mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
dbd68d8e84
flush_tlb_page() passes a bogus range to flush_tlb_others() and
expects the latter to fix it up. native_flush_tlb_others() has the
fixup but Xen's version doesn't. Move the fixup to
flush_tlb_others().
AFAICS the only real effect is that, without this fix, Xen would
flush everything instead of just the one page on remote vCPUs in
when flush_tlb_page() was called.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e7b52ffd45
("x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range")
Link: http://lkml.kernel.org/r/10ed0e4dfea64daef10b87fb85df1746999b4dba.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
469 lines
13 KiB
C
469 lines
13 KiB
C
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
/*
|
|
* Smarter SMP flushing macros.
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* More scalable flush, from Andi Kleen
|
|
*
|
|
* Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
|
|
*/
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
struct flush_tlb_info {
|
|
struct mm_struct *flush_mm;
|
|
unsigned long flush_start;
|
|
unsigned long flush_end;
|
|
};
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*/
|
|
void leave_mm(int cpu)
|
|
{
|
|
struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
|
|
if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
|
|
BUG();
|
|
if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
|
|
cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
|
|
load_cr3(swapper_pg_dir);
|
|
/*
|
|
* This gets called in the idle path where RCU
|
|
* functions differently. Tracing normally
|
|
* uses RCU, so we have to call the tracepoint
|
|
* specially here.
|
|
*/
|
|
trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(leave_mm);
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
switch_mm_irqs_off(prev, next, tsk);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned cpu = smp_processor_id();
|
|
|
|
if (likely(prev != next)) {
|
|
if (IS_ENABLED(CONFIG_VMAP_STACK)) {
|
|
/*
|
|
* If our current stack is in vmalloc space and isn't
|
|
* mapped in the new pgd, we'll double-fault. Forcibly
|
|
* map it.
|
|
*/
|
|
unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
|
|
|
|
pgd_t *pgd = next->pgd + stack_pgd_index;
|
|
|
|
if (unlikely(pgd_none(*pgd)))
|
|
set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
|
|
this_cpu_write(cpu_tlbstate.active_mm, next);
|
|
#endif
|
|
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
|
|
/*
|
|
* Re-load page tables.
|
|
*
|
|
* This logic has an ordering constraint:
|
|
*
|
|
* CPU 0: Write to a PTE for 'next'
|
|
* CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
|
|
* CPU 1: set bit 1 in next's mm_cpumask
|
|
* CPU 1: load from the PTE that CPU 0 writes (implicit)
|
|
*
|
|
* We need to prevent an outcome in which CPU 1 observes
|
|
* the new PTE value and CPU 0 observes bit 1 clear in
|
|
* mm_cpumask. (If that occurs, then the IPI will never
|
|
* be sent, and CPU 0's TLB will contain a stale entry.)
|
|
*
|
|
* The bad outcome can occur if either CPU's load is
|
|
* reordered before that CPU's store, so both CPUs must
|
|
* execute full barriers to prevent this from happening.
|
|
*
|
|
* Thus, switch_mm needs a full barrier between the
|
|
* store to mm_cpumask and any operation that could load
|
|
* from next->pgd. TLB fills are special and can happen
|
|
* due to instruction fetches or for no reason at all,
|
|
* and neither LOCK nor MFENCE orders them.
|
|
* Fortunately, load_cr3() is serializing and gives the
|
|
* ordering guarantee we need.
|
|
*
|
|
*/
|
|
load_cr3(next->pgd);
|
|
|
|
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
|
|
|
|
/* Stop flush ipis for the previous mm */
|
|
cpumask_clear_cpu(cpu, mm_cpumask(prev));
|
|
|
|
/* Load per-mm CR4 state */
|
|
load_mm_cr4(next);
|
|
|
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
|
/*
|
|
* Load the LDT, if the LDT is different.
|
|
*
|
|
* It's possible that prev->context.ldt doesn't match
|
|
* the LDT register. This can happen if leave_mm(prev)
|
|
* was called and then modify_ldt changed
|
|
* prev->context.ldt but suppressed an IPI to this CPU.
