linux-stable/arch/arm64/kernel/process.c
Linus Torvalds 3bb61aa618 arm64 fixes for -rc7
- Fix numerous issues with instrumentation and exception entry
 
 - Fix hideous typo in unused register field definition
 -----BEGIN PGP SIGNATURE-----
 
 iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl/HvbwQHHdpbGxAa2Vy
 bmVsLm9yZwAKCRC3rHDchMFjNFTMB/oD0ucfP6CH65w+7Sbsv2L8FABfYzSrA9gP
 f1cmeh1+MyRN4Nbx2ves5wcRGoX1CgZ8KFAmLXG6yyn7UDA/q27CTELknwobhOft
 tQIPB2hFDW9qq3VBXFReL3aoXLnWUiRL3nBxQFt7LG1Xor/ivEb1ZFht351UklDh
 u1P6NVptpjXFuGPvdqxkHo2WzT0QHI57MRuc1l7I1FRo4dV1nKSlwohu0Ydii4q9
 8oLhx77Ga1SWK80IztNmpo7CSMP/FLGDwbUE3vAaftUJx5CBt+lYR1CeWNACSEvy
 22y7CkJWKGQccG62oHI7zQaZm1+fum70ndP5dDlfQW/BcCaz8vRH
 =KSDc
 -----END PGP SIGNATURE-----

Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 fixes from Will Deacon:
 "I'm sad to say that we've got an unusually large arm64 fixes pull for
  rc7 which addresses numerous significant instrumentation issues with
  our entry code.

  Without these patches, lockdep is hopelessly unreliable in some
  configurations [1,2] and syzkaller is therefore not a lot of use
  because it's so noisy.

  Although much of this has always been broken, it appears to have been
  exposed more readily by other changes such as 044d0d6de9 ("lockdep:
  Only trace IRQ edges") and general lockdep improvements around IRQ
  tracing and NMIs.

  Fixing this properly required moving much of the instrumentation hooks
  from our entry assembly into C, which Mark has been working on for the
  last few weeks. We're not quite ready to move to the recently added
  generic functions yet, but the code here has been deliberately written
  to mimic that closely so we can look at cleaning things up once we
  have a bit more breathing room.

  Having said all that, the second version of these patches was posted
  last week and I pushed it into our CI (kernelci and cki) along with a
  commit which forced on PROVE_LOCKING, NOHZ_FULL and
  CONTEXT_TRACKING_FORCE. The result? We found a real bug in the
  md/raid10 code [3].

  Oh, and there's also a really silly typo patch that's unrelated.

  Summary:

   - Fix numerous issues with instrumentation and exception entry

   - Fix hideous typo in unused register field definition"

[1] https://lore.kernel.org/r/CACT4Y+aAzoJ48Mh1wNYD17pJqyEcDnrxGfApir=-j171TnQXhw@mail.gmail.com
[2] https://lore.kernel.org/r/20201119193819.GA2601289@elver.google.com
[3] https://lore.kernel.org/r/94c76d5e-466a-bc5f-e6c2-a11b65c39f83@redhat.com

* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: mte: Fix typo in macro definition
  arm64: entry: fix EL1 debug transitions
  arm64: entry: fix NMI {user, kernel}->kernel transitions
  arm64: entry: fix non-NMI kernel<->kernel transitions
  arm64: ptrace: prepare for EL1 irq/rcu tracking
  arm64: entry: fix non-NMI user<->kernel transitions
  arm64: entry: move el1 irq/nmi logic to C
  arm64: entry: prepare ret_to_user for function call
  arm64: entry: move enter_from_user_mode to entry-common.c
  arm64: entry: mark entry code as noinstr
  arm64: mark idle code as noinstr
  arm64: syscall: exit userspace before unmasking exceptions
2020-12-02 12:27:37 -08:00

