linux-stable/drivers/spi/spi-imx.c
Linus Torvalds d0f3ad23cf spi: Updates for v6.2
A busy enough release, but not for the core which has only seen very
 small updates.  The biggest addition is the readdition of support for
 detailed configuration of the timings around chip selects.  That had
 been removed for lack of use but there's been applications found for it
 on Atmel systems.  Otherwise the updates are mostly feature additions
 and cleanups to existing drivers.
 
  - Provide a helper for getting device match data in a way that
    abstracts away which firmware interface is being used.
  - Re-add the spi_set_cs_timing() API for detailed configuration of the
    timing around chip select and support it on Atmel.
  - Support for MediaTek MT7986, Microchip PCI1xxxx, Nuvoton WPCM450 FIU
    and Socionext F_OSPI.
 
 There's a straightforward add/add conflict with the rpmsg tree in the
 xilinx firmware code (both trees got new users of the firmware added
 each needing new firmware<->kernel ioctls).
 
 There's a cross tree merge with I2C in order to use the new
 i2c_client_get_device_id() helper in some I2C attached SPI controllers
 as part of their conversion to I2C's probe_new() API.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmOXIt8ACgkQJNaLcl1U
 h9Alrwf9F6mgj3eaDbhPH2lJ+zZRDJrdrMxT1US1tWixCMEZilntDXVecJA+/htp
 /tJ0InGXsyr+6p9lXsFGQZGuaSIzKh0h2OW3JCakPGfp6HvA8+qXqHYSLKzIXtYU
 /lk+kR+H6TGG+pjFtwkNnbCY/pYAlOtdjdmfui68VSsqWYX1W1kJDhDEkpUZePUx
 Bc9wGgGByL0ZEHMQ/O6d8Nc/JzfTQPFuPB9ZHpIHFuPuAnjDQx+veaWejpVawy+D
 8crMM7OgGpHy1hENSN786039QvNbWvVucPyVwJfU4SDhrT6oNNmEA/RF/DqTt472
 8cbNG5H5bSR0Youv9ofxdP9bAOHhtg==
 =eJDv
 -----END PGP SIGNATURE-----

Merge tag 'spi-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "A busy enough release, but not for the core which has only seen very
  small updates. The biggest addition is the readdition of support for
  detailed configuration of the timings around chip selects. That had
  been removed for lack of use but there's been applications found for
  it on Atmel systems. Otherwise the updates are mostly feature
  additions and cleanups to existing drivers.

  Summary:

   - Provide a helper for getting device match data in a way that
     abstracts away which firmware interface is being used.

   - Re-add the spi_set_cs_timing() API for detailed configuration of
     the timing around chip select and support it on Atmel.

   - Support for MediaTek MT7986, Microchip PCI1xxxx, Nuvoton WPCM450
     FIU and Socionext F_OSPI"

* tag 'spi-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (66 commits)
  spi: dt-bindings: Convert Synquacer SPI to DT schema
  spi: spi-gpio: Don't set MOSI as an input if not 3WIRE mode
  spi: spi-mtk-nor: Add recovery mechanism for dma read timeout
  spi: spi-fsl-lpspi: add num-cs binding for lpspi
  spi: spi-fsl-lpspi: support multiple cs for lpspi
  spi: mtk-snfi: Add snfi support for MT7986 IC
  spi: spidev: mask SPI_CS_HIGH in SPI_IOC_RD_MODE
  spi: cadence-quadspi: Add minimum operable clock rate warning to baudrate divisor calculation
  spi: microchip: pci1xxxx: Add suspend and resume support for PCI1XXXX SPI driver
  spi: dt-bindings: nuvoton,wpcm450-fiu: Fix warning in example (missing reg property)
  spi: dt-bindings: nuvoton,wpcm450-fiu: Fix error in example (bogus include)
  spi: mediatek: Enable irq when pdata is ready
  spi: spi-mtk-nor: Unify write buffer on/off
  spi: intel: Add support for SFDP opcode
  spi: intel: Take possible chip address into account in intel_spi_read/write_reg()
  spi: intel: Implement adjust_op_size()
  spi: intel: Use ->replacement_op in intel_spi_hw_cycle()
  spi: cadence: Drop obsolete dependency on COMPILE_TEST
  spi: Add Nuvoton WPCM450 Flash Interface Unit (FIU) bindings
  spi: wpcm-fiu: Add direct map support
  ...
