linux-stable/drivers/scsi/ufs/ufs-exynos.c
Bart Van Assche b427609e11 scsi: ufs: Rename a function argument
The new name makes it clear what the meaning of the function argument is.

Link: https://lore.kernel.org/r/20211203231950.193369-3-bvanassche@acm.org
Tested-by: Bean Huo <beanhuo@micron.com>
Reviewed-by: Chanho Park <chanho61.park@samsung.com>
Reviewed-by: Keoseong Park <keosung.park@samsung.com>
Reviewed-by: Bean Huo <beanhuo@micron.com>
Acked-by: Alim Akhtar <alim.akhtar@samsung.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-12-06 22:30:32 -05:00

1629 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* UFS Host Controller driver for Exynos specific extensions
*
* Copyright (C) 2014-2015 Samsung Electronics Co., Ltd.
* Author: Seungwon Jeon <essuuj@gmail.com>
* Author: Alim Akhtar <alim.akhtar@samsung.com>
*
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "ufshcd.h"
#include "ufshcd-pltfrm.h"
#include "ufshci.h"
#include "unipro.h"
#include "ufs-exynos.h"
/*
* Exynos's Vendor specific registers for UFSHCI
*/
#define HCI_TXPRDT_ENTRY_SIZE 0x00
#define PRDT_PREFECT_EN BIT(31)
#define PRDT_SET_SIZE(x) ((x) & 0x1F)
#define HCI_RXPRDT_ENTRY_SIZE 0x04
#define HCI_1US_TO_CNT_VAL 0x0C
#define CNT_VAL_1US_MASK 0x3FF
#define HCI_UTRL_NEXUS_TYPE 0x40
#define HCI_UTMRL_NEXUS_TYPE 0x44
#define HCI_SW_RST 0x50
#define UFS_LINK_SW_RST BIT(0)
#define UFS_UNIPRO_SW_RST BIT(1)
#define UFS_SW_RST_MASK (UFS_UNIPRO_SW_RST | UFS_LINK_SW_RST)
#define HCI_DATA_REORDER 0x60
#define HCI_UNIPRO_APB_CLK_CTRL 0x68
#define UNIPRO_APB_CLK(v, x) (((v) & ~0xF) | ((x) & 0xF))
#define HCI_AXIDMA_RWDATA_BURST_LEN 0x6C
#define HCI_GPIO_OUT 0x70
#define HCI_ERR_EN_PA_LAYER 0x78
#define HCI_ERR_EN_DL_LAYER 0x7C
#define HCI_ERR_EN_N_LAYER 0x80
#define HCI_ERR_EN_T_LAYER 0x84
#define HCI_ERR_EN_DME_LAYER 0x88
#define HCI_CLKSTOP_CTRL 0xB0
#define REFCLKOUT_STOP BIT(4)
#define REFCLK_STOP BIT(2)
#define UNIPRO_MCLK_STOP BIT(1)
#define UNIPRO_PCLK_STOP BIT(0)
#define CLK_STOP_MASK (REFCLKOUT_STOP | REFCLK_STOP |\
UNIPRO_MCLK_STOP |\
UNIPRO_PCLK_STOP)
#define HCI_MISC 0xB4
#define REFCLK_CTRL_EN BIT(7)
#define UNIPRO_PCLK_CTRL_EN BIT(6)
#define UNIPRO_MCLK_CTRL_EN BIT(5)
#define HCI_CORECLK_CTRL_EN BIT(4)
#define CLK_CTRL_EN_MASK (REFCLK_CTRL_EN |\
UNIPRO_PCLK_CTRL_EN |\
UNIPRO_MCLK_CTRL_EN)
/* Device fatal error */
#define DFES_ERR_EN BIT(31)
#define DFES_DEF_L2_ERRS (UIC_DATA_LINK_LAYER_ERROR_RX_BUF_OF |\
UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
#define DFES_DEF_L3_ERRS (UIC_NETWORK_UNSUPPORTED_HEADER_TYPE |\
UIC_NETWORK_BAD_DEVICEID_ENC |\
UIC_NETWORK_LHDR_TRAP_PACKET_DROPPING)
#define DFES_DEF_L4_ERRS (UIC_TRANSPORT_UNSUPPORTED_HEADER_TYPE |\
UIC_TRANSPORT_UNKNOWN_CPORTID |\
UIC_TRANSPORT_NO_CONNECTION_RX |\
UIC_TRANSPORT_BAD_TC)
/* FSYS UFS Shareability */
#define UFS_WR_SHARABLE BIT(2)
#define UFS_RD_SHARABLE BIT(1)
#define UFS_SHARABLE (UFS_WR_SHARABLE | UFS_RD_SHARABLE)
#define UFS_SHAREABILITY_OFFSET 0x710
/* Multi-host registers */
#define MHCTRL 0xC4
#define MHCTRL_EN_VH_MASK (0xE)
#define MHCTRL_EN_VH(vh) (vh << 1)
#define PH2VH_MBOX 0xD8
#define MH_MSG_MASK (0xFF)
#define MH_MSG(id, msg) ((id << 8) | (msg & 0xFF))
#define MH_MSG_PH_READY 0x1
#define MH_MSG_VH_READY 0x2
#define ALLOW_INQUIRY BIT(25)
#define ALLOW_MODE_SELECT BIT(24)
#define ALLOW_MODE_SENSE BIT(23)
#define ALLOW_PRE_FETCH GENMASK(22, 21)
#define ALLOW_READ_CMD_ALL GENMASK(20, 18) /* read_6/10/16 */
#define ALLOW_READ_BUFFER BIT(17)
#define ALLOW_READ_CAPACITY GENMASK(16, 15)
#define ALLOW_REPORT_LUNS BIT(14)
#define ALLOW_REQUEST_SENSE BIT(13)
#define ALLOW_SYNCHRONIZE_CACHE GENMASK(8, 7)
#define ALLOW_TEST_UNIT_READY BIT(6)
#define ALLOW_UNMAP BIT(5)
#define ALLOW_VERIFY BIT(4)
#define ALLOW_WRITE_CMD_ALL GENMASK(3, 1) /* write_6/10/16 */
#define ALLOW_TRANS_VH_DEFAULT (ALLOW_INQUIRY | ALLOW_MODE_SELECT | \
ALLOW_MODE_SENSE | ALLOW_PRE_FETCH | \
ALLOW_READ_CMD_ALL | ALLOW_READ_BUFFER | \
ALLOW_READ_CAPACITY | ALLOW_REPORT_LUNS | \
ALLOW_REQUEST_SENSE | ALLOW_SYNCHRONIZE_CACHE | \
ALLOW_TEST_UNIT_READY | ALLOW_UNMAP | \
ALLOW_VERIFY | ALLOW_WRITE_CMD_ALL)
#define HCI_MH_ALLOWABLE_TRAN_OF_VH 0x30C
#define HCI_MH_IID_IN_TASK_TAG 0X308
#define PH_READY_TIMEOUT_MS (5 * MSEC_PER_SEC)
enum {
UNIPRO_L1_5 = 0,/* PHY Adapter */
UNIPRO_L2, /* Data Link */
UNIPRO_L3, /* Network */
UNIPRO_L4, /* Transport */
UNIPRO_DME, /* DME */
};
/*
* UNIPRO registers
*/
#define UNIPRO_COMP_VERSION 0x000
#define UNIPRO_DME_PWR_REQ 0x090
#define UNIPRO_DME_PWR_REQ_POWERMODE 0x094
#define UNIPRO_DME_PWR_REQ_LOCALL2TIMER0 0x098
#define UNIPRO_DME_PWR_REQ_LOCALL2TIMER1 0x09C
#define UNIPRO_DME_PWR_REQ_LOCALL2TIMER2 0x0A0
#define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER0 0x0A4
#define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER1 0x0A8
#define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER2 0x0AC
/*
* UFS Protector registers
*/
#define UFSPRSECURITY 0x010
#define NSSMU BIT(14)
#define UFSPSBEGIN0 0x200
#define UFSPSEND0 0x204
#define UFSPSLUN0 0x208
#define UFSPSCTRL0 0x20C
#define CNTR_DIV_VAL 40
static struct exynos_ufs_drv_data exynos_ufs_drvs;
static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en);
static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en);
static inline void exynos_ufs_enable_auto_ctrl_hcc(struct exynos_ufs *ufs)
{
exynos_ufs_auto_ctrl_hcc(ufs, true);
}
