linux-stable/drivers/gpu/drm/msm/msm_fence.h
Rob Clark 95d1deb02a drm/msm/gem: Add fenced vma unpin
With userspace allocated iova (next patch), we can have a race condition
where userspace observes the fence completion and deletes the vma before
retire_submit() gets around to unpinning the vma.  To handle this, add a
fenced unpin which drops the refcount but tracks the fence, and update
msm_gem_vma_inuse() to check any previously unsignaled fences.

v2: Fix inuse underflow (duplicate unpin)
v3: Fix msm_job_run() vs submit_cleanup() race condition

Signed-off-by: Rob Clark <robdclark@chromium.org>
Link: https://lore.kernel.org/r/20220411215849.297838-10-robdclark@gmail.com
Signed-off-by: Rob Clark <robdclark@chromium.org>
2022-04-21 15:03:12 -07:00

78 lines
1.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2013-2016 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#ifndef __MSM_FENCE_H__
#define __MSM_FENCE_H__
#include "msm_drv.h"
/**
* struct msm_fence_context - fence context for gpu
*
* Each ringbuffer has a single fence context, with the GPU writing an
* incrementing fence seqno at the end of each submit
*/
struct msm_fence_context {
struct drm_device *dev;
/** name: human readable name for fence timeline */
char name[32];
/** context: see dma_fence_context_alloc() */
unsigned context;
/** index: similar to context, but local to msm_fence_context's */
unsigned index;
/**
* last_fence:
*
* Last assigned fence, incremented each time a fence is created
* on this fence context. If last_fence == completed_fence,
* there is no remaining pending work
*/
uint32_t last_fence;
/**
* completed_fence:
*
* The last completed fence, updated from the CPU after interrupt
* from GPU
*/
uint32_t completed_fence;
/**
* fenceptr:
*
* The address that the GPU directly writes with completed fence
* seqno. This can be ahead of completed_fence. We can peek at
* this to see if a fence has already signaled but the CPU hasn't
* gotten around to handling the irq and updating completed_fence
*/
volatile uint32_t *fenceptr;
spinlock_t spinlock;
};
struct msm_fence_context * msm_fence_context_alloc(struct drm_device *dev,
volatile uint32_t *fenceptr, const char *name);
void msm_fence_context_free(struct msm_fence_context *fctx);
bool msm_fence_completed(struct msm_fence_context *fctx, uint32_t fence);
void msm_update_fence(struct msm_fence_context *fctx, uint32_t fence);
struct dma_fence * msm_fence_alloc(struct msm_fence_context *fctx);
static inline bool
fence_before(uint32_t a, uint32_t b)
{
return (int32_t)(a - b) < 0;
}
static inline bool
fence_after(uint32_t a, uint32_t b)
{
return (int32_t)(a - b) > 0;
}
#endif