2022-12-13 12:54:31 -08:00

1942 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0+
// Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
// Copyright (C) 2008 Juergen Beisert
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/property.h>
#include <linux/dma/imx-dma.h>
#define DRIVER_NAME "spi_imx"
static bool use_dma = true;
module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
/* define polling limits */
static unsigned int polling_limit_us = 30;
module_param(polling_limit_us, uint, 0664);
MODULE_PARM_DESC(polling_limit_us,
"time in us to run a transfer in polling mode\n");
#define MXC_RPM_TIMEOUT 2000 /* 2000ms */
#define MXC_CSPIRXDATA 0x00
#define MXC_CSPITXDATA 0x04
#define MXC_CSPICTRL 0x08
#define MXC_CSPIINT 0x0c
#define MXC_RESET 0x1c
/* generic defines to abstract from the different register layouts */
#define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
#define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
#define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
/* The maximum bytes that a sdma BD can transfer. */
#define MAX_SDMA_BD_BYTES (1 << 15)
#define MX51_ECSPI_CTRL_MAX_BURST 512
/* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
#define MX53_MAX_TRANSFER_BYTES 512
enum spi_imx_devtype {
IMX1_CSPI,
IMX21_CSPI,
IMX27_CSPI,
IMX31_CSPI,
IMX35_CSPI, /* CSPI on all i.mx except above */
IMX51_ECSPI, /* ECSPI on i.mx51 */
IMX53_ECSPI, /* ECSPI on i.mx53 and later */
};
struct spi_imx_data;
struct spi_imx_devtype_data {
void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
void (*trigger)(struct spi_imx_data *spi_imx);
int (*rx_available)(struct spi_imx_data *spi_imx);
void (*reset)(struct spi_imx_data *spi_imx);
void (*setup_wml)(struct spi_imx_data *spi_imx);
void (*disable)(struct spi_imx_data *spi_imx);
bool has_dmamode;
bool has_slavemode;
unsigned int fifo_size;
bool dynamic_burst;
/*
* ERR009165 fixed or not:
* https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
*/
bool tx_glitch_fixed;
enum spi_imx_devtype devtype;
};
struct spi_imx_data {
struct spi_controller *controller;
struct device *dev;
struct completion xfer_done;
void __iomem *base;
unsigned long base_phys;
struct clk *clk_per;
struct clk *clk_ipg;
unsigned long spi_clk;
unsigned int spi_bus_clk;
unsigned int bits_per_word;
unsigned int spi_drctl;
unsigned int count, remainder;
void (*tx)(struct spi_imx_data *spi_imx);
void (*rx)(struct spi_imx_data *spi_imx);
void *rx_buf;
const void *tx_buf;
unsigned int txfifo; /* number of words pushed in tx FIFO */
unsigned int dynamic_burst;
bool rx_only;
/* Slave mode */
bool slave_mode;
bool slave_aborted;
unsigned int slave_burst;
/* DMA */
bool usedma;
u32 wml;
struct completion dma_rx_completion;
struct completion dma_tx_completion;
const struct spi_imx_devtype_data *devtype_data;
};
static inline int is_imx27_cspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX27_CSPI;
}
static inline int is_imx35_cspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX35_CSPI;
}
static inline int is_imx51_ecspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX51_ECSPI;
}
static inline int is_imx53_ecspi(struct spi_imx_data *d)
{
return d->devtype_data->devtype == IMX53_ECSPI;
}
#define MXC_SPI_BUF_RX(type) \
static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
{ \
unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
\
if (spi_imx->rx_buf) { \
*(type *)spi_imx->rx_buf = val; \
spi_imx->rx_buf += sizeof(type); \
} \
\
spi_imx->remainder -= sizeof(type); \
}
#define MXC_SPI_BUF_TX(type) \
static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
{ \
type val = 0; \
\
if (spi_imx->tx_buf) { \
val = *(type *)spi_imx->tx_buf; \
spi_imx->tx_buf += sizeof(type); \
} \
\
spi_imx->count -= sizeof(type); \
\
writel(val, spi_imx->base + MXC_CSPITXDATA); \
}
MXC_SPI_BUF_RX(u8)
MXC_SPI_BUF_TX(u8)
MXC_SPI_BUF_RX(u16)
MXC_SPI_BUF_TX(u16)
MXC_SPI_BUF_RX(u32)
MXC_SPI_BUF_TX(u32)
/* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
* (which is currently not the case in this driver)
*/
static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1024};
/* MX21, MX27 */
static unsigned int spi_imx_clkdiv_1(unsigned int fin,
unsigned int fspi, unsigned int max, unsigned int *fres)
{
int i;
for (i = 2; i < max; i++)
if (fspi * mxc_clkdivs[i] >= fin)
break;
*fres = fin / mxc_clkdivs[i];
return i;
}
/* MX1, MX31, MX35, MX51 CSPI */
static unsigned int spi_imx_clkdiv_2(unsigned int fin,
unsigned int fspi, unsigned int *fres)
{
int i, div = 4;
for (i = 0; i < 7; i++) {
if (fspi * div >= fin)
goto out;
div <<= 1;
}
out:
*fres = fin / div;
return i;
}
static int spi_imx_bytes_per_word(const int bits_per_word)
{
if (bits_per_word <= 8)
return 1;
else if (bits_per_word <= 16)
return 2;
else
return 4;
}
static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
if (!use_dma || controller->fallback)
return false;
if (!controller->dma_rx)
return false;
if (spi_imx->slave_mode)
return false;
if (transfer->len < spi_imx->devtype_data->fifo_size)
return false;
spi_imx->dynamic_burst = 0;
return true;
}
#define MX51_ECSPI_CTRL 0x08
#define MX51_ECSPI_CTRL_ENABLE (1 << 0)
#define MX51_ECSPI_CTRL_XCH (1 << 2)
#define MX51_ECSPI_CTRL_SMC (1 << 3)
#define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
#define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
#define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
#define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
#define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18)
#define MX51_ECSPI_CTRL_BL_OFFSET 20
#define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
#define MX51_ECSPI_CONFIG 0x0c
#define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0))
#define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4))
#define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8))
#define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12))
#define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20))
#define MX51_ECSPI_INT 0x10
#define MX51_ECSPI_INT_TEEN (1 << 0)
#define MX51_ECSPI_INT_RREN (1 << 3)
#define MX51_ECSPI_INT_RDREN (1 << 4)
#define MX51_ECSPI_DMA 0x14
#define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
#define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
#define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
#define MX51_ECSPI_DMA_TEDEN (1 << 7)
#define MX51_ECSPI_DMA_RXDEN (1 << 23)
#define MX51_ECSPI_DMA_RXTDEN (1 << 31)
#define MX51_ECSPI_STAT 0x18
#define MX51_ECSPI_STAT_RR (1 << 3)
#define MX51_ECSPI_TESTREG 0x20
#define MX51_ECSPI_TESTREG_LBC BIT(31)
static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