748 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/process.c
*
* Original Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
* Copyright (C) 2012 ARM Ltd.
*/
#include <stdarg.h>
#include <linux/compat.h>
#include <linux/efi.h>
#include <linux/elf.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/nospec.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/personality.h>
#include <linux/notifier.h>
#include <trace/events/power.h>
#include <linux/percpu.h>
#include <linux/thread_info.h>
#include <linux/prctl.h>
#include <asm/alternative.h>
#include <asm/arch_gicv3.h>
#include <asm/compat.h>
#include <asm/cpufeature.h>
#include <asm/cacheflush.h>
#include <asm/exec.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
/*
* Function pointers to optional machine specific functions
*/
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
static void noinstr __cpu_do_idle(void)
{
dsb(sy);
wfi();
}
static void noinstr __cpu_do_idle_irqprio(void)
{
unsigned long pmr;
unsigned long daif_bits;
daif_bits = read_sysreg(daif);
write_sysreg(daif_bits | PSR_I_BIT, daif);
/*
* Unmask PMR before going idle to make sure interrupts can
* be raised.
*/
pmr = gic_read_pmr();
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
__cpu_do_idle();
gic_write_pmr(pmr);
write_sysreg(daif_bits, daif);
}
/*
* cpu_do_idle()
*
* Idle the processor (wait for interrupt).
*
* If the CPU supports priority masking we must do additional work to
* ensure that interrupts are not masked at the PMR (because the core will
* not wake up if we block the wake up signal in the interrupt controller).
*/
void noinstr cpu_do_idle(void)
{
if (system_uses_irq_prio_masking())
__cpu_do_idle_irqprio();
else
__cpu_do_idle();
}
/*
* This is our default idle handler.
*/
void noinstr arch_cpu_idle(void)
{
/*
* This should do all the clock switching and wait for interrupt
* tricks
*/
cpu_do_idle();
raw_local_irq_enable();
}
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
/*
* Called by kexec, immediately prior to machine_kexec().
*
* This must completely disable all secondary CPUs; simply causing those CPUs
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
* kexec'd kernel to use any and all RAM as it sees fit, without having to
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
*/
void machine_shutdown(void)
{
smp_shutdown_nonboot_cpus(reboot_cpu);
}
/*
* Halting simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this.
*/
void machine_halt(void)
{
local_irq_disable();
smp_send_stop();
while (1);
}
/*
* Power-off simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this. When the system power is turned off, it will take all CPUs
* with it.
*/
void machine_power_off(void)
{
local_irq_disable();
smp_send_stop();
if (pm_power_off)
pm_power_off();
}
/*
* Restart requires that the secondary CPUs stop performing any activity
* while the primary CPU resets the system. Systems with multiple CPUs must
* provide a HW restart implementation, to ensure that all CPUs reset at once.
* This is required so that any code running after reset on the primary CPU
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
* executing pre-reset code, and using RAM that the primary CPU's code wishes
* to use. Implementing such co-ordination would be essentially impossible.
*/
void machine_restart(char *cmd)
{
/* Disable interrupts first */
local_irq_disable();
smp_send_stop();
/*
* UpdateCapsule() depends on the system being reset via
* ResetSystem().
*/
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_reboot(reboot_mode, NULL);
/* Now call the architecture specific reboot code. */
if (arm_pm_restart)
arm_pm_restart(reboot_mode, cmd);
else
do_kernel_restart(cmd);
/*
* Whoops - the architecture was unable to reboot.
*/
printk("Reboot failed -- System halted\n");
while (1);
}
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
static const char *const btypes[] = {
bstr(NONE, "--"),
bstr( JC, "jc"),
bstr( C, "-c"),
bstr( J , "j-")
};
#undef bstr
static void print_pstate(struct pt_regs *regs)
{
u64 pstate = regs->pstate;
if (compat_user_mode(regs)) {
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
pstate,
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
pstate & PSR_AA32_F_BIT ? 'F' : 'f');
} else {
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
PSR_BTYPE_SHIFT];
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
pstate,
pstate & PSR_N_BIT ? 'N' : 'n',
pstate & PSR_Z_BIT ? 'Z' : 'z',
pstate & PSR_C_BIT ? 'C' : 'c',
pstate & PSR_V_BIT ? 'V' : 'v',
pstate & PSR_D_BIT ? 'D' : 'd',
pstate & PSR_A_BIT ? 'A' : 'a',
pstate & PSR_I_BIT ? 'I' : 'i',
pstate & PSR_F_BIT ? 'F' : 'f',
pstate & PSR_PAN_BIT ? '+' : '-',
pstate & PSR_UAO_BIT ? '+' : '-',
pstate & PSR_TCO_BIT ? '+' : '-',
btype_str);
}
}
void __show_regs(struct pt_regs *regs)
{
int i, top_reg;
u64 lr, sp;
if (compat_user_mode(regs)) {
lr = regs->compat_lr;
sp = regs->compat_sp;
top_reg = 12;
} else {
lr = regs->regs[30];
sp = regs->sp;
top_reg = 29;
}
show_regs_print_info(KERN_DEFAULT);
print_pstate(regs);
if (!user_mode(regs)) {
printk("pc : %pS\n", (void *)regs->pc);
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
