linux-stable/arch/arm64/kernel/efi-entry.S
Ard Biesheuvel 95b395963f arm64/efi: efistub: jump to 'stext' directly, not through the header
After the EFI stub has done its business, it jumps into the kernel by
branching to offset #0 of the loaded Image, which is where it expects
to find the header containing a 'branch to stext' instruction.

However, the UEFI spec 2.1.1 states the following regarding PE/COFF
image loading:
"A UEFI image is loaded into memory through the LoadImage() Boot
Service. This service loads an image with a PE32+ format into memory.
This PE32+ loader is required to load all sections of the PE32+ image
into memory."

In other words, it is /not/ required to load parts of the image that are
not covered by a PE/COFF section, so it may not have loaded the header
at the expected offset, as it is not covered by any PE/COFF section.

So instead, jump to 'stext' directly, which is at the base of the
PE/COFF .text section, by supplying a symbol 'stext_offset' to
efi-entry.o which contains the relative offset of stext into the Image.
Also replace other open coded calculations of the same value with a
reference to 'stext_offset'

Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Roy Franz <roy.franz@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2014-11-05 09:02:59 +01:00

109 lines
2.5 KiB
ArmAsm

/*
* EFI entry point.
*
* Copyright (C) 2013, 2014 Red Hat, Inc.
* Author: Mark Salter <msalter@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/assembler.h>
#define EFI_LOAD_ERROR 0x8000000000000001
__INIT
/*
* We arrive here from the EFI boot manager with:
*
* * CPU in little-endian mode
* * MMU on with identity-mapped RAM
* * Icache and Dcache on
*
* We will most likely be running from some place other than where
* we want to be. The kernel image wants to be placed at TEXT_OFFSET
* from start of RAM.
*/
ENTRY(efi_stub_entry)
/*
* Create a stack frame to save FP/LR with extra space
* for image_addr variable passed to efi_entry().
*/
stp x29, x30, [sp, #-32]!
/*
* Call efi_entry to do the real work.
* x0 and x1 are already set up by firmware. Current runtime
* address of image is calculated and passed via *image_addr.
*
* unsigned long efi_entry(void *handle,
* efi_system_table_t *sys_table,
* unsigned long *image_addr) ;
*/
adrp x8, _text
add x8, x8, #:lo12:_text
add x2, sp, 16
str x8, [x2]
bl efi_entry
cmn x0, #1
b.eq efi_load_fail
/*
* efi_entry() will have relocated the kernel image if necessary
* and we return here with device tree address in x0 and the kernel
* entry point stored at *image_addr. Save those values in registers
* which are callee preserved.
*/
mov x20, x0 // DTB address
ldr x0, [sp, #16] // relocated _text address
ldr x21, =stext_offset
add x21, x0, x21
/*
* Flush dcache covering current runtime addresses
* of kernel text/data. Then flush all of icache.
*/
adrp x1, _text
add x1, x1, #:lo12:_text
adrp x2, _edata
add x2, x2, #:lo12:_edata
sub x1, x2, x1
bl __flush_dcache_area
ic ialluis
/* Turn off Dcache and MMU */
mrs x0, CurrentEL
cmp x0, #CurrentEL_EL2
b.ne 1f
mrs x0, sctlr_el2
bic x0, x0, #1 << 0 // clear SCTLR.M
bic x0, x0, #1 << 2 // clear SCTLR.C
msr sctlr_el2, x0
isb
b 2f
1:
mrs x0, sctlr_el1
bic x0, x0, #1 << 0 // clear SCTLR.M
bic x0, x0, #1 << 2 // clear SCTLR.C
msr sctlr_el1, x0
isb
2:
/* Jump to kernel entry point */
mov x0, x20
mov x1, xzr
mov x2, xzr
mov x3, xzr
br x21
efi_load_fail:
mov x0, #EFI_LOAD_ERROR
ldp x29, x30, [sp], #32
ret
ENDPROC(efi_stub_entry)