static inline void exynos_ufs_disable_auto_ctrl_hcc(struct exynos_ufs *ufs)
{
exynos_ufs_auto_ctrl_hcc(ufs, false);
}
static inline void exynos_ufs_disable_auto_ctrl_hcc_save(
struct exynos_ufs *ufs, u32 *val)
{
*val = hci_readl(ufs, HCI_MISC);
exynos_ufs_auto_ctrl_hcc(ufs, false);
}
static inline void exynos_ufs_auto_ctrl_hcc_restore(
struct exynos_ufs *ufs, u32 *val)
{
hci_writel(ufs, *val, HCI_MISC);
}
static inline void exynos_ufs_gate_clks(struct exynos_ufs *ufs)
{
exynos_ufs_ctrl_clkstop(ufs, true);
}
static inline void exynos_ufs_ungate_clks(struct exynos_ufs *ufs)
{
exynos_ufs_ctrl_clkstop(ufs, false);
}
static int exynos7_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs)
{
return 0;
}
static int exynosauto_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs)
{
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
/* IO Coherency setting */
if (ufs->sysreg) {
return regmap_update_bits(ufs->sysreg,
ufs->shareability_reg_offset,
UFS_SHARABLE, UFS_SHARABLE);
}
attr->tx_dif_p_nsec = 3200000;
return 0;
}
static int exynosauto_ufs_post_hce_enable(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
/* Enable Virtual Host #1 */
ufshcd_rmwl(hba, MHCTRL_EN_VH_MASK, MHCTRL_EN_VH(1), MHCTRL);
/* Default VH Transfer permissions */
hci_writel(ufs, ALLOW_TRANS_VH_DEFAULT, HCI_MH_ALLOWABLE_TRAN_OF_VH);
/* IID information is replaced in TASKTAG[7:5] instead of IID in UCD */
hci_writel(ufs, 0x1, HCI_MH_IID_IN_TASK_TAG);
return 0;
}
static int exynosauto_ufs_pre_link(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
int i;
u32 tx_line_reset_period, rx_line_reset_period;
rx_line_reset_period = (RX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC;
tx_line_reset_period = (TX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC;
ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40);
for_each_ufs_rx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD, i),
DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD_EN, i), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE2, i),
(rx_line_reset_period >> 16) & 0xFF);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE1, i),
(rx_line_reset_period >> 8) & 0xFF);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE0, i),
(rx_line_reset_period) & 0xFF);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x2f, i), 0x79);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x84, i), 0x1);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x25, i), 0xf6);
}
for_each_ufs_tx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD, i),
DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
/* Not to affect VND_TX_LINERESET_PVALUE to VND_TX_CLK_PRD */
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD_EN, i),
0x02);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE2, i),
(tx_line_reset_period >> 16) & 0xFF);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE1, i),
(tx_line_reset_period >> 8) & 0xFF);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE0, i),
(tx_line_reset_period) & 0xFF);
/* TX PWM Gear Capability / PWM_G1_ONLY */
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x04, i), 0x1);
}
ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB(0xa011), 0x8000);
return 0;
}
static int exynosauto_ufs_pre_pwr_change(struct exynos_ufs *ufs,
struct ufs_pa_layer_attr *pwr)
{
struct ufs_hba *hba = ufs->hba;
/* PACP_PWR_req and delivered to the remote DME */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000);
return 0;
}
static int exynosauto_ufs_post_pwr_change(struct exynos_ufs *ufs,
struct ufs_pa_layer_attr *pwr)
{
struct ufs_hba *hba = ufs->hba;
u32 enabled_vh;
enabled_vh = ufshcd_readl(hba, MHCTRL) & MHCTRL_EN_VH_MASK;
/* Send physical host ready message to virtual hosts */
ufshcd_writel(hba, MH_MSG(enabled_vh, MH_MSG_PH_READY), PH2VH_MBOX);
return 0;
}
static int exynos7_ufs_pre_link(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
u32 val = ufs->drv_data->uic_attr->pa_dbg_option_suite;
int i;
exynos_ufs_enable_ov_tm(hba);
for_each_ufs_tx_lane(ufs, i)
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x297, i), 0x17);
for_each_ufs_rx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x362, i), 0xff);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x363, i), 0x00);
}
exynos_ufs_disable_ov_tm(hba);
for_each_ufs_tx_lane(ufs, i)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(TX_HIBERN8_CONTROL, i), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_TXPHY_CFGUPDT), 0x1);
udelay(1);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val | (1 << 12));
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_RESET_PHY), 0x1);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_LINE_RESET), 0x1);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_LINE_RESET_REQ), 0x1);
udelay(1600);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val);
return 0;
}
static int exynos7_ufs_post_link(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
int i;
exynos_ufs_enable_ov_tm(hba);
for_each_ufs_tx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x28b, i), 0x83);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x29a, i), 0x07);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x277, i),
TX_LINERESET_N(exynos_ufs_calc_time_cntr(ufs, 200000)));
}
exynos_ufs_disable_ov_tm(hba);
exynos_ufs_enable_dbg_mode(hba);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xbb8);
exynos_ufs_disable_dbg_mode(hba);