} else {
printk("pc : %016llx\n", regs->pc);
printk("lr : %016llx\n", lr);
}
printk("sp : %016llx\n", sp);
if (system_uses_irq_prio_masking())
printk("pmr_save: %08llx\n", regs->pmr_save);
i = top_reg;
while (i >= 0) {
printk("x%-2d: %016llx ", i, regs->regs[i]);
i--;
if (i % 2 == 0) {
pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
i--;
}
pr_cont("\n");
}
}
void show_regs(struct pt_regs * regs)
{
__show_regs(regs);
dump_backtrace(regs, NULL, KERN_DEFAULT);
}
static void tls_thread_flush(void)
{
write_sysreg(0, tpidr_el0);
if (is_compat_task()) {
current->thread.uw.tp_value = 0;
/*
* We need to ensure ordering between the shadow state and the
* hardware state, so that we don't corrupt the hardware state
* with a stale shadow state during context switch.
*/
barrier();
write_sysreg(0, tpidrro_el0);
}
}
static void flush_tagged_addr_state(void)
{
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
clear_thread_flag(TIF_TAGGED_ADDR);
}
void flush_thread(void)
{
fpsimd_flush_thread();
tls_thread_flush();
flush_ptrace_hw_breakpoint(current);
flush_tagged_addr_state();
flush_mte_state();
}
void release_thread(struct task_struct *dead_task)
{
}
void arch_release_task_struct(struct task_struct *tsk)
{
fpsimd_release_task(tsk);
}
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
if (current->mm)
fpsimd_preserve_current_state();
*dst = *src;
/* We rely on the above assignment to initialize dst's thread_flags: */
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
/*
* Detach src's sve_state (if any) from dst so that it does not
* get erroneously used or freed prematurely. dst's sve_state
* will be allocated on demand later on if dst uses SVE.
* For consistency, also clear TIF_SVE here: this could be done
* later in copy_process(), but to avoid tripping up future
* maintainers it is best not to leave TIF_SVE and sve_state in
* an inconsistent state, even temporarily.
*/
dst->thread.sve_state = NULL;
clear_tsk_thread_flag(dst, TIF_SVE);
/* clear any pending asynchronous tag fault raised by the parent */
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
return 0;
}
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
int copy_thread(unsigned long clone_flags, unsigned long stack_start,
unsigned long stk_sz, struct task_struct *p, unsigned long tls)
{
struct pt_regs *childregs = task_pt_regs(p);
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
/*
* In case p was allocated the same task_struct pointer as some
* other recently-exited task, make sure p is disassociated from
* any cpu that may have run that now-exited task recently.
* Otherwise we could erroneously skip reloading the FPSIMD
* registers for p.
*/
fpsimd_flush_task_state(p);
ptrauth_thread_init_kernel(p);
if (likely(!(p->flags & PF_KTHREAD))) {
*childregs = *current_pt_regs();
childregs->regs[0] = 0;
/*
* Read the current TLS pointer from tpidr_el0 as it may be
* out-of-sync with the saved value.
*/
*task_user_tls(p) = read_sysreg(tpidr_el0);
if (stack_start) {
if (is_compat_thread(task_thread_info(p)))
childregs->compat_sp = stack_start;
else
childregs->sp = stack_start;
}
/*
* If a TLS pointer was passed to clone, use it for the new
* thread.
*/
if (clone_flags & CLONE_SETTLS)
p->thread.uw.tp_value = tls;
} else {
memset(childregs, 0, sizeof(struct pt_regs));
childregs->pstate = PSR_MODE_EL1h;
if (IS_ENABLED(CONFIG_ARM64_UAO) &&
cpus_have_const_cap(ARM64_HAS_UAO))
childregs->pstate |= PSR_UAO_BIT;
spectre_v4_enable_task_mitigation(p);
if (system_uses_irq_prio_masking())
childregs->pmr_save = GIC_PRIO_IRQON;
p->thread.cpu_context.x19 = stack_start;
p->thread.cpu_context.x20 = stk_sz;
}
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
p->thread.cpu_context.sp = (unsigned long)childregs;
ptrace_hw_copy_thread(p);
return 0;
}
void tls_preserve_current_state(void)
{
*task_user_tls(current) = read_sysreg(tpidr_el0);
}
static void tls_thread_switch(struct task_struct *next)
{
tls_preserve_current_state();
if (is_compat_thread(task_thread_info(next)))
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
else if (!arm64_kernel_unmapped_at_el0())
write_sysreg(0, tpidrro_el0);
write_sysreg(*task_user_tls(next), tpidr_el0);
}
/* Restore the UAO state depending on next's addr_limit */
void uao_thread_switch(struct task_struct *next)
{
if (IS_ENABLED(CONFIG_ARM64_UAO)) {
if (task_thread_info(next)->addr_limit == KERNEL_DS)
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
else
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
}
}
/*
* Force SSBS state on context-switch, since it may be lost after migrating
* from a CPU which treats the bit as RES0 in a heterogeneous system.
*/
static void ssbs_thread_switch(struct task_struct *next)
{
/*
* Nothing to do for kernel threads, but 'regs' may be junk
* (e.g. idle task) so check the flags and bail early.
*/
if (unlikely(next->flags & PF_KTHREAD))
return;
/*
* If all CPUs implement the SSBS extension, then we just need to
* context-switch the PSTATE field.
*/
if (cpus_have_const_cap(ARM64_SSBS))
return;
spectre_v4_enable_task_mitigation(next);
}
/*
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
