
buf[ABX8XX_REG_HR] = bin2bcd(tm->tm_hour);
buf[ABX8XX_REG_DA] = bin2bcd(tm->tm_mday);
buf[ABX8XX_REG_MO] = bin2bcd(tm->tm_mon + 1);
buf[ABX8XX_REG_YR] = bin2bcd(tm->tm_year - 100);
buf[ABX8XX_REG_WD] = tm->tm_wday;
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_HTH,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to write to date registers\n");
return -EIO;
}
/* Clear the OF bit of Oscillator Status Register */
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0)
return flags;
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSS,
flags & ~ABX8XX_OSS_OF);
if (err < 0) {
dev_err(&client->dev, "Unable to write oscillator status register\n");
return err;
}
return 0;
}
static irqreturn_t abx80x_handle_irq(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct abx80x_priv *priv = i2c_get_clientdata(client);
struct rtc_device *rtc = priv->rtc;
int status;
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return IRQ_NONE;
if (status & ABX8XX_STATUS_AF)
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
/*
* It is unclear if we'll get an interrupt before the external
* reset kicks in.
*/
if (status & ABX8XX_STATUS_WDT)
dev_alert(&client->dev, "watchdog timeout interrupt.\n");
i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
return IRQ_HANDLED;
}
static int abx80x_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[7];
int irq_mask, err;
if (client->irq <= 0)
return -EINVAL;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ASC,
sizeof(buf), buf);
if (err)
return err;
irq_mask = i2c_smbus_read_byte_data(client, ABX8XX_REG_IRQ);
if (irq_mask < 0)
return irq_mask;
t->time.tm_sec = bcd2bin(buf[0] & 0x7F);
t->time.tm_min = bcd2bin(buf[1] & 0x7F);
t->time.tm_hour = bcd2bin(buf[2] & 0x3F);
t->time.tm_mday = bcd2bin(buf[3] & 0x3F);
t->time.tm_mon = bcd2bin(buf[4] & 0x1F) - 1;
t->time.tm_wday = buf[5] & 0x7;
t->enabled = !!(irq_mask & ABX8XX_IRQ_AIE);
t->pending = (buf[6] & ABX8XX_STATUS_AF) && t->enabled;
return err;
}
static int abx80x_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
u8 alarm[6];
int err;
if (client->irq <= 0)
return -EINVAL;
alarm[0] = 0x0;
alarm[1] = bin2bcd(t->time.tm_sec);
alarm[2] = bin2bcd(t->time.tm_min);
alarm[3] = bin2bcd(t->time.tm_hour);
alarm[4] = bin2bcd(t->time.tm_mday);
alarm[5] = bin2bcd(t->time.tm_mon + 1);
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_AHTH,
sizeof(alarm), alarm);
if (err < 0) {
dev_err(&client->dev, "Unable to write alarm registers\n");
return -EIO;
}
if (t->enabled) {
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
if (err)
return err;
}
return 0;
}
static int abx80x_rtc_set_autocalibration(struct device *dev,
int autocalibration)
{
struct i2c_client *client = to_i2c_client(dev);
int retval, flags = 0;
if ((autocalibration != 0) && (autocalibration != 1024) &&
(autocalibration != 512)) {
dev_err(dev, "autocalibration value outside permitted range\n");
return -EINVAL;
}
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (autocalibration == 0) {
flags &= ~(ABX8XX_OSC_ACAL_512 | ABX8XX_OSC_ACAL_1024);
} else if (autocalibration == 1024) {
/* 1024 autocalibration is 0x10 */
flags |= ABX8XX_OSC_ACAL_1024;
flags &= ~(ABX8XX_OSC_ACAL_512);
} else {
/* 512 autocalibration is 0x11 */
flags |= (ABX8XX_OSC_ACAL_1024 | ABX8XX_OSC_ACAL_512);
}
/* Unlock write access to Oscillator Control Register */