return 0;
}
static int exynos7_ufs_pre_pwr_change(struct exynos_ufs *ufs,
struct ufs_pa_layer_attr *pwr)
{
unipro_writel(ufs, 0x22, UNIPRO_DBG_FORCE_DME_CTRL_STATE);
return 0;
}
static int exynos7_ufs_post_pwr_change(struct exynos_ufs *ufs,
struct ufs_pa_layer_attr *pwr)
{
struct ufs_hba *hba = ufs->hba;
int lanes = max_t(u32, pwr->lane_rx, pwr->lane_tx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_RXPHY_CFGUPDT), 0x1);
if (lanes == 1) {
exynos_ufs_enable_dbg_mode(hba);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 0x1);
exynos_ufs_disable_dbg_mode(hba);
}
return 0;
}
/*
* exynos_ufs_auto_ctrl_hcc - HCI core clock control by h/w
* Control should be disabled in the below cases
* - Before host controller S/W reset
* - Access to UFS protector's register
*/
static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en)
{
u32 misc = hci_readl(ufs, HCI_MISC);
if (en)
hci_writel(ufs, misc | HCI_CORECLK_CTRL_EN, HCI_MISC);
else
hci_writel(ufs, misc & ~HCI_CORECLK_CTRL_EN, HCI_MISC);
}
static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en)
{
u32 ctrl = hci_readl(ufs, HCI_CLKSTOP_CTRL);
u32 misc = hci_readl(ufs, HCI_MISC);
if (en) {
hci_writel(ufs, misc | CLK_CTRL_EN_MASK, HCI_MISC);
hci_writel(ufs, ctrl | CLK_STOP_MASK, HCI_CLKSTOP_CTRL);
} else {
hci_writel(ufs, ctrl & ~CLK_STOP_MASK, HCI_CLKSTOP_CTRL);
hci_writel(ufs, misc & ~CLK_CTRL_EN_MASK, HCI_MISC);
}
}
static int exynos_ufs_get_clk_info(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct list_head *head = &hba->clk_list_head;
struct ufs_clk_info *clki;
unsigned long pclk_rate;
u32 f_min, f_max;
u8 div = 0;
int ret = 0;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!IS_ERR(clki->clk)) {
if (!strcmp(clki->name, "core_clk"))
ufs->clk_hci_core = clki->clk;
else if (!strcmp(clki->name, "sclk_unipro_main"))
ufs->clk_unipro_main = clki->clk;
}
}
if (!ufs->clk_hci_core || !ufs->clk_unipro_main) {
dev_err(hba->dev, "failed to get clk info\n");
ret = -EINVAL;
goto out;
}
ufs->mclk_rate = clk_get_rate(ufs->clk_unipro_main);
pclk_rate = clk_get_rate(ufs->clk_hci_core);
f_min = ufs->pclk_avail_min;
f_max = ufs->pclk_avail_max;
if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) {
do {
pclk_rate /= (div + 1);
if (pclk_rate <= f_max)
break;
div++;
} while (pclk_rate >= f_min);
}
if (unlikely(pclk_rate < f_min || pclk_rate > f_max)) {
dev_err(hba->dev, "not available pclk range %lu\n", pclk_rate);
ret = -EINVAL;
goto out;
}
ufs->pclk_rate = pclk_rate;
ufs->pclk_div = div;
out:
return ret;
}
static void exynos_ufs_set_unipro_pclk_div(struct exynos_ufs *ufs)
{
if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) {
u32 val;
val = hci_readl(ufs, HCI_UNIPRO_APB_CLK_CTRL);
hci_writel(ufs, UNIPRO_APB_CLK(val, ufs->pclk_div),
HCI_UNIPRO_APB_CLK_CTRL);
}
}
static void exynos_ufs_set_pwm_clk_div(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
ufshcd_dme_set(hba,
UIC_ARG_MIB(CMN_PWM_CLK_CTRL), attr->cmn_pwm_clk_ctrl);
}
static void exynos_ufs_calc_pwm_clk_div(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
const unsigned int div = 30, mult = 20;
const unsigned long pwm_min = 3 * 1000 * 1000;
const unsigned long pwm_max = 9 * 1000 * 1000;
const int divs[] = {32, 16, 8, 4};
unsigned long clk = 0, _clk, clk_period;
int i = 0, clk_idx = -1;
clk_period = UNIPRO_PCLK_PERIOD(ufs);
for (i = 0; i < ARRAY_SIZE(divs); i++) {
_clk = NSEC_PER_SEC * mult / (clk_period * divs[i] * div);
if (_clk >= pwm_min && _clk <= pwm_max) {
if (_clk > clk) {
clk_idx = i;
clk = _clk;
}
}
}
if (clk_idx == -1) {
ufshcd_dme_get(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), &clk_idx);
dev_err(hba->dev,
"failed to decide pwm clock divider, will not change\n");
}
attr->cmn_pwm_clk_ctrl = clk_idx & PWM_CLK_CTRL_MASK;
}
long exynos_ufs_calc_time_cntr(struct exynos_ufs *ufs, long period)
{
const int precise = 10;
long pclk_rate = ufs->pclk_rate;
long clk_period, fraction;
clk_period = UNIPRO_PCLK_PERIOD(ufs);
fraction = ((NSEC_PER_SEC % pclk_rate) * precise) / pclk_rate;
return (period * precise) / ((clk_period * precise) + fraction);
}
static void exynos_ufs_specify_phy_time_attr(struct exynos_ufs *ufs)
{
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg;
t_cfg->tx_linereset_p =
exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_p_nsec);
t_cfg->tx_linereset_n =
exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_n_nsec);
t_cfg->tx_high_z_cnt =
exynos_ufs_calc_time_cntr(ufs, attr->tx_high_z_cnt_nsec);
t_cfg->tx_base_n_val =
exynos_ufs_calc_time_cntr(ufs, attr->tx_base_unit_nsec);
t_cfg->tx_gran_n_val =
exynos_ufs_calc_time_cntr(ufs, attr->tx_gran_unit_nsec);
t_cfg->tx_sleep_cnt =
exynos_ufs_calc_time_cntr(ufs, attr->tx_sleep_cnt);
t_cfg->rx_linereset =
exynos_ufs_calc_time_cntr(ufs, attr->rx_dif_p_nsec);
t_cfg->rx_hibern8_wait =
exynos_ufs_calc_time_cntr(ufs, attr->rx_hibern8_wait_nsec);
t_cfg->rx_base_n_val =
exynos_ufs_calc_time_cntr(ufs, attr->rx_base_unit_nsec);
t_cfg->rx_gran_n_val =
exynos_ufs_calc_time_cntr(ufs, attr->rx_gran_unit_nsec);
t_cfg->rx_sleep_cnt =
exynos_ufs_calc_time_cntr(ufs, attr->rx_sleep_cnt);
t_cfg->rx_stall_cnt =
exynos_ufs_calc_time_cntr(ufs, attr->rx_stall_cnt);
}
static void exynos_ufs_config_phy_time_attr(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg;
int i;
exynos_ufs_set_pwm_clk_div(ufs);
exynos_ufs_enable_ov_tm(hba);
for_each_ufs_rx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_FILLER_ENABLE, i),