{
unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
if (spi_imx->rx_buf) {
#ifdef __LITTLE_ENDIAN
unsigned int bytes_per_word;
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (bytes_per_word == 1)
swab32s(&val);
else if (bytes_per_word == 2)
swahw32s(&val);
#endif
*(u32 *)spi_imx->rx_buf = val;
spi_imx->rx_buf += sizeof(u32);
}
spi_imx->remainder -= sizeof(u32);
}
static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
{
int unaligned;
u32 val;
unaligned = spi_imx->remainder % 4;
if (!unaligned) {
spi_imx_buf_rx_swap_u32(spi_imx);
return;
}
if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
spi_imx_buf_rx_u16(spi_imx);
return;
}
val = readl(spi_imx->base + MXC_CSPIRXDATA);
while (unaligned--) {
if (spi_imx->rx_buf) {
*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
spi_imx->rx_buf++;
}
spi_imx->remainder--;
}
}
static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
{
u32 val = 0;
#ifdef __LITTLE_ENDIAN
unsigned int bytes_per_word;
#endif
if (spi_imx->tx_buf) {
val = *(u32 *)spi_imx->tx_buf;
spi_imx->tx_buf += sizeof(u32);
}
spi_imx->count -= sizeof(u32);
#ifdef __LITTLE_ENDIAN
bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
if (bytes_per_word == 1)
swab32s(&val);
else if (bytes_per_word == 2)
swahw32s(&val);
#endif
writel(val, spi_imx->base + MXC_CSPITXDATA);
}
static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
{
int unaligned;
u32 val = 0;
unaligned = spi_imx->count % 4;
if (!unaligned) {
spi_imx_buf_tx_swap_u32(spi_imx);
return;
}
if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
spi_imx_buf_tx_u16(spi_imx);
return;
}
while (unaligned--) {
if (spi_imx->tx_buf) {
val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
spi_imx->tx_buf++;
}
spi_imx->count--;
}
writel(val, spi_imx->base + MXC_CSPITXDATA);
}
static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
{
u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
if (spi_imx->rx_buf) {
int n_bytes = spi_imx->slave_burst % sizeof(val);
if (!n_bytes)
n_bytes = sizeof(val);
memcpy(spi_imx->rx_buf,
((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
spi_imx->rx_buf += n_bytes;
spi_imx->slave_burst -= n_bytes;
}
spi_imx->remainder -= sizeof(u32);
}
static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
{
u32 val = 0;
int n_bytes = spi_imx->count % sizeof(val);
if (!n_bytes)
n_bytes = sizeof(val);
if (spi_imx->tx_buf) {
memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
spi_imx->tx_buf, n_bytes);
val = cpu_to_be32(val);
spi_imx->tx_buf += n_bytes;
}
spi_imx->count -= n_bytes;
writel(val, spi_imx->base + MXC_CSPITXDATA);
}
/* MX51 eCSPI */
static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
unsigned int fspi, unsigned int *fres)
{
/*
* there are two 4-bit dividers, the pre-divider divides by
* $pre, the post-divider by 2^$post
*/
unsigned int pre, post;
unsigned int fin = spi_imx->spi_clk;
fspi = min(fspi, fin);
post = fls(fin) - fls(fspi);
if (fin > fspi << post)
post++;
/* now we have: (fin <= fspi << post) with post being minimal */
post = max(4U, post) - 4;
if (unlikely(post > 0xf)) {
dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
fspi, fin);
return 0xff;
}
pre = DIV_ROUND_UP(fin, fspi << post) - 1;
dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
__func__, fin, fspi, post, pre);
/* Resulting frequency for the SCLK line. */
*fres = (fin / (pre + 1)) >> post;
return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
}
static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX51_ECSPI_INT_TEEN;
if (enable & MXC_INT_RR)
val |= MX51_ECSPI_INT_RREN;
if (enable & MXC_INT_RDR)
val |= MX51_ECSPI_INT_RDREN;
writel(val, spi_imx->base + MX51_ECSPI_INT);
}
static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
{
u32 reg;
reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
reg |= MX51_ECSPI_CTRL_XCH;
writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
}
static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
{
u32 ctrl;
ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
}
static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
struct spi_device *spi = msg->spi;
struct spi_transfer *xfer;
u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
u32 min_speed_hz = ~0U;
u32 testreg, delay;
u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
u32 current_cfg = cfg;
/* set Master or Slave mode */
if (spi_imx->slave_mode)
ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
else
ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
/*
* Enable SPI_RDY handling (falling edge/level triggered).
*/
if (spi->mode & SPI_READY)
ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
/* set chip select to use */
ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
/*
* The ctrl register must be written first, with the EN bit set other
* registers must not be written to.
*/
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
if (spi->mode & SPI_LOOP)
testreg |= MX51_ECSPI_TESTREG_LBC;
else
testreg &= ~MX51_ECSPI_TESTREG_LBC;
writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
/*
* eCSPI burst completion by Chip Select signal in Slave mode
* is not functional for imx53 Soc, config SPI burst completed when
* BURST_LENGTH + 1 bits are received
*/
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
else
cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
if (spi->mode & SPI_CPOL) {
cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
} else {
cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
}
if (spi->mode & SPI_CS_HIGH)
cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
else
cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
if (cfg == current_cfg)
return 0;
writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
/*
* Wait until the changes in the configuration register CONFIGREG
* propagate into the hardware. It takes exactly one tick of the
* SCLK clock, but we will wait two SCLK clock just to be sure. The
* effect of the delay it takes for the hardware to apply changes
* is noticable if the SCLK clock run very slow. In such a case, if
* the polarity of SCLK should be inverted, the GPIO ChipSelect might
* be asserted before the SCLK polarity changes, which would disrupt
* the SPI communication as the device on the other end would consider
* the change of SCLK polarity as a clock tick already.
*
* Because spi_imx->spi_bus_clk is only set in prepare_message
* callback, iterate over all the transfers in spi_message, find the
* one with lowest bus frequency, and use that bus frequency for the
* delay calculation. In case all transfers have speed_hz == 0, then
* min_speed_hz is ~0 and the resulting delay is zero.
