mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 16:38:12 +00:00
0eaa8d153a
Use a statically generated key for signing the enclave, because generating keys on the fly can eat the kernel entropy pool. Another good reason for doing this is predictable builds. The RSA has been arbitrarily selected. It's contents do not matter. This also makes the selftest execute a lot quicker instead of the delay that it had before (because of slow key generation). [ bp: Disambiguate "static key" which means something else in the kernel, fix typos. ] Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: linux-kselftest@vger.kernel.org Link: https://lkml.kernel.org/r/20201118170640.39629-1-jarkko@kernel.org
381 lines
7.7 KiB
C
381 lines
7.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2016-20 Intel Corporation. */
|
|
|
|
#define _GNU_SOURCE
|
|
#include <assert.h>
|
|
#include <getopt.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/pem.h>
|
|
#include "defines.h"
|
|
#include "main.h"
|
|
|
|
struct q1q2_ctx {
|
|
BN_CTX *bn_ctx;
|
|
BIGNUM *m;
|
|
BIGNUM *s;
|
|
BIGNUM *q1;
|
|
BIGNUM *qr;
|
|
BIGNUM *q2;
|
|
};
|
|
|
|
static void free_q1q2_ctx(struct q1q2_ctx *ctx)
|
|
{
|
|
BN_CTX_free(ctx->bn_ctx);
|
|
BN_free(ctx->m);
|
|
BN_free(ctx->s);
|
|
BN_free(ctx->q1);
|
|
BN_free(ctx->qr);
|
|
BN_free(ctx->q2);
|
|
}
|
|
|
|
static bool alloc_q1q2_ctx(const uint8_t *s, const uint8_t *m,
|
|
struct q1q2_ctx *ctx)
|
|
{
|
|
ctx->bn_ctx = BN_CTX_new();
|
|
ctx->s = BN_bin2bn(s, SGX_MODULUS_SIZE, NULL);
|
|
ctx->m = BN_bin2bn(m, SGX_MODULUS_SIZE, NULL);
|
|
ctx->q1 = BN_new();
|
|
ctx->qr = BN_new();
|
|
ctx->q2 = BN_new();
|
|
|
|
if (!ctx->bn_ctx || !ctx->s || !ctx->m || !ctx->q1 || !ctx->qr ||
|
|
!ctx->q2) {
|
|
free_q1q2_ctx(ctx);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool calc_q1q2(const uint8_t *s, const uint8_t *m, uint8_t *q1,
|
|
uint8_t *q2)
|
|
{
|
|
struct q1q2_ctx ctx;
|
|
|
|
if (!alloc_q1q2_ctx(s, m, &ctx)) {
|
|
fprintf(stderr, "Not enough memory for Q1Q2 calculation\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_mul(ctx.q1, ctx.s, ctx.s, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (!BN_div(ctx.q1, ctx.qr, ctx.q1, ctx.m, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (BN_num_bytes(ctx.q1) > SGX_MODULUS_SIZE) {
|
|
fprintf(stderr, "Too large Q1 %d bytes\n",
|
|
BN_num_bytes(ctx.q1));
|
|
goto out;
|
|
}
|
|
|
|
if (!BN_mul(ctx.q2, ctx.s, ctx.qr, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (!BN_div(ctx.q2, NULL, ctx.q2, ctx.m, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (BN_num_bytes(ctx.q2) > SGX_MODULUS_SIZE) {
|
|
fprintf(stderr, "Too large Q2 %d bytes\n",
|
|
BN_num_bytes(ctx.q2));
|
|
goto out;
|
|
}
|
|
|
|
BN_bn2bin(ctx.q1, q1);
|
|
BN_bn2bin(ctx.q2, q2);
|
|
|
|
free_q1q2_ctx(&ctx);
|
|
return true;
|
|
out:
|
|
free_q1q2_ctx(&ctx);
|
|
return false;
|
|
}
|
|
|
|
struct sgx_sigstruct_payload {
|
|
struct sgx_sigstruct_header header;
|
|
struct sgx_sigstruct_body body;
|
|
};
|
|
|
|
static bool check_crypto_errors(void)
|
|
{
|
|
int err;
|
|
bool had_errors = false;
|
|
const char *filename;
|
|
int line;
|
|
char str[256];
|
|
|