|
|
* In this case, prev->context.ldt != NULL, because we
|
|
* never set context.ldt to NULL while the mm still
|
|
* exists. That means that next->context.ldt !=
|
|
* prev->context.ldt, because mms never share an LDT.
|
|
*/
|
|
if (unlikely(prev->context.ldt != next->context.ldt))
|
|
load_mm_ldt(next);
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
else {
|
|
this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
|
|
BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
|
|
|
|
if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
|
|
/*
|
|
* On established mms, the mm_cpumask is only changed
|
|
* from irq context, from ptep_clear_flush() while in
|
|
* lazy tlb mode, and here. Irqs are blocked during
|
|
* schedule, protecting us from simultaneous changes.
|
|
*/
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
|
|
/*
|
|
* We were in lazy tlb mode and leave_mm disabled
|
|
* tlb flush IPI delivery. We must reload CR3
|
|
* to make sure to use no freed page tables.
|
|
*
|
|
* As above, load_cr3() is serializing and orders TLB
|
|
* fills with respect to the mm_cpumask write.
|
|
*/
|
|
load_cr3(next->pgd);
|
|
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
|
|
load_mm_cr4(next);
|
|
load_mm_ldt(next);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* The flush IPI assumes that a thread switch happens in this order:
|
|
* [cpu0: the cpu that switches]
|
|
* 1) switch_mm() either 1a) or 1b)
|
|
* 1a) thread switch to a different mm
|
|
* 1a1) set cpu_tlbstate to TLBSTATE_OK
|
|
* Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
|
|
* if cpu0 was in lazy tlb mode.
|
|
* 1a2) update cpu active_mm
|
|
* Now cpu0 accepts tlb flushes for the new mm.
|
|
* 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
|
|
* Now the other cpus will send tlb flush ipis.
|
|
* 1a4) change cr3.
|
|
* 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
|
|
* Stop ipi delivery for the old mm. This is not synchronized with
|
|
* the other cpus, but flush_tlb_func ignore flush ipis for the wrong
|
|
* mm, and in the worst case we perform a superfluous tlb flush.
|
|
* 1b) thread switch without mm change
|
|
* cpu active_mm is correct, cpu0 already handles flush ipis.
|
|
* 1b1) set cpu_tlbstate to TLBSTATE_OK
|
|
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
|
|
* Atomically set the bit [other cpus will start sending flush ipis],
|
|
* and test the bit.
|
|
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
|
|
* 2) switch %%esp, ie current
|
|
*
|
|
* The interrupt must handle 2 special cases:
|
|
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
|
|
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
|
|
* runs in kernel space, the cpu could load tlb entries for user space
|
|
* pages.
|
|
*
|
|
* The good news is that cpu_tlbstate is local to each cpu, no
|
|
* write/read ordering problems.
|
|
*/
|
|
|
|
/*
|
|
* TLB flush funcation:
|
|
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
|
|
* 2) Leave the mm if we are in the lazy tlb mode.
|
|
*/
|
|
static void flush_tlb_func(void *info)
|
|
{
|
|
struct flush_tlb_info *f = info;
|
|
|
|
inc_irq_stat(irq_tlb_count);
|
|
|
|
if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
|
|
return;
|
|
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
|
|
if (f->flush_end == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
|
|
} else {
|
|
unsigned long addr;
|
|
unsigned long nr_pages =
|
|
(f->flush_end - f->flush_start) / PAGE_SIZE;
|
|
addr = f->flush_start;
|
|
while (addr < f->flush_end) {
|
|
__flush_tlb_single(addr);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
|
|
}
|
|
} else
|
|
leave_mm(smp_processor_id());
|
|
|
|
}
|
|
|
|
void native_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct flush_tlb_info info;
|
|
|
|
info.flush_mm = mm;
|
|
info.flush_start = start;
|
|
info.flush_end = end;
|
|
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
if (end == TLB_FLUSH_ALL)
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
|
|
else
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI,
|
|
(end - start) >> PAGE_SHIFT);
|
|
|
|
if (is_uv_system()) {
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
|
|
if (cpumask)
|
|
smp_call_function_many(cpumask, flush_tlb_func,
|
|
&info, 1);
|
|
return;
|
|
}
|
|
smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
|
|
}
|
|
|
|
/*
|
|
* See Documentation/x86/tlb.txt for details. We choose 33
|
|
* because it is large enough to cover the vast majority (at
|
|
* least 95%) of allocations, and is small enough that we are
|
|
* confident it will not cause too much overhead. Each single
|
|
* flush is about 100 ns, so this caps the maximum overhead at
|
|
* _about_ 3,000 ns.