* shadow copy so that we can restore this upon entry from userspace.
*
* This is *only* for exception entry from EL0, and is not valid until we
* __switch_to() a user task.
*/
DEFINE_PER_CPU(struct task_struct *, __entry_task);
static void entry_task_switch(struct task_struct *next)
{
__this_cpu_write(__entry_task, next);
}
/*
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
* Assuming the virtual counter is enabled at the beginning of times:
*
* - disable access when switching from a 64bit task to a 32bit task
* - enable access when switching from a 32bit task to a 64bit task
*/
static void erratum_1418040_thread_switch(struct task_struct *prev,
struct task_struct *next)
{
bool prev32, next32;
u64 val;
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
return;
prev32 = is_compat_thread(task_thread_info(prev));
next32 = is_compat_thread(task_thread_info(next));
if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
return;
val = read_sysreg(cntkctl_el1);
if (!next32)
val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
else
val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
write_sysreg(val, cntkctl_el1);
}
/*
* Thread switching.
*/
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next)
{
struct task_struct *last;
fpsimd_thread_switch(next);
tls_thread_switch(next);
hw_breakpoint_thread_switch(next);
contextidr_thread_switch(next);
entry_task_switch(next);
uao_thread_switch(next);
ssbs_thread_switch(next);
erratum_1418040_thread_switch(prev, next);
/*
* Complete any pending TLB or cache maintenance on this CPU in case
* the thread migrates to a different CPU.
* This full barrier is also required by the membarrier system
* call.
*/
dsb(ish);
/*
* MTE thread switching must happen after the DSB above to ensure that
* any asynchronous tag check faults have been logged in the TFSR*_EL1
* registers.
*/
mte_thread_switch(next);
/* the actual thread switch */
last = cpu_switch_to(prev, next);
return last;
}
unsigned long get_wchan(struct task_struct *p)
{
struct stackframe frame;
unsigned long stack_page, ret = 0;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)try_get_task_stack(p);
if (!stack_page)
return 0;
start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
do {
if (unwind_frame(p, &frame))
goto out;
if (!in_sched_functions(frame.pc)) {
ret = frame.pc;
goto out;
}
} while (count ++ < 16);
out:
put_task_stack(p);
return ret;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
/*
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
*/
void arch_setup_new_exec(void)
{
current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
ptrauth_thread_init_user(current);
if (task_spec_ssb_noexec(current)) {
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
PR_SPEC_ENABLE);
}
}
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
/*
* Control the relaxed ABI allowing tagged user addresses into the kernel.
*/
static unsigned int tagged_addr_disabled;
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
{
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (system_supports_mte())
valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
if (arg & ~valid_mask)
return -EINVAL;
/*
* Do not allow the enabling of the tagged address ABI if globally
* disabled via sysctl abi.tagged_addr_disabled.
*/
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
return -EINVAL;
if (set_mte_ctrl(task, arg) != 0)
return -EINVAL;
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
return 0;
}
long get_tagged_addr_ctrl(struct task_struct *task)
{
long ret = 0;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
ret = PR_TAGGED_ADDR_ENABLE;
ret |= get_mte_ctrl(task);
return ret;
}
/*
* Global sysctl to disable the tagged user addresses support. This control
* only prevents the tagged address ABI enabling via prctl() and does not
* disable it for tasks that already opted in to the relaxed ABI.
*/
static struct ctl_table tagged_addr_sysctl_table[] = {
{
.procname = "tagged_addr_disabled",
.mode = 0644,
.data = &tagged_addr_disabled,
.maxlen = sizeof(int),
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
static int __init tagged_addr_init(void)
{
if (!register_sysctl("abi", tagged_addr_sysctl_table))
return -EINVAL;
return 0;
}
core_initcall(tagged_addr_init);
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
asmlinkage void __sched arm64_preempt_schedule_irq(void)
{
lockdep_assert_irqs_disabled();
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack. cpufeature's enable calls may modify PSTATE, but
* resuming one of these preempted tasks would undo those changes.
*
* Only allow a task to be preempted once cpufeatures have been
* enabled.
*/
if (system_capabilities_finalized())
preempt_schedule_irq();
}
#ifdef CONFIG_BINFMT_ELF
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
bool has_interp, bool is_interp)
{
/*
* For dynamically linked executables the interpreter is
* responsible for setting PROT_BTI on everything except
* itself.
*/
if (is_interp != has_interp)
return prot;
if (!(state->flags & ARM64_ELF_BTI))
return prot;
if (prot & PROT_EXEC)
prot |= PROT_BTI;
return prot;
}
#endif