ufs->drv_data->uic_attr->rx_filler_enable);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_LINERESET_VAL, i),
RX_LINERESET(t_cfg->rx_linereset));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_07_00, i),
RX_BASE_NVAL_L(t_cfg->rx_base_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_15_08, i),
RX_BASE_NVAL_H(t_cfg->rx_base_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_07_00, i),
RX_GRAN_NVAL_L(t_cfg->rx_gran_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_10_08, i),
RX_GRAN_NVAL_H(t_cfg->rx_gran_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_SLEEP_CNT_TIMER, i),
RX_OV_SLEEP_CNT(t_cfg->rx_sleep_cnt));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_STALL_CNT_TIMER, i),
RX_OV_STALL_CNT(t_cfg->rx_stall_cnt));
}
for_each_ufs_tx_lane(ufs, i) {
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LINERESET_P_VAL, i),
TX_LINERESET_P(t_cfg->tx_linereset_p));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_07_00, i),
TX_HIGH_Z_CNT_L(t_cfg->tx_high_z_cnt));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_11_08, i),
TX_HIGH_Z_CNT_H(t_cfg->tx_high_z_cnt));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_07_00, i),
TX_BASE_NVAL_L(t_cfg->tx_base_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_15_08, i),
TX_BASE_NVAL_H(t_cfg->tx_base_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_07_00, i),
TX_GRAN_NVAL_L(t_cfg->tx_gran_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_10_08, i),
TX_GRAN_NVAL_H(t_cfg->tx_gran_n_val));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_OV_SLEEP_CNT_TIMER, i),
TX_OV_H8_ENTER_EN |
TX_OV_SLEEP_CNT(t_cfg->tx_sleep_cnt));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_MIN_ACTIVATETIME, i),
ufs->drv_data->uic_attr->tx_min_activatetime);
}
exynos_ufs_disable_ov_tm(hba);
}
static void exynos_ufs_config_phy_cap_attr(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
int i;
exynos_ufs_enable_ov_tm(hba);
for_each_ufs_rx_lane(ufs, i) {
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G1_SYNC_LENGTH_CAP, i),
attr->rx_hs_g1_sync_len_cap);
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G2_SYNC_LENGTH_CAP, i),
attr->rx_hs_g2_sync_len_cap);
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G3_SYNC_LENGTH_CAP, i),
attr->rx_hs_g3_sync_len_cap);
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G1_PREP_LENGTH_CAP, i),
attr->rx_hs_g1_prep_sync_len_cap);
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G2_PREP_LENGTH_CAP, i),
attr->rx_hs_g2_prep_sync_len_cap);
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HS_G3_PREP_LENGTH_CAP, i),
attr->rx_hs_g3_prep_sync_len_cap);
}
if (attr->rx_adv_fine_gran_sup_en == 0) {
for_each_ufs_rx_lane(ufs, i) {
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), 0);
if (attr->rx_min_actv_time_cap)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_MIN_ACTIVATETIME_CAP,
i), attr->rx_min_actv_time_cap);
if (attr->rx_hibern8_time_cap)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAP, i),
attr->rx_hibern8_time_cap);
}
} else if (attr->rx_adv_fine_gran_sup_en == 1) {
for_each_ufs_rx_lane(ufs, i) {
if (attr->rx_adv_fine_gran_step)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP,
i), RX_ADV_FINE_GRAN_STEP(
attr->rx_adv_fine_gran_step));
if (attr->rx_adv_min_actv_time_cap)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(
RX_ADV_MIN_ACTIVATETIME_CAP, i),
attr->rx_adv_min_actv_time_cap);
if (attr->rx_adv_hibern8_time_cap)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_ADV_HIBERN8TIME_CAP,
i),
attr->rx_adv_hibern8_time_cap);
}
}
exynos_ufs_disable_ov_tm(hba);
}
static void exynos_ufs_establish_connt(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
enum {
DEV_ID = 0x00,
PEER_DEV_ID = 0x01,
PEER_CPORT_ID = 0x00,
TRAFFIC_CLASS = 0x00,
};
/* allow cport attributes to be set */
ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_IDLE);
/* local unipro attributes */
ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID), DEV_ID);
ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID_VALID), TRUE);
ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERDEVICEID), PEER_DEV_ID);
ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERCPORTID), PEER_CPORT_ID);
ufshcd_dme_set(hba, UIC_ARG_MIB(T_CPORTFLAGS), CPORT_DEF_FLAGS);
ufshcd_dme_set(hba, UIC_ARG_MIB(T_TRAFFICCLASS), TRAFFIC_CLASS);
ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_CONNECTED);
}
static void exynos_ufs_config_smu(struct exynos_ufs *ufs)
{
u32 reg, val;
exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val);
/* make encryption disabled by default */
reg = ufsp_readl(ufs, UFSPRSECURITY);
ufsp_writel(ufs, reg | NSSMU, UFSPRSECURITY);
ufsp_writel(ufs, 0x0, UFSPSBEGIN0);
ufsp_writel(ufs, 0xffffffff, UFSPSEND0);
ufsp_writel(ufs, 0xff, UFSPSLUN0);
ufsp_writel(ufs, 0xf1, UFSPSCTRL0);
exynos_ufs_auto_ctrl_hcc_restore(ufs, &val);
}
static void exynos_ufs_config_sync_pattern_mask(struct exynos_ufs *ufs,
struct ufs_pa_layer_attr *pwr)
{
struct ufs_hba *hba = ufs->hba;
u8 g = max_t(u32, pwr->gear_rx, pwr->gear_tx);
u32 mask, sync_len;
enum {
SYNC_LEN_G1 = 80 * 1000, /* 80us */
SYNC_LEN_G2 = 40 * 1000, /* 44us */
SYNC_LEN_G3 = 20 * 1000, /* 20us */
};
int i;
if (g == 1)
sync_len = SYNC_LEN_G1;
else if (g == 2)
sync_len = SYNC_LEN_G2;
else if (g == 3)
sync_len = SYNC_LEN_G3;
else
return;
mask = exynos_ufs_calc_time_cntr(ufs, sync_len);
