linux-stable/drivers/thunderbolt/tunnel.h
Mika Westerberg a11b88add4 thunderbolt: Add bandwidth management for Display Port tunnels
Titan Ridge supports Display Port 1.4 which adds HBR3 (High Bit Rate)
rates that may be up to 8.1 Gb/s over 4 lanes. This translates to
effective data bandwidth of 25.92 Gb/s (as 8/10 encoding is removed by
the DP adapters when going over Thunderbolt fabric). If another high
rate monitor is connected we may need to reduce the bandwidth it
consumes so that it fits into the total 40 Gb/s available on the
Thunderbolt fabric.

Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-11-02 12:13:31 +03:00

86 lines
2.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Thunderbolt driver - Tunneling support
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2019, Intel Corporation
*/
#ifndef TB_TUNNEL_H_
#define TB_TUNNEL_H_
#include "tb.h"
enum tb_tunnel_type {
TB_TUNNEL_PCI,
TB_TUNNEL_DP,
TB_TUNNEL_DMA,
};
/**
* struct tb_tunnel - Tunnel between two ports
* @tb: Pointer to the domain
* @src_port: Source port of the tunnel
* @dst_port: Destination port of the tunnel. For discovered incomplete
* tunnels may be %NULL or null adapter port instead.
* @paths: All paths required by the tunnel
* @npaths: Number of paths in @paths
* @init: Optional tunnel specific initialization
* @activate: Optional tunnel specific activation/deactivation
* @consumed_bandwidth: Return how much bandwidth the tunnel consumes
* @list: Tunnels are linked using this field
* @type: Type of the tunnel
* @max_bw: Maximum bandwidth (Mb/s) available for the tunnel (only for DP).
* Only set if the bandwidth needs to be limited.
*/
struct tb_tunnel {
struct tb *tb;
struct tb_port *src_port;
struct tb_port *dst_port;
struct tb_path **paths;
size_t npaths;
int (*init)(struct tb_tunnel *tunnel);
int (*activate)(struct tb_tunnel *tunnel, bool activate);
int (*consumed_bandwidth)(struct tb_tunnel *tunnel);
struct list_head list;
enum tb_tunnel_type type;
unsigned int max_bw;
};
struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down);
struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up,
struct tb_port *down);
struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in);
struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in,
struct tb_port *out, int max_bw);
struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi,
struct tb_port *dst, int transmit_ring,
int transmit_path, int receive_ring,
int receive_path);
void tb_tunnel_free(struct tb_tunnel *tunnel);
int tb_tunnel_activate(struct tb_tunnel *tunnel);
int tb_tunnel_restart(struct tb_tunnel *tunnel);
void tb_tunnel_deactivate(struct tb_tunnel *tunnel);
bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel);
bool tb_tunnel_switch_on_path(const struct tb_tunnel *tunnel,
const struct tb_switch *sw);
int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel);
static inline bool tb_tunnel_is_pci(const struct tb_tunnel *tunnel)
{
return tunnel->type == TB_TUNNEL_PCI;
}
static inline bool tb_tunnel_is_dp(const struct tb_tunnel *tunnel)
{
return tunnel->type == TB_TUNNEL_DP;
}
static inline bool tb_tunnel_is_dma(const struct tb_tunnel *tunnel)
{
return tunnel->type == TB_TUNNEL_DMA;
}
#endif