|
for ( ; ; ) {
|
|
if (ERR_peek_error() == 0)
|
|
break;
|
|
|
|
had_errors = true;
|
|
err = ERR_get_error_line(&filename, &line);
|
|
ERR_error_string_n(err, str, sizeof(str));
|
|
fprintf(stderr, "crypto: %s: %s:%d\n", str, filename, line);
|
|
}
|
|
|
|
return had_errors;
|
|
}
|
|
|
|
static inline const BIGNUM *get_modulus(RSA *key)
|
|
{
|
|
const BIGNUM *n;
|
|
|
|
RSA_get0_key(key, &n, NULL, NULL);
|
|
return n;
|
|
}
|
|
|
|
static RSA *gen_sign_key(void)
|
|
{
|
|
unsigned long sign_key_length;
|
|
BIO *bio;
|
|
RSA *key;
|
|
|
|
sign_key_length = (unsigned long)&sign_key_end -
|
|
(unsigned long)&sign_key;
|
|
|
|
bio = BIO_new_mem_buf(&sign_key, sign_key_length);
|
|
if (!bio)
|
|
return NULL;
|
|
|
|
key = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL);
|
|
BIO_free(bio);
|
|
|
|
return key;
|
|
}
|
|
|
|
static void reverse_bytes(void *data, int length)
|
|
{
|
|
int i = 0;
|
|
int j = length - 1;
|
|
uint8_t temp;
|
|
uint8_t *ptr = data;
|
|
|
|
while (i < j) {
|
|
temp = ptr[i];
|
|
ptr[i] = ptr[j];
|
|
ptr[j] = temp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
enum mrtags {
|
|
MRECREATE = 0x0045544145524345,
|
|
MREADD = 0x0000000044444145,
|
|
MREEXTEND = 0x00444E4554584545,
|
|
};
|
|
|
|
static bool mrenclave_update(EVP_MD_CTX *ctx, const void *data)
|
|
{
|
|
if (!EVP_DigestUpdate(ctx, data, 64)) {
|
|
fprintf(stderr, "digest update failed\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mrenclave_commit(EVP_MD_CTX *ctx, uint8_t *mrenclave)
|
|
{
|
|
unsigned int size;
|
|
|
|
if (!EVP_DigestFinal_ex(ctx, (unsigned char *)mrenclave, &size)) {
|
|
fprintf(stderr, "digest commit failed\n");
|
|
return false;
|
|
}
|
|
|
|
if (size != 32) {
|
|
fprintf(stderr, "invalid digest size = %u\n", size);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct mrecreate {
|
|
uint64_t tag;
|
|
uint32_t ssaframesize;
|
|
uint64_t size;
|
|
uint8_t reserved[44];
|
|
} __attribute__((__packed__));
|
|
|
|
|
|
static bool mrenclave_ecreate(EVP_MD_CTX *ctx, uint64_t blob_size)
|
|
{
|
|
struct mrecreate mrecreate;
|
|
uint64_t encl_size;
|
|
|
|
for (encl_size = 0x1000; encl_size < blob_size; )
|
|
encl_size <<= 1;
|
|
|
|
memset(&mrecreate, 0, sizeof(mrecreate));
|
|
mrecreate.tag = MRECREATE;
|
|
mrecreate.ssaframesize = 1;
|
|
mrecreate.size = encl_size;
|
|
|
|
if (!EVP_DigestInit_ex(ctx, EVP_sha256(), NULL))
|
|
return false;
|
|
|
|
return mrenclave_update(ctx, &mrecreate);
|
|
}
|
|
|
|
struct mreadd {
|
|
uint64_t tag;
|
|
uint64_t offset;
|
|
uint64_t flags; /* SECINFO flags */
|
|
uint8_t reserved[40];
|
|
} __attribute__((__packed__));
|
|
|
|
static bool mrenclave_eadd(EVP_MD_CTX *ctx, uint64_t offset, uint64_t flags)
|
|
{
|
|
struct mreadd mreadd;
|
|
|
|
memset(&mreadd, 0, sizeof(mreadd));
|
|
mreadd.tag = MREADD;
|
|
mreadd.offset = offset;
|
|
mreadd.flags = flags;
|
|
|
|
return mrenclave_update(ctx, &mreadd);
|
|
}
|
|
|
|
struct mreextend {
|
|
uint64_t tag;
|
|
uint64_t offset;
|
|
uint8_t reserved[48];
|
|
} __attribute__((__packed__));
|
|
|
|
static bool mrenclave_eextend(EVP_MD_CTX *ctx, uint64_t offset,
|
|
const uint8_t *data)
|
|
{
|
|