mask = (mask >> 8) & 0xff;
exynos_ufs_enable_ov_tm(hba);
for_each_ufs_rx_lane(ufs, i)
ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(RX_SYNC_MASK_LENGTH, i), mask);
exynos_ufs_disable_ov_tm(hba);
}
static int exynos_ufs_pre_pwr_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
struct phy *generic_phy = ufs->phy;
struct ufs_dev_params ufs_exynos_cap;
int ret;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
ufshcd_init_pwr_dev_param(&ufs_exynos_cap);
ret = ufshcd_get_pwr_dev_param(&ufs_exynos_cap,
dev_max_params, dev_req_params);
if (ret) {
pr_err("%s: failed to determine capabilities\n", __func__);
goto out;
}
if (ufs->drv_data->pre_pwr_change)
ufs->drv_data->pre_pwr_change(ufs, dev_req_params);
if (ufshcd_is_hs_mode(dev_req_params)) {
exynos_ufs_config_sync_pattern_mask(ufs, dev_req_params);
switch (dev_req_params->hs_rate) {
case PA_HS_MODE_A:
case PA_HS_MODE_B:
phy_calibrate(generic_phy);
break;
}
}
/* setting for three timeout values for traffic class #0 */
ufshcd_dme_set(hba, UIC_ARG_MIB(DL_FC0PROTTIMEOUTVAL), 8064);
ufshcd_dme_set(hba, UIC_ARG_MIB(DL_TC0REPLAYTIMEOUTVAL), 28224);
ufshcd_dme_set(hba, UIC_ARG_MIB(DL_AFC0REQTIMEOUTVAL), 20160);
return 0;
out:
return ret;
}
#define PWR_MODE_STR_LEN 64
static int exynos_ufs_post_pwr_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_req)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
struct phy *generic_phy = ufs->phy;
int gear = max_t(u32, pwr_req->gear_rx, pwr_req->gear_tx);
int lanes = max_t(u32, pwr_req->lane_rx, pwr_req->lane_tx);
char pwr_str[PWR_MODE_STR_LEN] = "";
/* let default be PWM Gear 1, Lane 1 */
if (!gear)
gear = 1;
if (!lanes)
lanes = 1;
if (ufs->drv_data->post_pwr_change)
ufs->drv_data->post_pwr_change(ufs, pwr_req);
if ((ufshcd_is_hs_mode(pwr_req))) {
switch (pwr_req->hs_rate) {
case PA_HS_MODE_A:
case PA_HS_MODE_B:
phy_calibrate(generic_phy);
break;
}
snprintf(pwr_str, PWR_MODE_STR_LEN, "%s series_%s G_%d L_%d",
"FAST", pwr_req->hs_rate == PA_HS_MODE_A ? "A" : "B",
gear, lanes);
} else {
snprintf(pwr_str, PWR_MODE_STR_LEN, "%s G_%d L_%d",
"SLOW", gear, lanes);
}
dev_info(hba->dev, "Power mode changed to : %s\n", pwr_str);
return 0;
}
static void exynos_ufs_specify_nexus_t_xfer_req(struct ufs_hba *hba,
int tag, bool is_scsi_cmd)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
u32 type;
type = hci_readl(ufs, HCI_UTRL_NEXUS_TYPE);
if (is_scsi_cmd)
hci_writel(ufs, type | (1 << tag), HCI_UTRL_NEXUS_TYPE);
else
hci_writel(ufs, type & ~(1 << tag), HCI_UTRL_NEXUS_TYPE);
}
static void exynos_ufs_specify_nexus_t_tm_req(struct ufs_hba *hba,
int tag, u8 func)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
u32 type;
type = hci_readl(ufs, HCI_UTMRL_NEXUS_TYPE);
switch (func) {
case UFS_ABORT_TASK:
case UFS_QUERY_TASK:
hci_writel(ufs, type | (1 << tag), HCI_UTMRL_NEXUS_TYPE);
break;
case UFS_ABORT_TASK_SET:
case UFS_CLEAR_TASK_SET:
case UFS_LOGICAL_RESET:
case UFS_QUERY_TASK_SET:
hci_writel(ufs, type & ~(1 << tag), HCI_UTMRL_NEXUS_TYPE);
break;
}
}
static int exynos_ufs_phy_init(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
struct phy *generic_phy = ufs->phy;
int ret = 0;
if (ufs->avail_ln_rx == 0 || ufs->avail_ln_tx == 0) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILRXDATALANES),
&ufs->avail_ln_rx);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILTXDATALANES),
&ufs->avail_ln_tx);
WARN(ufs->avail_ln_rx != ufs->avail_ln_tx,
"available data lane is not equal(rx:%d, tx:%d)\n",
ufs->avail_ln_rx, ufs->avail_ln_tx);
}
phy_set_bus_width(generic_phy, ufs->avail_ln_rx);
ret = phy_init(generic_phy);
if (ret) {
dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
__func__, ret);
goto out_exit_phy;
}
return 0;
out_exit_phy:
phy_exit(generic_phy);
return ret;
}
static void exynos_ufs_config_unipro(struct exynos_ufs *ufs)
{
struct ufs_hba *hba = ufs->hba;
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_CLK_PERIOD),
DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate));
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTRAILINGCLOCKS),
ufs->drv_data->uic_attr->tx_trailingclks);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE),
ufs->drv_data->uic_attr->pa_dbg_option_suite);
}
static void exynos_ufs_config_intr(struct exynos_ufs *ufs, u32 errs, u8 index)
{
switch (index) {
case UNIPRO_L1_5:
hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_PA_LAYER);
break;
case UNIPRO_L2:
hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DL_LAYER);
break;
case UNIPRO_L3:
hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_N_LAYER);
break;
case UNIPRO_L4:
hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_T_LAYER);
break;
case UNIPRO_DME:
hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DME_LAYER);
break;
}
}
static int exynos_ufs_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
if (!ufs)
return 0;
if (on && status == PRE_CHANGE) {
if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
exynos_ufs_disable_auto_ctrl_hcc(ufs);
exynos_ufs_ungate_clks(ufs);
} else if (!on && status == POST_CHANGE) {
exynos_ufs_gate_clks(ufs);
if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
exynos_ufs_enable_auto_ctrl_hcc(ufs);
}
return 0;
}
static int exynos_ufs_pre_link(struct ufs_hba *hba)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
/* hci */
exynos_ufs_config_intr(ufs, DFES_DEF_L2_ERRS, UNIPRO_L2);
exynos_ufs_config_intr(ufs, DFES_DEF_L3_ERRS, UNIPRO_L3);
