linux-stable/net/mptcp/pm.c
Paolo Abeni ff5a0b421c mptcp: faster active backup recovery
The msk can use backup subflows to transmit in-sequence data
only if there are no other active subflow. On active backup
scenario, the MPTCP connection can do forward progress only
due to MPTCP retransmissions - rtx can pick backup subflows.

This patch introduces a new flag flow MPTCP subflows: if the
underlying TCP connection made no progresses for long time,
and there are other less problematic subflows available, the
given subflow become stale.

Stale subflows are not considered active: if all non backup
subflows become stale, the MPTCP scheduler can pick backup
subflows for plain transmissions.

Stale subflows can return in active state, as soon as any reply
from the peer is observed.

Active backup scenarios can now leverage the available b/w
with no restrinction.

Closes: https://github.com/multipath-tcp/mptcp_net-next/issues/207
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-14 11:37:25 +01:00

354 lines
8.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <net/tcp.h>
#include <net/mptcp.h>
#include "protocol.h"
/* path manager command handlers */
int mptcp_pm_announce_addr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr,
bool echo)
{
u8 add_addr = READ_ONCE(msk->pm.addr_signal);
pr_debug("msk=%p, local_id=%d", msk, addr->id);
lockdep_assert_held(&msk->pm.lock);
if (add_addr) {
pr_warn("addr_signal error, add_addr=%d", add_addr);
return -EINVAL;
}
msk->pm.local = *addr;
add_addr |= BIT(MPTCP_ADD_ADDR_SIGNAL);
if (echo)
add_addr |= BIT(MPTCP_ADD_ADDR_ECHO);
if (addr->family == AF_INET6)
add_addr |= BIT(MPTCP_ADD_ADDR_IPV6);
if (addr->port)
add_addr |= BIT(MPTCP_ADD_ADDR_PORT);
WRITE_ONCE(msk->pm.addr_signal, add_addr);
return 0;
}
int mptcp_pm_remove_addr(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list)
{
u8 rm_addr = READ_ONCE(msk->pm.addr_signal);
pr_debug("msk=%p, rm_list_nr=%d", msk, rm_list->nr);
if (rm_addr) {
pr_warn("addr_signal error, rm_addr=%d", rm_addr);
return -EINVAL;
}
msk->pm.rm_list_tx = *rm_list;
rm_addr |= BIT(MPTCP_RM_ADDR_SIGNAL);
WRITE_ONCE(msk->pm.addr_signal, rm_addr);
mptcp_pm_nl_addr_send_ack(msk);
return 0;
}
int mptcp_pm_remove_subflow(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list)
{
pr_debug("msk=%p, rm_list_nr=%d", msk, rm_list->nr);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_nl_rm_subflow_received(msk, rm_list);
spin_unlock_bh(&msk->pm.lock);
return 0;
}
/* path manager event handlers */
void mptcp_pm_new_connection(struct mptcp_sock *msk, const struct sock *ssk, int server_side)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p, token=%u side=%d", msk, msk->token, server_side);
WRITE_ONCE(pm->server_side, server_side);
mptcp_event(MPTCP_EVENT_CREATED, msk, ssk, GFP_ATOMIC);
}
bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
unsigned int subflows_max;
int ret = 0;
subflows_max = mptcp_pm_get_subflows_max(msk);
pr_debug("msk=%p subflows=%d max=%d allow=%d", msk, pm->subflows,
subflows_max, READ_ONCE(pm->accept_subflow));
/* try to avoid acquiring the lock below */
if (!READ_ONCE(pm->accept_subflow))
return false;
spin_lock_bh(&pm->lock);
if (READ_ONCE(pm->accept_subflow)) {
ret = pm->subflows < subflows_max;
if (ret && ++pm->subflows == subflows_max)
WRITE_ONCE(pm->accept_subflow, false);
}
spin_unlock_bh(&pm->lock);
return ret;
}
/* return true if the new status bit is currently cleared, that is, this event
* can be server, eventually by an already scheduled work
*/
static bool mptcp_pm_schedule_work(struct mptcp_sock *msk,
enum mptcp_pm_status new_status)
{
pr_debug("msk=%p status=%x new=%lx", msk, msk->pm.status,
BIT(new_status));
if (msk->pm.status & BIT(new_status))
return false;
msk->pm.status |= BIT(new_status);
mptcp_schedule_work((struct sock *)msk);
return true;
}
void mptcp_pm_fully_established(struct mptcp_sock *msk, const struct sock *ssk, gfp_t gfp)
{
struct mptcp_pm_data *pm = &msk->pm;
bool announce = false;
pr_debug("msk=%p", msk);
spin_lock_bh(&pm->lock);
/* mptcp_pm_fully_established() can be invoked by multiple
* racing paths - accept() and check_fully_established()
* be sure to serve this event only once.
*/
if (READ_ONCE(pm->work_pending) &&
!(msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)))
mptcp_pm_schedule_work(msk, MPTCP_PM_ESTABLISHED);
if ((msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)) == 0)
announce = true;
msk->pm.status |= BIT(MPTCP_PM_ALREADY_ESTABLISHED);