*/
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (!xfer->speed_hz)
continue;
min_speed_hz = min(xfer->speed_hz, min_speed_hz);
}
delay = (2 * 1000000) / min_speed_hz;
if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
udelay(delay);
else /* SCLK is _very_ slow */
usleep_range(delay, delay + 10);
return 0;
}
static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
struct spi_device *spi)
{
bool cpha = (spi->mode & SPI_CPHA);
bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
/* Flip cpha logical value iff flip_cpha */
cpha ^= flip_cpha;
if (cpha)
cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
else
cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
}
static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi)
{
u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
u32 clk;
/* Clear BL field and set the right value */
ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
ctrl |= (spi_imx->slave_burst * 8 - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
else
ctrl |= (spi_imx->bits_per_word - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
/* set clock speed */
ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
spi_imx->spi_bus_clk = clk;
mx51_configure_cpha(spi_imx, spi);
/*
* ERR009165: work in XHC mode instead of SMC as PIO on the chips
* before i.mx6ul.
*/
if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
ctrl |= MX51_ECSPI_CTRL_SMC;
else
ctrl &= ~MX51_ECSPI_CTRL_SMC;
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
return 0;
}
static void mx51_setup_wml(struct spi_imx_data *spi_imx)
{
u32 tx_wml = 0;
if (spi_imx->devtype_data->tx_glitch_fixed)
tx_wml = spi_imx->wml;
/*
* Configure the DMA register: setup the watermark
* and enable DMA request.
*/
writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
MX51_ECSPI_DMA_TX_WML(tx_wml) |
MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
}
static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
}
static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
{
/* drain receive buffer */
while (mx51_ecspi_rx_available(spi_imx))
readl(spi_imx->base + MXC_CSPIRXDATA);
}
#define MX31_INTREG_TEEN (1 << 0)
#define MX31_INTREG_RREN (1 << 3)
#define MX31_CSPICTRL_ENABLE (1 << 0)
#define MX31_CSPICTRL_MASTER (1 << 1)
#define MX31_CSPICTRL_XCH (1 << 2)
#define MX31_CSPICTRL_SMC (1 << 3)
#define MX31_CSPICTRL_POL (1 << 4)
#define MX31_CSPICTRL_PHA (1 << 5)
#define MX31_CSPICTRL_SSCTL (1 << 6)
#define MX31_CSPICTRL_SSPOL (1 << 7)
#define MX31_CSPICTRL_BC_SHIFT 8
#define MX35_CSPICTRL_BL_SHIFT 20
#define MX31_CSPICTRL_CS_SHIFT 24
#define MX35_CSPICTRL_CS_SHIFT 12
#define MX31_CSPICTRL_DR_SHIFT 16
#define MX31_CSPI_DMAREG 0x10
#define MX31_DMAREG_RH_DEN (1<<4)
#define MX31_DMAREG_TH_DEN (1<<1)
#define MX31_CSPISTATUS 0x14
#define MX31_STATUS_RR (1 << 3)
#define MX31_CSPI_TESTREG 0x1C
#define MX31_TEST_LBC (1 << 14)
/* These functions also work for the i.MX35, but be aware that
* the i.MX35 has a slightly different register layout for bits
* we do not use here.
*/
static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX31_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX31_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx31_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX31_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx31_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi)
{
unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
MX31_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
if (is_imx35_cspi(spi_imx)) {
reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
reg |= MX31_CSPICTRL_SSCTL;
} else {
reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
}
if (spi->mode & SPI_CPHA)
reg |= MX31_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX31_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX31_CSPICTRL_SSPOL;
if (!spi->cs_gpiod)
reg |= (spi->chip_select) <<
(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
MX31_CSPICTRL_CS_SHIFT);
if (spi_imx->usedma)
reg |= MX31_CSPICTRL_SMC;
writel(reg, spi_imx->base + MXC_CSPICTRL);
reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
if (spi->mode & SPI_LOOP)
reg |= MX31_TEST_LBC;
else
reg &= ~MX31_TEST_LBC;
writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
if (spi_imx->usedma) {
/*
* configure DMA requests when RXFIFO is half full and
* when TXFIFO is half empty
*/
writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
spi_imx->base + MX31_CSPI_DMAREG);
}
return 0;
}
static int mx31_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
}
static void mx31_reset(struct spi_imx_data *spi_imx)
{
/* drain receive buffer */
while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
readl(spi_imx->base + MXC_CSPIRXDATA);
}
#define MX21_INTREG_RR (1 << 4)
#define MX21_INTREG_TEEN (1 << 9)
#define MX21_INTREG_RREN (1 << 13)
#define MX21_CSPICTRL_POL (1 << 5)
#define MX21_CSPICTRL_PHA (1 << 6)
#define MX21_CSPICTRL_SSPOL (1 << 8)
#define MX21_CSPICTRL_XCH (1 << 9)
#define MX21_CSPICTRL_ENABLE (1 << 10)
#define MX21_CSPICTRL_MASTER (1 << 11)
#define MX21_CSPICTRL_DR_SHIFT 14
#define MX21_CSPICTRL_CS_SHIFT 19
static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX21_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX21_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx21_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX21_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx21_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi)
{
unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
unsigned int clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
<< MX21_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= spi_imx->bits_per_word - 1;
if (spi->mode & SPI_CPHA)