if (abx80x_write_config_key(client, ABX8XX_CFG_KEY_OSC) < 0)
return -EIO;
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
return retval;
}
static int abx80x_rtc_get_autocalibration(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
int flags = 0, autocalibration;
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (flags & ABX8XX_OSC_ACAL_512)
autocalibration = 512;
else if (flags & ABX8XX_OSC_ACAL_1024)
autocalibration = 1024;
else
autocalibration = 0;
return autocalibration;
}
static ssize_t autocalibration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int retval;
unsigned long autocalibration = 0;
retval = kstrtoul(buf, 10, &autocalibration);
if (retval < 0) {
dev_err(dev, "Failed to store RTC autocalibration attribute\n");
return -EINVAL;
}
retval = abx80x_rtc_set_autocalibration(dev->parent, autocalibration);
return retval ? retval : count;
}
static ssize_t autocalibration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int autocalibration = 0;
autocalibration = abx80x_rtc_get_autocalibration(dev->parent);
if (autocalibration < 0) {
dev_err(dev, "Failed to read RTC autocalibration\n");
sprintf(buf, "0\n");
return autocalibration;
}
return sprintf(buf, "%d\n", autocalibration);
}
static DEVICE_ATTR_RW(autocalibration);
static ssize_t oscillator_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev->parent);
int retval, flags, rc_mode = 0;
if (strncmp(buf, "rc", 2) == 0) {
rc_mode = 1;
} else if (strncmp(buf, "xtal", 4) == 0) {
rc_mode = 0;
} else {
dev_err(dev, "Oscillator selection value outside permitted ones\n");
return -EINVAL;
}
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (rc_mode == 0)
flags &= ~(ABX8XX_OSC_OSEL);
else
flags |= (ABX8XX_OSC_OSEL);
/* Unlock write access on Oscillator Control register */
if (abx80x_write_config_key(client, ABX8XX_CFG_KEY_OSC) < 0)
return -EIO;
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
if (retval < 0) {
dev_err(dev, "Failed to write Oscillator Control register\n");
return retval;
}
return retval ? retval : count;
}
static ssize_t oscillator_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc_mode = 0;
struct i2c_client *client = to_i2c_client(dev->parent);
rc_mode = abx80x_is_rc_mode(client);
if (rc_mode < 0) {
dev_err(dev, "Failed to read RTC oscillator selection\n");
sprintf(buf, "\n");
return rc_mode;
}
if (rc_mode)
return sprintf(buf, "rc\n");
else
return sprintf(buf, "xtal\n");
}
static DEVICE_ATTR_RW(oscillator);
static struct attribute *rtc_calib_attrs[] = {
&dev_attr_autocalibration.attr,
&dev_attr_oscillator.attr,
NULL,
};
static const struct attribute_group rtc_calib_attr_group = {
.attrs = rtc_calib_attrs,
};
static int abx80x_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct i2c_client *client = to_i2c_client(dev);
int err;
if (enabled)
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
else
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
ABX8XX_IRQ_IM_1_4);
return err;
}
static int abx80x_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct i2c_client *client = to_i2c_client(dev);
int status, tmp;
switch (cmd) {
case RTC_VL_READ:
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return status;
tmp = status & ABX8XX_STATUS_BLF ? RTC_VL_BACKUP_LOW : 0;
return put_user(tmp, (unsigned int __user *)arg);
case RTC_VL_CLR:
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return status;