exynos_ufs_config_intr(ufs, DFES_DEF_L4_ERRS, UNIPRO_L4);
exynos_ufs_set_unipro_pclk_div(ufs);
/* unipro */
exynos_ufs_config_unipro(ufs);
/* m-phy */
exynos_ufs_phy_init(ufs);
if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR)) {
exynos_ufs_config_phy_time_attr(ufs);
exynos_ufs_config_phy_cap_attr(ufs);
}
exynos_ufs_setup_clocks(hba, true, PRE_CHANGE);
if (ufs->drv_data->pre_link)
ufs->drv_data->pre_link(ufs);
return 0;
}
static void exynos_ufs_fit_aggr_timeout(struct exynos_ufs *ufs)
{
u32 val;
val = exynos_ufs_calc_time_cntr(ufs, IATOVAL_NSEC / CNTR_DIV_VAL);
hci_writel(ufs, val & CNT_VAL_1US_MASK, HCI_1US_TO_CNT_VAL);
}
static int exynos_ufs_post_link(struct ufs_hba *hba)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
struct phy *generic_phy = ufs->phy;
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
exynos_ufs_establish_connt(ufs);
exynos_ufs_fit_aggr_timeout(ufs);
hci_writel(ufs, 0xa, HCI_DATA_REORDER);
hci_writel(ufs, PRDT_SET_SIZE(12), HCI_TXPRDT_ENTRY_SIZE);
hci_writel(ufs, PRDT_SET_SIZE(12), HCI_RXPRDT_ENTRY_SIZE);
hci_writel(ufs, (1 << hba->nutrs) - 1, HCI_UTRL_NEXUS_TYPE);
hci_writel(ufs, (1 << hba->nutmrs) - 1, HCI_UTMRL_NEXUS_TYPE);
hci_writel(ufs, 0xf, HCI_AXIDMA_RWDATA_BURST_LEN);
if (ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB)
ufshcd_dme_set(hba,
UIC_ARG_MIB(T_DBG_SKIP_INIT_HIBERN8_EXIT), TRUE);
if (attr->pa_granularity) {
exynos_ufs_enable_dbg_mode(hba);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_GRANULARITY),
attr->pa_granularity);
exynos_ufs_disable_dbg_mode(hba);
if (attr->pa_tactivate)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
attr->pa_tactivate);
if (attr->pa_hibern8time &&
!(ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER))
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
attr->pa_hibern8time);
}
if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) {
if (!attr->pa_granularity)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
&attr->pa_granularity);
if (!attr->pa_hibern8time)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
&attr->pa_hibern8time);
/*
* not wait for HIBERN8 time to exit hibernation
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 0);
if (attr->pa_granularity < 1 || attr->pa_granularity > 6) {
/* Valid range for granularity: 1 ~ 6 */
dev_warn(hba->dev,
"%s: pa_granularity %d is invalid, assuming backwards compatibility\n",
__func__,
attr->pa_granularity);
attr->pa_granularity = 6;
}
}
phy_calibrate(generic_phy);
if (ufs->drv_data->post_link)
ufs->drv_data->post_link(ufs);
return 0;
}
static int exynos_ufs_parse_dt(struct device *dev, struct exynos_ufs *ufs)
{
struct device_node *np = dev->of_node;
struct exynos_ufs_uic_attr *attr;
int ret = 0;
ufs->drv_data = device_get_match_data(dev);
if (ufs->drv_data && ufs->drv_data->uic_attr) {
attr = ufs->drv_data->uic_attr;
} else {
dev_err(dev, "failed to get uic attributes\n");
ret = -EINVAL;
goto out;
}
ufs->sysreg = syscon_regmap_lookup_by_phandle(np, "samsung,sysreg");
if (IS_ERR(ufs->sysreg))
ufs->sysreg = NULL;
else {
if (of_property_read_u32_index(np, "samsung,sysreg", 1,
&ufs->shareability_reg_offset)) {
dev_warn(dev, "can't get an offset from sysreg. Set to default value\n");
ufs->shareability_reg_offset = UFS_SHAREABILITY_OFFSET;
}
}
ufs->pclk_avail_min = PCLK_AVAIL_MIN;
ufs->pclk_avail_max = PCLK_AVAIL_MAX;
attr->rx_adv_fine_gran_sup_en = RX_ADV_FINE_GRAN_SUP_EN;
attr->rx_adv_fine_gran_step = RX_ADV_FINE_GRAN_STEP_VAL;
attr->rx_adv_min_actv_time_cap = RX_ADV_MIN_ACTV_TIME_CAP;
attr->pa_granularity = PA_GRANULARITY_VAL;
attr->pa_tactivate = PA_TACTIVATE_VAL;
attr->pa_hibern8time = PA_HIBERN8TIME_VAL;
out:
return ret;
}
static inline void exynos_ufs_priv_init(struct ufs_hba *hba,
struct exynos_ufs *ufs)
{
ufs->hba = hba;
ufs->opts = ufs->drv_data->opts;
ufs->rx_sel_idx = PA_MAXDATALANES;
if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX)
ufs->rx_sel_idx = 0;
hba->priv = (void *)ufs;
hba->quirks = ufs->drv_data->quirks;
}
static int exynos_ufs_init(struct ufs_hba *hba)
{
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct exynos_ufs *ufs;
int ret;
ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL);
if (!ufs)
return -ENOMEM;
/* exynos-specific hci */
ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci");
if (IS_ERR(ufs->reg_hci)) {
dev_err(dev, "cannot ioremap for hci vendor register\n");
return PTR_ERR(ufs->reg_hci);
}
/* unipro */
ufs->reg_unipro = devm_platform_ioremap_resource_byname(pdev, "unipro");
if (IS_ERR(ufs->reg_unipro)) {
dev_err(dev, "cannot ioremap for unipro register\n");
return PTR_ERR(ufs->reg_unipro);
}
/* ufs protector */
ufs->reg_ufsp = devm_platform_ioremap_resource_byname(pdev, "ufsp");
if (IS_ERR(ufs->reg_ufsp)) {
dev_err(dev, "cannot ioremap for ufs protector register\n");
return PTR_ERR(ufs->reg_ufsp);
}
ret = exynos_ufs_parse_dt(dev, ufs);
if (ret) {
dev_err(dev, "failed to get dt info.\n");
goto out;
}
ufs->phy = devm_phy_get(dev, "ufs-phy");
if (IS_ERR(ufs->phy)) {
ret = PTR_ERR(ufs->phy);
dev_err(dev, "failed to get ufs-phy\n");
goto out;
}
ret = phy_power_on(ufs->phy);
if (ret)
goto phy_off;
exynos_ufs_priv_init(hba, ufs);
if (ufs->drv_data->drv_init) {
ret = ufs->drv_data->drv_init(dev, ufs);
if (ret) {
dev_err(dev, "failed to init drv-data\n");
goto out;
}
}
ret = exynos_ufs_get_clk_info(ufs);
if (ret)
goto out;
exynos_ufs_specify_phy_time_attr(ufs);