reg |= MX21_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX21_CSPICTRL_POL;
if (spi->mode & SPI_CS_HIGH)
reg |= MX21_CSPICTRL_SSPOL;
if (!spi->cs_gpiod)
reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
writel(reg, spi_imx->base + MXC_CSPICTRL);
return 0;
}
static int mx21_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
}
static void mx21_reset(struct spi_imx_data *spi_imx)
{
writel(1, spi_imx->base + MXC_RESET);
}
#define MX1_INTREG_RR (1 << 3)
#define MX1_INTREG_TEEN (1 << 8)
#define MX1_INTREG_RREN (1 << 11)
#define MX1_CSPICTRL_POL (1 << 4)
#define MX1_CSPICTRL_PHA (1 << 5)
#define MX1_CSPICTRL_XCH (1 << 8)
#define MX1_CSPICTRL_ENABLE (1 << 9)
#define MX1_CSPICTRL_MASTER (1 << 10)
#define MX1_CSPICTRL_DR_SHIFT 13
static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
{
unsigned int val = 0;
if (enable & MXC_INT_TE)
val |= MX1_INTREG_TEEN;
if (enable & MXC_INT_RR)
val |= MX1_INTREG_RREN;
writel(val, spi_imx->base + MXC_CSPIINT);
}
static void mx1_trigger(struct spi_imx_data *spi_imx)
{
unsigned int reg;
reg = readl(spi_imx->base + MXC_CSPICTRL);
reg |= MX1_CSPICTRL_XCH;
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx1_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi)
{
unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
MX1_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= spi_imx->bits_per_word - 1;
if (spi->mode & SPI_CPHA)
reg |= MX1_CSPICTRL_PHA;
if (spi->mode & SPI_CPOL)
reg |= MX1_CSPICTRL_POL;
writel(reg, spi_imx->base + MXC_CSPICTRL);
return 0;
}
static int mx1_rx_available(struct spi_imx_data *spi_imx)
{
return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
}
static void mx1_reset(struct spi_imx_data *spi_imx)
{
writel(1, spi_imx->base + MXC_RESET);
}
static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
.intctrl = mx1_intctrl,
.prepare_message = mx1_prepare_message,
.prepare_transfer = mx1_prepare_transfer,
.trigger = mx1_trigger,
.rx_available = mx1_rx_available,
.reset = mx1_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX1_CSPI,
};
static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
.intctrl = mx21_intctrl,
.prepare_message = mx21_prepare_message,
.prepare_transfer = mx21_prepare_transfer,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX21_CSPI,
};
static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
/* i.mx27 cspi shares the functions with i.mx21 one */
.intctrl = mx21_intctrl,
.prepare_message = mx21_prepare_message,
.prepare_transfer = mx21_prepare_transfer,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX27_CSPI,
};
static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
.intctrl = mx31_intctrl,
.prepare_message = mx31_prepare_message,
.prepare_transfer = mx31_prepare_transfer,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
.fifo_size = 8,
.has_dmamode = false,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX31_CSPI,
};
static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
/* i.mx35 and later cspi shares the functions with i.mx31 one */
.intctrl = mx31_intctrl,
.prepare_message = mx31_prepare_message,
.prepare_transfer = mx31_prepare_transfer,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
.fifo_size = 8,
.has_dmamode = true,
.dynamic_burst = false,
.has_slavemode = false,
.devtype = IMX35_CSPI,
};
static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.prepare_message = mx51_ecspi_prepare_message,
.prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
.setup_wml = mx51_setup_wml,
.fifo_size = 64,
.has_dmamode = true,
.dynamic_burst = true,
.has_slavemode = true,
.disable = mx51_ecspi_disable,
.devtype = IMX51_ECSPI,
};
static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.prepare_message = mx51_ecspi_prepare_message,
.prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
.fifo_size = 64,
.has_dmamode = true,
.has_slavemode = true,
.disable = mx51_ecspi_disable,
.devtype = IMX53_ECSPI,
};
static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.prepare_message = mx51_ecspi_prepare_message,
.prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
.setup_wml = mx51_setup_wml,
.fifo_size = 64,
.has_dmamode = true,
.dynamic_burst = true,
.has_slavemode = true,
.tx_glitch_fixed = true,
.disable = mx51_ecspi_disable,
.devtype = IMX51_ECSPI,
};
static const struct of_device_id spi_imx_dt_ids[] = {
{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
{
u32 ctrl;
ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
}
static void spi_imx_push(struct spi_imx_data *spi_imx)
{
unsigned int burst_len;
/*
* Reload the FIFO when the remaining bytes to be transferred in the
* current burst is 0. This only applies when bits_per_word is a
* multiple of 8.
*/
if (!spi_imx->remainder) {
if (spi_imx->dynamic_burst) {
/* We need to deal unaligned data first */
burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
if (!burst_len)
burst_len = MX51_ECSPI_CTRL_MAX_BURST;
spi_imx_set_burst_len(spi_imx, burst_len * 8);
spi_imx->remainder = burst_len;
} else {
spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
}
}
while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
if (!spi_imx->count)
break;
if (spi_imx->dynamic_burst &&
spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
break;
spi_imx->tx(spi_imx);
spi_imx->txfifo++;
}
if (!spi_imx->slave_mode)
spi_imx->devtype_data->trigger(spi_imx);
}
static irqreturn_t spi_imx_isr(int irq, void *dev_id)
{
struct spi_imx_data *spi_imx = dev_id;
while (spi_imx->txfifo &&
spi_imx->devtype_data->rx_available(spi_imx)) {
spi_imx->rx(spi_imx);
spi_imx->txfifo--;
}
if (spi_imx->count) {
spi_imx_push(spi_imx);
return IRQ_HANDLED;
}
if (spi_imx->txfifo) {
/* No data left to push, but still waiting for rx data,
* enable receive data available interrupt.