status &= ~ABX8XX_STATUS_BLF;
tmp = i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
if (tmp < 0)
return tmp;
return 0;
default:
return -ENOIOCTLCMD;
}
}
static const struct rtc_class_ops abx80x_rtc_ops = {
.read_time = abx80x_rtc_read_time,
.set_time = abx80x_rtc_set_time,
.read_alarm = abx80x_read_alarm,
.set_alarm = abx80x_set_alarm,
.alarm_irq_enable = abx80x_alarm_irq_enable,
.ioctl = abx80x_ioctl,
};
static int abx80x_dt_trickle_cfg(struct i2c_client *client)
{
struct device_node *np = client->dev.of_node;
const char *diode;
int trickle_cfg = 0;
int i, ret;
u32 tmp;
ret = of_property_read_string(np, "abracon,tc-diode", &diode);
if (ret)
return ret;
if (!strcmp(diode, "standard")) {
trickle_cfg |= ABX8XX_TRICKLE_STANDARD_DIODE;
} else if (!strcmp(diode, "schottky")) {
trickle_cfg |= ABX8XX_TRICKLE_SCHOTTKY_DIODE;
} else {
dev_dbg(&client->dev, "Invalid tc-diode value: %s\n", diode);
return -EINVAL;
}
ret = of_property_read_u32(np, "abracon,tc-resistor", &tmp);
if (ret)
return ret;
for (i = 0; i < sizeof(trickle_resistors); i++)
if (trickle_resistors[i] == tmp)
break;
if (i == sizeof(trickle_resistors)) {
dev_dbg(&client->dev, "Invalid tc-resistor value: %u\n", tmp);
return -EINVAL;
}
return (trickle_cfg | i);
}
#ifdef CONFIG_WATCHDOG
static inline u8 timeout_bits(unsigned int timeout)
{
return ((timeout << ABX8XX_WDT_BMB_SHIFT) & ABX8XX_WDT_BMB_MASK) |
ABX8XX_WDT_WRB_1HZ;
}
static int __abx80x_wdog_set_timeout(struct watchdog_device *wdog,
unsigned int timeout)
{
struct abx80x_priv *priv = watchdog_get_drvdata(wdog);
u8 val = ABX8XX_WDT_WDS | timeout_bits(timeout);
/*
* Writing any timeout to the WDT register resets the watchdog timer.
* Writing 0 disables it.
*/
return i2c_smbus_write_byte_data(priv->client, ABX8XX_REG_WDT, val);
}
static int abx80x_wdog_set_timeout(struct watchdog_device *wdog,
unsigned int new_timeout)
{
int err = 0;
if (watchdog_hw_running(wdog))
err = __abx80x_wdog_set_timeout(wdog, new_timeout);
if (err == 0)
wdog->timeout = new_timeout;
return err;
}
static int abx80x_wdog_ping(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
}
static int abx80x_wdog_start(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
}
static int abx80x_wdog_stop(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, 0);
}
static const struct watchdog_info abx80x_wdog_info = {
.identity = "abx80x watchdog",
.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE,
};
static const struct watchdog_ops abx80x_wdog_ops = {
.owner = THIS_MODULE,
.start = abx80x_wdog_start,
.stop = abx80x_wdog_stop,
.ping = abx80x_wdog_ping,
.set_timeout = abx80x_wdog_set_timeout,
};
static int abx80x_setup_watchdog(struct abx80x_priv *priv)
{
priv->wdog.parent = &priv->client->dev;
priv->wdog.ops = &abx80x_wdog_ops;
priv->wdog.info = &abx80x_wdog_info;
priv->wdog.min_timeout = 1;
priv->wdog.max_timeout = ABX8XX_WDT_MAX_TIME;
priv->wdog.timeout = ABX8XX_WDT_MAX_TIME;
watchdog_set_drvdata(&priv->wdog, priv);
return devm_watchdog_register_device(&priv->client->dev, &priv->wdog);
}
#else
static int abx80x_setup_watchdog(struct abx80x_priv *priv)
{
return 0;
}
#endif
static int abx80x_nvmem_xfer(struct abx80x_priv *priv, unsigned int offset,
void *val, size_t bytes, bool write)
{
int ret;
while (bytes) {
u8 extram, reg, len, lower, upper;
lower = FIELD_GET(NVMEM_ADDR_LOWER, offset);