|
|
*
|
|
* This is in units of pages.
|
|
*/
|
|
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
|
|
|
|
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, unsigned long vmflag)
|
|
{
|
|
unsigned long addr;
|
|
/* do a global flush by default */
|
|
unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
|
|
|
|
preempt_disable();
|
|
|
|
if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
|
|
base_pages_to_flush = (end - start) >> PAGE_SHIFT;
|
|
if (base_pages_to_flush > tlb_single_page_flush_ceiling)
|
|
base_pages_to_flush = TLB_FLUSH_ALL;
|
|
|
|
if (current->active_mm != mm) {
|
|
/* Synchronize with switch_mm. */
|
|
smp_mb();
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (!current->mm) {
|
|
leave_mm(smp_processor_id());
|
|
|
|
/* Synchronize with switch_mm. */
|
|
smp_mb();
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Both branches below are implicit full barriers (MOV to CR or
|
|
* INVLPG) that synchronize with switch_mm.
|
|
*/
|
|
if (base_pages_to_flush == TLB_FLUSH_ALL) {
|
|
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
|
|
local_flush_tlb();
|
|
} else {
|
|
/* flush range by one by one 'invlpg' */
|
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
|
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
|
|
__flush_tlb_single(addr);
|
|
}
|
|
}
|
|
trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
|
|
out:
|
|
if (base_pages_to_flush == TLB_FLUSH_ALL) {
|
|
start = 0UL;
|
|
end = TLB_FLUSH_ALL;
|
|
}
|
|
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), mm, start, end);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
preempt_disable();
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm) {
|
|
/*
|
|
* Implicit full barrier (INVLPG) that synchronizes
|
|
* with switch_mm.
|
|
*/
|
|
__flush_tlb_one(start);
|
|
} else {
|
|
leave_mm(smp_processor_id());
|
|
|
|
/* Synchronize with switch_mm. */
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), mm, start, start + PAGE_SIZE);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
__flush_tlb_all();
|
|
if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
}
|
|
|
|
static void do_kernel_range_flush(void *info)
|
|
{
|
|
struct flush_tlb_info *f = info;
|
|
unsigned long addr;
|
|
|
|
/* flush range by one by one 'invlpg' */
|
|
for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
|
|
__flush_tlb_single(addr);
|
|
}
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
|
|
/* Balance as user space task's flush, a bit conservative */
|
|
if (end == TLB_FLUSH_ALL ||
|
|
(end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
} else {
|
|
struct flush_tlb_info info;
|
|
info.flush_start = start;
|
|
info.flush_end = end;
|
|
on_each_cpu(do_kernel_range_flush, &info, 1);
|
|
}
|
|
}
|
|
|
|
static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
unsigned int len;
|
|
|
|
len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
|
|
}
|
|
|
|
static ssize_t tlbflush_write_file(struct file *file,
|
|
const char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
ssize_t len;
|
|
int ceiling;
|
|
|
|
len = min(count, sizeof(buf) - 1);
|
|
if (copy_from_user(buf, user_buf, len))
|
|
return -EFAULT;
|
|
|
|
buf[len] = '\0';
|
|
if (kstrtoint(buf, 0, &ceiling))
|
|
return -EINVAL;
|
|
|
|
if (ceiling < 0)
|
|
return -EINVAL;
|
|
|
|
tlb_single_page_flush_ceiling = ceiling;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_tlbflush = {
|
|
.read = tlbflush_read_file,
|
|
.write = tlbflush_write_file,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __init create_tlb_single_page_flush_ceiling(void)
|
|
{
|
|
debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
|
|
arch_debugfs_dir, NULL, &fops_tlbflush);
|
|
return 0;
|
|
}
|
|
late_initcall(create_tlb_single_page_flush_ceiling);
|
|
|
|
#endif /* CONFIG_SMP */
|