exynos_ufs_config_smu(ufs);
return 0;
phy_off:
phy_power_off(ufs->phy);
out:
hba->priv = NULL;
return ret;
}
static int exynos_ufs_host_reset(struct ufs_hba *hba)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
unsigned long timeout = jiffies + msecs_to_jiffies(1);
u32 val;
int ret = 0;
exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val);
hci_writel(ufs, UFS_SW_RST_MASK, HCI_SW_RST);
do {
if (!(hci_readl(ufs, HCI_SW_RST) & UFS_SW_RST_MASK))
goto out;
} while (time_before(jiffies, timeout));
dev_err(hba->dev, "timeout host sw-reset\n");
ret = -ETIMEDOUT;
out:
exynos_ufs_auto_ctrl_hcc_restore(ufs, &val);
return ret;
}
static void exynos_ufs_dev_hw_reset(struct ufs_hba *hba)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
hci_writel(ufs, 0 << 0, HCI_GPIO_OUT);
udelay(5);
hci_writel(ufs, 1 << 0, HCI_GPIO_OUT);
}
static void exynos_ufs_pre_hibern8(struct ufs_hba *hba, u8 enter)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr;
if (!enter) {
if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
exynos_ufs_disable_auto_ctrl_hcc(ufs);
exynos_ufs_ungate_clks(ufs);
if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) {
static const unsigned int granularity_tbl[] = {
1, 4, 8, 16, 32, 100
};
int h8_time = attr->pa_hibern8time *
granularity_tbl[attr->pa_granularity - 1];
unsigned long us;
s64 delta;
do {
delta = h8_time - ktime_us_delta(ktime_get(),
ufs->entry_hibern8_t);
if (delta <= 0)
break;
us = min_t(s64, delta, USEC_PER_MSEC);
if (us >= 10)
usleep_range(us, us + 10);
} while (1);
}
}
}
static void exynos_ufs_post_hibern8(struct ufs_hba *hba, u8 enter)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
if (!enter) {
u32 cur_mode = 0;
u32 pwrmode;
if (ufshcd_is_hs_mode(&ufs->dev_req_params))
pwrmode = FAST_MODE;
else
pwrmode = SLOW_MODE;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &cur_mode);
if (cur_mode != (pwrmode << 4 | pwrmode)) {
dev_warn(hba->dev, "%s: power mode change\n", __func__);
hba->pwr_info.pwr_rx = (cur_mode >> 4) & 0xf;
hba->pwr_info.pwr_tx = cur_mode & 0xf;
ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
}
if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB))
exynos_ufs_establish_connt(ufs);
} else {
ufs->entry_hibern8_t = ktime_get();
exynos_ufs_gate_clks(ufs);
if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)
exynos_ufs_enable_auto_ctrl_hcc(ufs);
}
}
static int exynos_ufs_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
int ret = 0;
switch (status) {
case PRE_CHANGE:
if (ufs->drv_data->pre_hce_enable) {
ret = ufs->drv_data->pre_hce_enable(ufs);
if (ret)
return ret;
}
ret = exynos_ufs_host_reset(hba);
if (ret)
return ret;
exynos_ufs_dev_hw_reset(hba);
break;
case POST_CHANGE:
exynos_ufs_calc_pwm_clk_div(ufs);
if (!(ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL))
exynos_ufs_enable_auto_ctrl_hcc(ufs);
if (ufs->drv_data->post_hce_enable)
ret = ufs->drv_data->post_hce_enable(ufs);
break;
}
return ret;
}
static int exynos_ufs_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int ret = 0;
switch (status) {
case PRE_CHANGE:
ret = exynos_ufs_pre_link(hba);
break;
case POST_CHANGE:
ret = exynos_ufs_post_link(hba);
break;
}
return ret;
}
static int exynos_ufs_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
int ret = 0;
switch (status) {
case PRE_CHANGE:
ret = exynos_ufs_pre_pwr_mode(hba, dev_max_params,
dev_req_params);
break;
case POST_CHANGE:
ret = exynos_ufs_post_pwr_mode(hba, dev_req_params);
break;
}
return ret;
}
static void exynos_ufs_hibern8_notify(struct ufs_hba *hba,
enum uic_cmd_dme enter,
enum ufs_notify_change_status notify)
{
switch ((u8)notify) {
case PRE_CHANGE:
exynos_ufs_pre_hibern8(hba, enter);
break;
case POST_CHANGE:
exynos_ufs_post_hibern8(hba, enter);
break;
}
}
static int exynos_ufs_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
enum ufs_notify_change_status status)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
if (status == PRE_CHANGE)
return 0;
if (!ufshcd_is_link_active(hba))
phy_power_off(ufs->phy);
return 0;
}
static int exynos_ufs_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct exynos_ufs *ufs = ufshcd_get_variant(hba);
if (!ufshcd_is_link_active(hba))
phy_power_on(ufs->phy);
exynos_ufs_config_smu(ufs);
return 0;
}
static int exynosauto_ufs_vh_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
if (status == POST_CHANGE) {
ufshcd_set_link_active(hba);
ufshcd_set_ufs_dev_active(hba);
}
return 0;
}
static int exynosauto_ufs_vh_wait_ph_ready(struct ufs_hba *hba)
{
u32 mbox;
ktime_t start, stop;
start = ktime_get();
stop = ktime_add(start, ms_to_ktime(PH_READY_TIMEOUT_MS));
do {
mbox = ufshcd_readl(hba, PH2VH_MBOX);
/* TODO: Mailbox message protocols between the PH and VHs are
* not implemented yet. This will be supported later
*/
if ((mbox & MH_MSG_MASK) == MH_MSG_PH_READY)
return 0;
usleep_range(40, 50);
} while (ktime_before(ktime_get(), stop));
return -ETIME;
}
static int exynosauto_ufs_vh_init(struct ufs_hba *hba)
{
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct exynos_ufs *ufs;
int ret;
ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL);
if (!ufs)
return -ENOMEM;
/* exynos-specific hci */
ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci");
if (IS_ERR(ufs->reg_hci)) {
dev_err(dev, "cannot ioremap for hci vendor register\n");
return PTR_ERR(ufs->reg_hci);
}
ret = exynosauto_ufs_vh_wait_ph_ready(hba);
if (ret)