upper = FIELD_GET(NVMEM_ADDR_UPPER, offset);
extram = FIELD_PREP(ABX8XX_EXTRAM_XADS, upper);
reg = ABX8XX_SRAM_BASE + lower;
len = min(lower + bytes, (size_t)ABX8XX_SRAM_WIN_SIZE) - lower;
len = min_t(u8, len, I2C_SMBUS_BLOCK_MAX);
ret = i2c_smbus_write_byte_data(priv->client, ABX8XX_REG_EXTRAM,
extram);
if (ret)
return ret;
if (write)
ret = i2c_smbus_write_i2c_block_data(priv->client, reg,
len, val);
else
ret = i2c_smbus_read_i2c_block_data(priv->client, reg,
len, val);
if (ret)
return ret;
offset += len;
val += len;
bytes -= len;
}
return 0;
}
static int abx80x_nvmem_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
return abx80x_nvmem_xfer(priv, offset, val, bytes, false);
}
static int abx80x_nvmem_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
return abx80x_nvmem_xfer(priv, offset, val, bytes, true);
}
static int abx80x_setup_nvmem(struct abx80x_priv *priv)
{
struct nvmem_config config = {
.type = NVMEM_TYPE_BATTERY_BACKED,
.reg_read = abx80x_nvmem_read,
.reg_write = abx80x_nvmem_write,
.size = ABX8XX_RAM_SIZE,
.priv = priv,
};
return devm_rtc_nvmem_register(priv->rtc, &config);
}
static const struct i2c_device_id abx80x_id[] = {
{ "abx80x", ABX80X },
{ "ab0801", AB0801 },
{ "ab0803", AB0803 },
{ "ab0804", AB0804 },
{ "ab0805", AB0805 },
{ "ab1801", AB1801 },
{ "ab1803", AB1803 },
{ "ab1804", AB1804 },
{ "ab1805", AB1805 },
{ "rv1805", RV1805 },
{ }
};
MODULE_DEVICE_TABLE(i2c, abx80x_id);
static int abx80x_probe(struct i2c_client *client)
{
struct device_node *np = client->dev.of_node;
struct abx80x_priv *priv;
int i, data, err, trickle_cfg = -EINVAL;
char buf[7];
const struct i2c_device_id *id = i2c_match_id(abx80x_id, client);
unsigned int part = id->driver_data;
unsigned int partnumber;
unsigned int majrev, minrev;
unsigned int lot;
unsigned int wafer;
unsigned int uid;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ID0,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to read partnumber\n");
return -EIO;
}
partnumber = (buf[0] << 8) | buf[1];
majrev = buf[2] >> 3;
minrev = buf[2] & 0x7;
lot = ((buf[4] & 0x80) << 2) | ((buf[6] & 0x80) << 1) | buf[3];
uid = ((buf[4] & 0x7f) << 8) | buf[5];
wafer = (buf[6] & 0x7c) >> 2;
dev_info(&client->dev, "model %04x, revision %u.%u, lot %x, wafer %x, uid %x\n",
partnumber, majrev, minrev, lot, wafer, uid);
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL1);
if (data < 0) {
dev_err(&client->dev, "Unable to read control register\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1,
((data & ~(ABX8XX_CTRL_12_24 |
ABX8XX_CTRL_ARST)) |
ABX8XX_CTRL_WRITE));
if (err < 0) {
dev_err(&client->dev, "Unable to write control register\n");
return -EIO;
}
/* Configure RV1805 specifics */
if (part == RV1805) {
/*
* Avoid accidentally entering test mode. This can happen
* on the RV1805 in case the reserved bit 5 in control2
* register is set. RV-1805-C3 datasheet indicates that
* the bit should be cleared in section 11h - Control2.
*/
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL2);
if (data < 0) {
dev_err(&client->dev,
"Unable to read control2 register\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL2,
data & ~ABX8XX_CTRL2_RSVD);
if (err < 0) {
dev_err(&client->dev,
"Unable to write control2 register\n");
return -EIO;
}
/*
* Avoid extra power leakage. The RV1805 uses smaller
* 10pin package and the EXTI input is not present.