struct mreextend mreextend;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x1000; i += 0x100) {
|
|
memset(&mreextend, 0, sizeof(mreextend));
|
|
mreextend.tag = MREEXTEND;
|
|
mreextend.offset = offset + i;
|
|
|
|
if (!mrenclave_update(ctx, &mreextend))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x00]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x40]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x80]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0xC0]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mrenclave_segment(EVP_MD_CTX *ctx, struct encl *encl,
|
|
struct encl_segment *seg)
|
|
{
|
|
uint64_t end = seg->offset + seg->size;
|
|
uint64_t offset;
|
|
|
|
for (offset = seg->offset; offset < end; offset += PAGE_SIZE) {
|
|
if (!mrenclave_eadd(ctx, offset, seg->flags))
|
|
return false;
|
|
|
|
if (!mrenclave_eextend(ctx, offset, encl->src + offset))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool encl_measure(struct encl *encl)
|
|
{
|
|
uint64_t header1[2] = {0x000000E100000006, 0x0000000000010000};
|
|
uint64_t header2[2] = {0x0000006000000101, 0x0000000100000060};
|
|
struct sgx_sigstruct *sigstruct = &encl->sigstruct;
|
|
struct sgx_sigstruct_payload payload;
|
|
uint8_t digest[SHA256_DIGEST_LENGTH];
|
|
unsigned int siglen;
|
|
RSA *key = NULL;
|
|
EVP_MD_CTX *ctx;
|
|
int i;
|
|
|
|
memset(sigstruct, 0, sizeof(*sigstruct));
|
|
|
|
sigstruct->header.header1[0] = header1[0];
|
|
sigstruct->header.header1[1] = header1[1];
|
|
sigstruct->header.header2[0] = header2[0];
|
|
sigstruct->header.header2[1] = header2[1];
|
|
sigstruct->exponent = 3;
|
|
sigstruct->body.attributes = SGX_ATTR_MODE64BIT;
|
|
sigstruct->body.xfrm = 3;
|
|
|
|
/* sanity check */
|
|
if (check_crypto_errors())
|
|
goto err;
|
|
|
|
key = gen_sign_key();
|
|
if (!key) {
|
|
ERR_print_errors_fp(stdout);
|
|
goto err;
|
|
}
|
|
|
|
BN_bn2bin(get_modulus(key), sigstruct->modulus);
|
|
|
|
ctx = EVP_MD_CTX_create();
|
|
if (!ctx)
|
|
goto err;
|
|
|
|
if (!mrenclave_ecreate(ctx, encl->src_size))
|
|
goto err;
|
|
|
|
for (i = 0; i < encl->nr_segments; i++) {
|
|
struct encl_segment *seg = &encl->segment_tbl[i];
|
|
|
|
if (!mrenclave_segment(ctx, encl, seg))
|
|
goto err;
|
|
}
|
|
|
|
if (!mrenclave_commit(ctx, sigstruct->body.mrenclave))
|
|
goto err;
|
|
|
|
memcpy(&payload.header, &sigstruct->header, sizeof(sigstruct->header));
|
|
memcpy(&payload.body, &sigstruct->body, sizeof(sigstruct->body));
|
|
|
|
SHA256((unsigned char *)&payload, sizeof(payload), digest);
|
|
|
|
if (!RSA_sign(NID_sha256, digest, SHA256_DIGEST_LENGTH,
|
|
sigstruct->signature, &siglen, key))
|
|
goto err;
|
|
|
|
if (!calc_q1q2(sigstruct->signature, sigstruct->modulus, sigstruct->q1,
|
|
sigstruct->q2))
|
|
goto err;
|
|
|
|
/* BE -> LE */
|
|
reverse_bytes(sigstruct->signature, SGX_MODULUS_SIZE);
|
|
reverse_bytes(sigstruct->modulus, SGX_MODULUS_SIZE);
|
|
reverse_bytes(sigstruct->q1, SGX_MODULUS_SIZE);
|
|
reverse_bytes(sigstruct->q2, SGX_MODULUS_SIZE);
|
|
|
|
EVP_MD_CTX_destroy(ctx);
|
|
RSA_free(key);
|
|
return true;
|
|
|
|
err:
|
|
EVP_MD_CTX_destroy(ctx);
|
|
RSA_free(key);
|
|
return false;
|
|
}
|