*/
spi_imx->devtype_data->intctrl(
spi_imx, MXC_INT_RR);
return IRQ_HANDLED;
}
spi_imx->devtype_data->intctrl(spi_imx, 0);
complete(&spi_imx->xfer_done);
return IRQ_HANDLED;
}
static int spi_imx_dma_configure(struct spi_controller *controller)
{
int ret;
enum dma_slave_buswidth buswidth;
struct dma_slave_config rx = {}, tx = {};
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
case 4:
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
case 2:
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 1:
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
default:
return -EINVAL;
}
tx.direction = DMA_MEM_TO_DEV;
tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
tx.dst_addr_width = buswidth;
tx.dst_maxburst = spi_imx->wml;
ret = dmaengine_slave_config(controller->dma_tx, &tx);
if (ret) {
dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
return ret;
}
rx.direction = DMA_DEV_TO_MEM;
rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
rx.src_addr_width = buswidth;
rx.src_maxburst = spi_imx->wml;
ret = dmaengine_slave_config(controller->dma_rx, &rx);
if (ret) {
dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
return ret;
}
return 0;
}
static int spi_imx_setupxfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
if (!t)
return 0;
if (!t->speed_hz) {
if (!spi->max_speed_hz) {
dev_err(&spi->dev, "no speed_hz provided!\n");
return -EINVAL;
}
dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
spi_imx->spi_bus_clk = spi->max_speed_hz;
} else
spi_imx->spi_bus_clk = t->speed_hz;
spi_imx->bits_per_word = t->bits_per_word;
/*
* Initialize the functions for transfer. To transfer non byte-aligned
* words, we have to use multiple word-size bursts, we can't use
* dynamic_burst in that case.
*/
if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
!(spi->mode & SPI_CS_WORD) &&
(spi_imx->bits_per_word == 8 ||
spi_imx->bits_per_word == 16 ||
spi_imx->bits_per_word == 32)) {
spi_imx->rx = spi_imx_buf_rx_swap;
spi_imx->tx = spi_imx_buf_tx_swap;
spi_imx->dynamic_burst = 1;
} else {
if (spi_imx->bits_per_word <= 8) {
spi_imx->rx = spi_imx_buf_rx_u8;
spi_imx->tx = spi_imx_buf_tx_u8;
} else if (spi_imx->bits_per_word <= 16) {
spi_imx->rx = spi_imx_buf_rx_u16;
spi_imx->tx = spi_imx_buf_tx_u16;
} else {
spi_imx->rx = spi_imx_buf_rx_u32;
spi_imx->tx = spi_imx_buf_tx_u32;
}
spi_imx->dynamic_burst = 0;
}
if (spi_imx_can_dma(spi_imx->controller, spi, t))
spi_imx->usedma = true;
else
spi_imx->usedma = false;
spi_imx->rx_only = ((t->tx_buf == NULL)
|| (t->tx_buf == spi->controller->dummy_tx));
if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
spi_imx->rx = mx53_ecspi_rx_slave;
spi_imx->tx = mx53_ecspi_tx_slave;
spi_imx->slave_burst = t->len;
}
spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
return 0;
}
static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
{
struct spi_controller *controller = spi_imx->controller;
if (controller->dma_rx) {
dma_release_channel(controller->dma_rx);
controller->dma_rx = NULL;
}
if (controller->dma_tx) {
dma_release_channel(controller->dma_tx);
controller->dma_tx = NULL;
}
}
static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
struct spi_controller *controller)
{
int ret;
spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
/* Prepare for TX DMA: */
controller->dma_tx = dma_request_chan(dev, "tx");
if (IS_ERR(controller->dma_tx)) {
ret = PTR_ERR(controller->dma_tx);
dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
controller->dma_tx = NULL;
goto err;
}
/* Prepare for RX : */
controller->dma_rx = dma_request_chan(dev, "rx");
if (IS_ERR(controller->dma_rx)) {
ret = PTR_ERR(controller->dma_rx);
dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
controller->dma_rx = NULL;
goto err;
}
init_completion(&spi_imx->dma_rx_completion);
init_completion(&spi_imx->dma_tx_completion);
controller->can_dma = spi_imx_can_dma;
controller->max_dma_len = MAX_SDMA_BD_BYTES;
spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
SPI_CONTROLLER_MUST_TX;
return 0;
err:
spi_imx_sdma_exit(spi_imx);
return ret;
}
static void spi_imx_dma_rx_callback(void *cookie)
{
struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
complete(&spi_imx->dma_rx_completion);
}
static void spi_imx_dma_tx_callback(void *cookie)
{
struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
complete(&spi_imx->dma_tx_completion);
}
static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
{
unsigned long timeout = 0;
/* Time with actual data transfer and CS change delay related to HW */
timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
/* Add extra second for scheduler related activities */
timeout += 1;
/* Double calculated timeout */
return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
}
static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
struct spi_transfer *transfer)
{
struct dma_async_tx_descriptor *desc_tx, *desc_rx;
unsigned long transfer_timeout;
unsigned long timeout;
struct spi_controller *controller = spi_imx->controller;
struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
unsigned int bytes_per_word, i;
int ret;
/* Get the right burst length from the last sg to ensure no tail data */
bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
break;
}
/* Use 1 as wml in case no available burst length got */
if (i == 0)
i = 1;
spi_imx->wml = i;
ret = spi_imx_dma_configure(controller);
if (ret)
goto dma_failure_no_start;
if (!spi_imx->devtype_data->setup_wml) {
dev_err(spi_imx->dev, "No setup_wml()?\n");
ret = -EINVAL;
goto dma_failure_no_start;
}
spi_imx->devtype_data->setup_wml(spi_imx);
/*
* The TX DMA setup starts the transfer, so make sure RX is configured
* before TX.