spin_unlock_bh(&pm->lock);
if (announce)
mptcp_event(MPTCP_EVENT_ESTABLISHED, msk, ssk, gfp);
}
void mptcp_pm_connection_closed(struct mptcp_sock *msk)
{
pr_debug("msk=%p", msk);
}
void mptcp_pm_subflow_established(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p", msk);
if (!READ_ONCE(pm->work_pending))
return;
spin_lock_bh(&pm->lock);
if (READ_ONCE(pm->work_pending))
mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_subflow_closed(struct mptcp_sock *msk, u8 id)
{
pr_debug("msk=%p", msk);
}
void mptcp_pm_add_addr_received(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p remote_id=%d accept=%d", msk, addr->id,
READ_ONCE(pm->accept_addr));
mptcp_event_addr_announced(msk, addr);
spin_lock_bh(&pm->lock);
if (!READ_ONCE(pm->accept_addr)) {
mptcp_pm_announce_addr(msk, addr, true);
mptcp_pm_add_addr_send_ack(msk);
} else if (mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_RECEIVED)) {
pm->remote = *addr;
}
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_add_addr_echoed(struct mptcp_sock *msk,
struct mptcp_addr_info *addr)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p", msk);
spin_lock_bh(&pm->lock);
if (mptcp_lookup_anno_list_by_saddr(msk, addr) && READ_ONCE(pm->work_pending))
mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_add_addr_send_ack(struct mptcp_sock *msk)
{
if (!mptcp_pm_should_add_signal(msk))
return;
mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_SEND_ACK);
}
void mptcp_pm_rm_addr_received(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list)
{
struct mptcp_pm_data *pm = &msk->pm;
u8 i;
pr_debug("msk=%p remote_ids_nr=%d", msk, rm_list->nr);
for (i = 0; i < rm_list->nr; i++)
mptcp_event_addr_removed(msk, rm_list->ids[i]);
spin_lock_bh(&pm->lock);
mptcp_pm_schedule_work(msk, MPTCP_PM_RM_ADDR_RECEIVED);
pm->rm_list_rx = *rm_list;
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_mp_prio_received(struct sock *sk, u8 bkup)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
pr_debug("subflow->backup=%d, bkup=%d\n", subflow->backup, bkup);
subflow->backup = bkup;
mptcp_event(MPTCP_EVENT_SUB_PRIORITY, mptcp_sk(subflow->conn), sk, GFP_ATOMIC);
}
/* path manager helpers */
bool mptcp_pm_add_addr_signal(struct mptcp_sock *msk, unsigned int remaining,
struct mptcp_addr_info *saddr, bool *echo, bool *port)
{
int ret = false;
spin_lock_bh(&msk->pm.lock);
/* double check after the lock is acquired */
if (!mptcp_pm_should_add_signal(msk))
goto out_unlock;
*echo = mptcp_pm_should_add_signal_echo(msk);
*port = mptcp_pm_should_add_signal_port(msk);
if (remaining < mptcp_add_addr_len(msk->pm.local.family, *echo, *port))
goto out_unlock;
*saddr = msk->pm.local;
WRITE_ONCE(msk->pm.addr_signal, 0);
ret = true;
out_unlock:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
bool mptcp_pm_rm_addr_signal(struct mptcp_sock *msk, unsigned int remaining,
struct mptcp_rm_list *rm_list)
{
int ret = false, len;
spin_lock_bh(&msk->pm.lock);
/* double check after the lock is acquired */
if (!mptcp_pm_should_rm_signal(msk))
goto out_unlock;
len = mptcp_rm_addr_len(&msk->pm.rm_list_tx);
if (len < 0) {
WRITE_ONCE(msk->pm.addr_signal, 0);
goto out_unlock;
}
if (remaining < len)
goto out_unlock;
*rm_list = msk->pm.rm_list_tx;
WRITE_ONCE(msk->pm.addr_signal, 0);
ret = true;
out_unlock:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc)
{
return mptcp_pm_nl_get_local_id(msk, skc);
}
void mptcp_pm_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
u32 rcv_tstamp = READ_ONCE(tcp_sk(ssk)->rcv_tstamp);
/* keep track of rtx periods with no progress */
if (!subflow->stale_count) {
subflow->stale_rcv_tstamp = rcv_tstamp;
subflow->stale_count++;
} else if (subflow->stale_rcv_tstamp == rcv_tstamp) {
if (subflow->stale_count < U8_MAX)
subflow->stale_count++;
mptcp_pm_nl_subflow_chk_stale(msk, ssk);
} else {
subflow->stale_count = 0;
mptcp_subflow_set_active(subflow);
}
}
void mptcp_pm_data_init(struct mptcp_sock *msk)
{
msk->pm.add_addr_signaled = 0;
msk->pm.add_addr_accepted = 0;
msk->pm.local_addr_used = 0;
msk->pm.subflows = 0;
msk->pm.rm_list_tx.nr = 0;
msk->pm.rm_list_rx.nr = 0;
WRITE_ONCE(msk->pm.work_pending, false);
WRITE_ONCE(msk->pm.addr_signal, 0);
WRITE_ONCE(msk->pm.accept_addr, false);
WRITE_ONCE(msk->pm.accept_subflow, false);
WRITE_ONCE(msk->pm.remote_deny_join_id0, false);
msk->pm.status = 0;
spin_lock_init(&msk->pm.lock);
INIT_LIST_HEAD(&msk->pm.anno_list);
mptcp_pm_nl_data_init(msk);
}
void __init mptcp_pm_init(void)
{
mptcp_pm_nl_init();
}