* Disable it to avoid leakage.
*/
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_OUT_CTRL);
if (data < 0) {
dev_err(&client->dev,
"Unable to read output control register\n");
return -EIO;
}
/*
* Write the configuration key register to enable access to
* the config2 register
*/
if (abx80x_write_config_key(client, ABX8XX_CFG_KEY_MISC) < 0)
return -EIO;
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OUT_CTRL,
data | ABX8XX_OUT_CTRL_EXDS);
if (err < 0) {
dev_err(&client->dev,
"Unable to write output control register\n");
return -EIO;
}
}
/* part autodetection */
if (part == ABX80X) {
for (i = 0; abx80x_caps[i].pn; i++)
if (partnumber == abx80x_caps[i].pn)
break;
if (abx80x_caps[i].pn == 0) {
dev_err(&client->dev, "Unknown part: %04x\n",
partnumber);
return -EINVAL;
}
part = i;
}
if (partnumber != abx80x_caps[part].pn) {
dev_err(&client->dev, "partnumber mismatch %04x != %04x\n",
partnumber, abx80x_caps[part].pn);
return -EINVAL;
}
if (np && abx80x_caps[part].has_tc)
trickle_cfg = abx80x_dt_trickle_cfg(client);
if (trickle_cfg > 0) {
dev_info(&client->dev, "Enabling trickle charger: %02x\n",
trickle_cfg);
abx80x_enable_trickle_charger(client, trickle_cfg);
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CD_TIMER_CTL,
BIT(2));
if (err)
return err;
priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
priv->rtc = devm_rtc_allocate_device(&client->dev);
if (IS_ERR(priv->rtc))
return PTR_ERR(priv->rtc);
priv->rtc->ops = &abx80x_rtc_ops;
priv->client = client;
i2c_set_clientdata(client, priv);
if (abx80x_caps[part].has_wdog) {
err = abx80x_setup_watchdog(priv);
if (err)
return err;
}
err = abx80x_setup_nvmem(priv);
if (err)
return err;
if (client->irq > 0) {
dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
abx80x_handle_irq,
IRQF_SHARED | IRQF_ONESHOT,
"abx8xx",
client);
if (err) {
dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
client->irq = 0;
}
}
err = rtc_add_group(priv->rtc, &rtc_calib_attr_group);
if (err) {
dev_err(&client->dev, "Failed to create sysfs group: %d\n",
err);
return err;
}
return devm_rtc_register_device(priv->rtc);
}
#ifdef CONFIG_OF
static const struct of_device_id abx80x_of_match[] = {
{
.compatible = "abracon,abx80x",
.data = (void *)ABX80X
},
{
.compatible = "abracon,ab0801",
.data = (void *)AB0801
},
{
.compatible = "abracon,ab0803",
.data = (void *)AB0803
},
{
.compatible = "abracon,ab0804",
.data = (void *)AB0804
},
{
.compatible = "abracon,ab0805",
.data = (void *)AB0805
},
{
.compatible = "abracon,ab1801",
.data = (void *)AB1801
},
{
.compatible = "abracon,ab1803",
.data = (void *)AB1803
},
{
.compatible = "abracon,ab1804",
.data = (void *)AB1804
},
{
.compatible = "abracon,ab1805",
.data = (void *)AB1805
},
{
.compatible = "microcrystal,rv1805",
.data = (void *)RV1805
},
{ }
};
MODULE_DEVICE_TABLE(of, abx80x_of_match);
#endif
static struct i2c_driver abx80x_driver = {
.driver = {
.name = "rtc-abx80x",
.of_match_table = of_match_ptr(abx80x_of_match),
},
.probe_new = abx80x_probe,
.id_table = abx80x_id,
};
module_i2c_driver(abx80x_driver);
MODULE_AUTHOR("Philippe De Muyter <phdm@macqel.be>");
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
MODULE_DESCRIPTION("Abracon ABX80X RTC driver");
MODULE_LICENSE("GPL v2");