*/
desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
rx->sgl, rx->nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx) {
ret = -EINVAL;
goto dma_failure_no_start;
}
desc_rx->callback = spi_imx_dma_rx_callback;
desc_rx->callback_param = (void *)spi_imx;
dmaengine_submit(desc_rx);
reinit_completion(&spi_imx->dma_rx_completion);
dma_async_issue_pending(controller->dma_rx);
desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
tx->sgl, tx->nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
return -EINVAL;
}
desc_tx->callback = spi_imx_dma_tx_callback;
desc_tx->callback_param = (void *)spi_imx;
dmaengine_submit(desc_tx);
reinit_completion(&spi_imx->dma_tx_completion);
dma_async_issue_pending(controller->dma_tx);
transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
/* Wait SDMA to finish the data transfer.*/
timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
transfer_timeout);
if (!timeout) {
dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
return -ETIMEDOUT;
}
timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
transfer_timeout);
if (!timeout) {
dev_err(&controller->dev, "I/O Error in DMA RX\n");
spi_imx->devtype_data->reset(spi_imx);
dmaengine_terminate_all(controller->dma_rx);
return -ETIMEDOUT;
}
return 0;
/* fallback to pio */
dma_failure_no_start:
transfer->error |= SPI_TRANS_FAIL_NO_START;
return ret;
}
static int spi_imx_pio_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
unsigned long transfer_timeout;
unsigned long timeout;
spi_imx->tx_buf = transfer->tx_buf;
spi_imx->rx_buf = transfer->rx_buf;
spi_imx->count = transfer->len;
spi_imx->txfifo = 0;
spi_imx->remainder = 0;
reinit_completion(&spi_imx->xfer_done);
spi_imx_push(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
transfer_timeout);
if (!timeout) {
dev_err(&spi->dev, "I/O Error in PIO\n");
spi_imx->devtype_data->reset(spi_imx);
return -ETIMEDOUT;
}
return 0;
}
static int spi_imx_poll_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
unsigned long timeout;
spi_imx->tx_buf = transfer->tx_buf;
spi_imx->rx_buf = transfer->rx_buf;
spi_imx->count = transfer->len;
spi_imx->txfifo = 0;
spi_imx->remainder = 0;
/* fill in the fifo before timeout calculations if we are
* interrupted here, then the data is getting transferred by
* the HW while we are interrupted
*/
spi_imx_push(spi_imx);
timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
while (spi_imx->txfifo) {
/* RX */
while (spi_imx->txfifo &&
spi_imx->devtype_data->rx_available(spi_imx)) {
spi_imx->rx(spi_imx);
spi_imx->txfifo--;
}
/* TX */
if (spi_imx->count) {
spi_imx_push(spi_imx);
continue;
}
if (spi_imx->txfifo &&
time_after(jiffies, timeout)) {
dev_err_ratelimited(&spi->dev,
"timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
jiffies - timeout);
/* fall back to interrupt mode */
return spi_imx_pio_transfer(spi, transfer);
}
}
return 0;
}
static int spi_imx_pio_transfer_slave(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
int ret = 0;
if (is_imx53_ecspi(spi_imx) &&
transfer->len > MX53_MAX_TRANSFER_BYTES) {
dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
MX53_MAX_TRANSFER_BYTES);
return -EMSGSIZE;
}
spi_imx->tx_buf = transfer->tx_buf;
spi_imx->rx_buf = transfer->rx_buf;
spi_imx->count = transfer->len;
spi_imx->txfifo = 0;
spi_imx->remainder = 0;
reinit_completion(&spi_imx->xfer_done);
spi_imx->slave_aborted = false;
spi_imx_push(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
spi_imx->slave_aborted) {
dev_dbg(&spi->dev, "interrupted\n");
ret = -EINTR;
}
/* ecspi has a HW issue when works in Slave mode,
* after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
* ECSPI_TXDATA keeps shift out the last word data,
* so we have to disable ECSPI when in slave mode after the
* transfer completes
*/
if (spi_imx->devtype_data->disable)
spi_imx->devtype_data->disable(spi_imx);
return ret;
}
static int spi_imx_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
unsigned long hz_per_byte, byte_limit;
spi_imx_setupxfer(spi, transfer);
transfer->effective_speed_hz = spi_imx->spi_bus_clk;
/* flush rxfifo before transfer */
while (spi_imx->devtype_data->rx_available(spi_imx))
readl(spi_imx->base + MXC_CSPIRXDATA);
if (spi_imx->slave_mode)
return spi_imx_pio_transfer_slave(spi, transfer);
/*
* If we decided in spi_imx_can_dma() that we want to do a DMA
* transfer, the SPI transfer has already been mapped, so we
* have to do the DMA transfer here.
*/
if (spi_imx->usedma)
return spi_imx_dma_transfer(spi_imx, transfer);
/*
* Calculate the estimated time in us the transfer runs. Find
* the number of Hz per byte per polling limit.
*/
hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
/* run in polling mode for short transfers */
if (transfer->len < byte_limit)
return spi_imx_poll_transfer(spi, transfer);
return spi_imx_pio_transfer(spi, transfer);
}
static int spi_imx_setup(struct spi_device *spi)
{
dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
spi->mode, spi->bits_per_word, spi->max_speed_hz);
return 0;
}
static void spi_imx_cleanup(struct spi_device *spi)
{
}
static int
spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
int ret;
ret = pm_runtime_resume_and_get(spi_imx->dev);
if (ret < 0) {
dev_err(spi_imx->dev, "failed to enable clock\n");
return ret;
}
ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
if (ret) {
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
}
return ret;
}
static int
spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
return 0;
}
static int spi_imx_slave_abort(struct spi_controller *controller)
{
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
spi_imx->slave_aborted = true;
complete(&spi_imx->xfer_done);
return 0;
}
static int spi_imx_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct spi_controller *controller;
struct spi_imx_data *spi_imx;
struct resource *res;
int ret, irq, spi_drctl;
const struct spi_imx_devtype_data *devtype_data =
of_device_get_match_data(&pdev->dev);
bool slave_mode;
u32 val;
slave_mode = devtype_data->has_slavemode &&
of_property_read_bool(np, "spi-slave");
if (slave_mode)
controller = spi_alloc_slave(&pdev->dev,
sizeof(struct spi_imx_data));
else
controller = spi_alloc_master(&pdev->dev,
sizeof(struct spi_imx_data));
if (!controller)
return -ENOMEM;
ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
if ((ret < 0) || (spi_drctl >= 0x3)) {
/* '11' is reserved */
spi_drctl = 0;
}
platform_set_drvdata(pdev, controller);
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
controller->bus_num = np ? -1 : pdev->id;
controller->use_gpio_descriptors = true;
spi_imx = spi_controller_get_devdata(controller);
spi_imx->controller = controller;
spi_imx->dev = &pdev->dev;
spi_imx->slave_mode = slave_mode;
spi_imx->devtype_data = devtype_data;
/*
* Get number of chip selects from device properties. This can be
* coming from device tree or boardfiles, if it is not defined,
* a default value of 3 chip selects will be used, as all the legacy
* board files have <= 3 chip selects.