return ret;
ufs->drv_data = device_get_match_data(dev);
if (!ufs->drv_data)
return -ENODEV;
exynos_ufs_priv_init(hba, ufs);
return 0;
}
static struct ufs_hba_variant_ops ufs_hba_exynos_ops = {
.name = "exynos_ufs",
.init = exynos_ufs_init,
.hce_enable_notify = exynos_ufs_hce_enable_notify,
.link_startup_notify = exynos_ufs_link_startup_notify,
.pwr_change_notify = exynos_ufs_pwr_change_notify,
.setup_clocks = exynos_ufs_setup_clocks,
.setup_xfer_req = exynos_ufs_specify_nexus_t_xfer_req,
.setup_task_mgmt = exynos_ufs_specify_nexus_t_tm_req,
.hibern8_notify = exynos_ufs_hibern8_notify,
.suspend = exynos_ufs_suspend,
.resume = exynos_ufs_resume,
};
static struct ufs_hba_variant_ops ufs_hba_exynosauto_vh_ops = {
.name = "exynosauto_ufs_vh",
.init = exynosauto_ufs_vh_init,
.link_startup_notify = exynosauto_ufs_vh_link_startup_notify,
};
static int exynos_ufs_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
const struct ufs_hba_variant_ops *vops = &ufs_hba_exynos_ops;
const struct exynos_ufs_drv_data *drv_data =
device_get_match_data(dev);
if (drv_data && drv_data->vops)
vops = drv_data->vops;
err = ufshcd_pltfrm_init(pdev, vops);
if (err)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);
return err;
}
static int exynos_ufs_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
return 0;
}
static struct exynos_ufs_uic_attr exynos7_uic_attr = {
.tx_trailingclks = 0x10,
.tx_dif_p_nsec = 3000000, /* unit: ns */
.tx_dif_n_nsec = 1000000, /* unit: ns */
.tx_high_z_cnt_nsec = 20000, /* unit: ns */
.tx_base_unit_nsec = 100000, /* unit: ns */
.tx_gran_unit_nsec = 4000, /* unit: ns */
.tx_sleep_cnt = 1000, /* unit: ns */
.tx_min_activatetime = 0xa,
.rx_filler_enable = 0x2,
.rx_dif_p_nsec = 1000000, /* unit: ns */
.rx_hibern8_wait_nsec = 4000000, /* unit: ns */
.rx_base_unit_nsec = 100000, /* unit: ns */
.rx_gran_unit_nsec = 4000, /* unit: ns */
.rx_sleep_cnt = 1280, /* unit: ns */
.rx_stall_cnt = 320, /* unit: ns */
.rx_hs_g1_sync_len_cap = SYNC_LEN_COARSE(0xf),
.rx_hs_g2_sync_len_cap = SYNC_LEN_COARSE(0xf),
.rx_hs_g3_sync_len_cap = SYNC_LEN_COARSE(0xf),
.rx_hs_g1_prep_sync_len_cap = PREP_LEN(0xf),
.rx_hs_g2_prep_sync_len_cap = PREP_LEN(0xf),
.rx_hs_g3_prep_sync_len_cap = PREP_LEN(0xf),
.pa_dbg_option_suite = 0x30103,
};
static struct exynos_ufs_drv_data exynosauto_ufs_drvs = {
.uic_attr = &exynos7_uic_attr,
.quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN |
UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING,
.opts = EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL |
EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR |
EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX,
.drv_init = exynosauto_ufs_drv_init,
.post_hce_enable = exynosauto_ufs_post_hce_enable,
.pre_link = exynosauto_ufs_pre_link,
.pre_pwr_change = exynosauto_ufs_pre_pwr_change,
.post_pwr_change = exynosauto_ufs_post_pwr_change,
};
static struct exynos_ufs_drv_data exynosauto_ufs_vh_drvs = {
.vops = &ufs_hba_exynosauto_vh_ops,
.quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN |
UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
UFSHCI_QUIRK_BROKEN_HCE |
UFSHCD_QUIRK_BROKEN_UIC_CMD |
UFSHCD_QUIRK_SKIP_PH_CONFIGURATION |
UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING,
.opts = EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX,
};
static struct exynos_ufs_drv_data exynos_ufs_drvs = {
.uic_attr = &exynos7_uic_attr,
.quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN |
UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR |
UFSHCI_QUIRK_BROKEN_HCE |
UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR |
UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR |
UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL |
UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING |
UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE,
.opts = EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL |
EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL |
EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX |
EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB |
EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER,
.drv_init = exynos7_ufs_drv_init,
.pre_link = exynos7_ufs_pre_link,
.post_link = exynos7_ufs_post_link,
.pre_pwr_change = exynos7_ufs_pre_pwr_change,
.post_pwr_change = exynos7_ufs_post_pwr_change,
};
static const struct of_device_id exynos_ufs_of_match[] = {
{ .compatible = "samsung,exynos7-ufs",
.data = &exynos_ufs_drvs },
{ .compatible = "samsung,exynosautov9-ufs",
.data = &exynosauto_ufs_drvs },
{ .compatible = "samsung,exynosautov9-ufs-vh",
.data = &exynosauto_ufs_vh_drvs },
{},
};
static const struct dev_pm_ops exynos_ufs_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ufshcd_system_suspend, ufshcd_system_resume)
SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
.prepare = ufshcd_suspend_prepare,
.complete = ufshcd_resume_complete,
};
static struct platform_driver exynos_ufs_pltform = {
.probe = exynos_ufs_probe,
.remove = exynos_ufs_remove,
.shutdown = ufshcd_pltfrm_shutdown,
.driver = {
.name = "exynos-ufshc",
.pm = &exynos_ufs_pm_ops,
.of_match_table = of_match_ptr(exynos_ufs_of_match),
},
};
module_platform_driver(exynos_ufs_pltform);
MODULE_AUTHOR("Alim Akhtar <alim.akhtar@samsung.com>");
MODULE_AUTHOR("Seungwon Jeon <essuuj@gmail.com>");
MODULE_DESCRIPTION("Exynos UFS HCI Driver");
MODULE_LICENSE("GPL v2");