*/
if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
controller->num_chipselect = val;
else
controller->num_chipselect = 3;
spi_imx->controller->transfer_one = spi_imx_transfer_one;
spi_imx->controller->setup = spi_imx_setup;
spi_imx->controller->cleanup = spi_imx_cleanup;
spi_imx->controller->prepare_message = spi_imx_prepare_message;
spi_imx->controller->unprepare_message = spi_imx_unprepare_message;
spi_imx->controller->slave_abort = spi_imx_slave_abort;
spi_imx->controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS;
if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
is_imx53_ecspi(spi_imx))
spi_imx->controller->mode_bits |= SPI_LOOP | SPI_READY;
if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
spi_imx->controller->mode_bits |= SPI_RX_CPHA_FLIP;
if (is_imx51_ecspi(spi_imx) &&
device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
/*
* When using HW-CS implementing SPI_CS_WORD can be done by just
* setting the burst length to the word size. This is
* considerably faster than manually controlling the CS.
*/
spi_imx->controller->mode_bits |= SPI_CS_WORD;
spi_imx->spi_drctl = spi_drctl;
init_completion(&spi_imx->xfer_done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(spi_imx->base)) {
ret = PTR_ERR(spi_imx->base);
goto out_controller_put;
}
spi_imx->base_phys = res->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_controller_put;
}
ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
dev_name(&pdev->dev), spi_imx);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_controller_put;
}
spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(spi_imx->clk_ipg)) {
ret = PTR_ERR(spi_imx->clk_ipg);
goto out_controller_put;
}
spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(spi_imx->clk_per)) {
ret = PTR_ERR(spi_imx->clk_per);
goto out_controller_put;
}
ret = clk_prepare_enable(spi_imx->clk_per);
if (ret)
goto out_controller_put;
ret = clk_prepare_enable(spi_imx->clk_ipg);
if (ret)
goto out_put_per;
pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
pm_runtime_use_autosuspend(spi_imx->dev);
pm_runtime_get_noresume(spi_imx->dev);
pm_runtime_set_active(spi_imx->dev);
pm_runtime_enable(spi_imx->dev);
spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
/*
* Only validated on i.mx35 and i.mx6 now, can remove the constraint
* if validated on other chips.
*/
if (spi_imx->devtype_data->has_dmamode) {
ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
if (ret == -EPROBE_DEFER)
goto out_runtime_pm_put;
if (ret < 0)
dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
ret);
}
spi_imx->devtype_data->reset(spi_imx);
spi_imx->devtype_data->intctrl(spi_imx, 0);
controller->dev.of_node = pdev->dev.of_node;
ret = spi_register_controller(controller);
if (ret) {
dev_err_probe(&pdev->dev, ret, "register controller failed\n");
goto out_register_controller;
}
pm_runtime_mark_last_busy(spi_imx->dev);
pm_runtime_put_autosuspend(spi_imx->dev);
return ret;
out_register_controller:
if (spi_imx->devtype_data->has_dmamode)
spi_imx_sdma_exit(spi_imx);
out_runtime_pm_put:
pm_runtime_dont_use_autosuspend(spi_imx->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(spi_imx->dev);
clk_disable_unprepare(spi_imx->clk_ipg);
out_put_per:
clk_disable_unprepare(spi_imx->clk_per);
out_controller_put:
spi_controller_put(controller);
return ret;
}
static int spi_imx_remove(struct platform_device *pdev)
{
struct spi_controller *controller = platform_get_drvdata(pdev);
struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
int ret;
spi_unregister_controller(controller);
ret = pm_runtime_resume_and_get(spi_imx->dev);
if (ret < 0) {
dev_err(spi_imx->dev, "failed to enable clock\n");
return ret;
}
writel(0, spi_imx->base + MXC_CSPICTRL);
pm_runtime_dont_use_autosuspend(spi_imx->dev);
pm_runtime_put_sync(spi_imx->dev);
pm_runtime_disable(spi_imx->dev);
spi_imx_sdma_exit(spi_imx);
return 0;
}
static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct spi_imx_data *spi_imx;
int ret;
spi_imx = spi_controller_get_devdata(controller);
ret = clk_prepare_enable(spi_imx->clk_per);
if (ret)
return ret;
ret = clk_prepare_enable(spi_imx->clk_ipg);
if (ret) {
clk_disable_unprepare(spi_imx->clk_per);
return ret;
}
return 0;
}
static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct spi_imx_data *spi_imx;
spi_imx = spi_controller_get_devdata(controller);
clk_disable_unprepare(spi_imx->clk_per);
clk_disable_unprepare(spi_imx->clk_ipg);
return 0;
}
static int __maybe_unused spi_imx_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused spi_imx_resume(struct device *dev)
{
pinctrl_pm_select_default_state(dev);
return 0;
}
static const struct dev_pm_ops imx_spi_pm = {
SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
spi_imx_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
};
static struct platform_driver spi_imx_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = spi_imx_dt_ids,
.pm = &imx_spi_pm,
},
.probe = spi_imx_probe,
.remove = spi_imx_remove,
};
module_platform_driver(spi_imx_driver);
MODULE_DESCRIPTION("i.MX SPI Controller driver");
MODULE_AUTHOR("Sascha Hauer, Pengutronix");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);