linux-stable/kernel/power/swap.c
Linus Torvalds 07abb19a9b Power management updates for 6.9-rc1
- Allow the Energy Model to be updated dynamically (Lukasz Luba).
 
  - Add support for LZ4 compression algorithm to the hibernation image
    creation and loading code (Nikhil V).
 
  - Fix and clean up system suspend statistics collection (Rafael
    Wysocki).
 
  - Simplify device suspend and resume handling in the power management
    core code (Rafael Wysocki).
 
  - Fix PCI hibernation support description (Yiwei Lin).
 
  - Make hibernation take set_memory_ro() return values into account as
    appropriate (Christophe Leroy).
 
  - Set mem_sleep_current during kernel command line setup to avoid an
    ordering issue with handling it (Maulik Shah).
 
  - Fix wake IRQs handling when pm_runtime_force_suspend() is used as a
    driver's system suspend callback (Qingliang Li).
 
  - Simplify pm_runtime_get_if_active() usage and add a replacement for
    pm_runtime_put_autosuspend() (Sakari Ailus).
 
  - Add a tracepoint for runtime_status changes tracking (Vilas Bhat).
 
  - Fix section title markdown in the runtime PM documentation (Yiwei
    Lin).
 
  - Enable preferred core support in the amd-pstate cpufreq driver (Meng
    Li).
 
  - Fix min_perf assignment in amd_pstate_adjust_perf() and make the
    min/max limit perf values in amd-pstate always stay within the
    (highest perf, lowest perf) range (Tor Vic, Meng Li).
 
  - Allow intel_pstate to assign model-specific values to strings used in
    the EPP sysfs interface and make it do so on Meteor Lake (Srinivas
    Pandruvada).
 
  - Drop long-unused cpudata::prev_cummulative_iowait from the
    intel_pstate cpufreq driver (Jiri Slaby).
 
  - Prevent scaling_cur_freq from exceeding scaling_max_freq when the
    latter is an inefficient frequency (Shivnandan Kumar).
 
  - Change default transition delay in cpufreq to 2ms (Qais Yousef).
 
  - Remove references to 10ms minimum sampling rate from comments in the
    cpufreq code (Pierre Gondois).
 
  - Honour transition_latency over transition_delay_us in cpufreq (Qais
    Yousef).
 
  - Stop unregistering cpufreq cooling on CPU hot-remove (Viresh Kumar).
 
  - General enhancements / cleanups to ARM cpufreq drivers (tianyu2,
    Nícolas F. R. A. Prado, Erick Archer, Arnd Bergmann, Anastasia
    Belova).
 
  - Update cpufreq-dt-platdev to block/approve devices (Richard Acayan).
 
  - Make the SCMI cpufreq driver get a transition delay value from
    firmware (Pierre Gondois).
 
  - Prevent the haltpoll cpuidle governor from shrinking guest
    poll_limit_ns below grow_start (Parshuram Sangle).
 
  - Avoid potential overflow in integer multiplication when computing
    cpuidle state parameters (C Cheng).
 
  - Adjust MWAIT hint target C-state computation in the ACPI cpuidle
    driver and in intel_idle to return a correct value for C0 (He
    Rongguang).
 
  - Address multiple issues in the TPMI RAPL driver and add support for
    new platforms (Lunar Lake-M, Arrow Lake) to Intel RAPL (Zhang Rui).
 
  - Fix freq_qos_add_request() return value check in dtpm_cpu (Daniel
    Lezcano).
 
  - Fix kernel-doc for dtpm_create_hierarchy() (Yang Li).
 
  - Fix file leak in get_pkg_num() in x86_energy_perf_policy (Samasth
    Norway Ananda).
 
  - Fix cpupower-frequency-info.1 man page typo (Jan Kratochvil).
 
  - Fix a couple of warnings in the OPP core code related to W=1
    builds (Viresh Kumar).
 
  - Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h (Viresh
    Kumar).
 
  - Extend dev_pm_opp_data with turbo support (Sibi Sankar).
 
  - dt-bindings: drop maxItems from inner items (David Heidelberg).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmXvI/ISHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx24sP/jxg6fOGme8raHQvpTXG3/H56wlGzQ4P
 YUvvKUXnfD3yf1zNISsUl7VQebZqDt8rygkwSdymXlUVZX1eubN0RpCFc0F8GZuc
 THG/YQhYQr/9zro3FpKhfDj5evk21PCQzjf+dGvfQF9qVMxNPG1JzEFK6PnolT5X
 2BvkonY1XFWZjCMbZ83B/jt35lTDb0cmeNbCpfD5UJgcnxmMOtZYpORdyfPWTJpG
 GVCwmAFVVXxXlust/AIpt3mmOpKzSA9GnrtJkhtQe5GN+Y4OjnJiFJmTC7EfCctj
 JlWgVUA716mtFMUrjXgjfI54firF2oQpqaSa2HG/V/A96JWQqjarGz5dAV1IrPEt
 ZmYpvMe4E90S411wF1OWyrEqjXUuDnH1OWUvUdWSt4E7DhFw3esDi/jLW2tyVKAT
 hIy+/O4wzbDSTX/h9Cgt1Qjhew6lKUIwvhEXclB3fuJ+JoviWNkC9lnK93e2H0A3
 VYfkd/lpUD74035l0FrCJ/49MjX9kqrsn+TipHsIlSXAi8ZRdKbVvxOTD8RYudcI
 GvCiDDrkMgNwGlyedgbtTBUepCvSg93b+vVmRj7YMPtBhioOUo3qCn6wpqhxfnth
 9BCnPW7JxqUw/NJdlk9hKumaUZq+MK8G+kdYcIDg6xmAkWSUVP2QKlWavfMCxqRP
 +dN6T2iHsKFe
 =UePT
 -----END PGP SIGNATURE-----

Merge tag 'pm-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "From the functional perspective, the most significant change here is
  the addition of support for Energy Models that can be updated
  dynamically at run time.

  There is also the addition of LZ4 compression support for hibernation,
  the new preferred core support in amd-pstate, new platforms support in
  the Intel RAPL driver, new model-specific EPP handling in intel_pstate
  and more.

  Apart from that, the cpufreq default transition delay is reduced from
  10 ms to 2 ms (along with some related adjustments), the system
  suspend statistics code undergoes a significant rework and there is a
  usual bunch of fixes and code cleanups all over.

  Specifics:

   - Allow the Energy Model to be updated dynamically (Lukasz Luba)

   - Add support for LZ4 compression algorithm to the hibernation image
     creation and loading code (Nikhil V)

   - Fix and clean up system suspend statistics collection (Rafael
     Wysocki)

   - Simplify device suspend and resume handling in the power management
     core code (Rafael Wysocki)

   - Fix PCI hibernation support description (Yiwei Lin)

   - Make hibernation take set_memory_ro() return values into account as
     appropriate (Christophe Leroy)

   - Set mem_sleep_current during kernel command line setup to avoid an
     ordering issue with handling it (Maulik Shah)

   - Fix wake IRQs handling when pm_runtime_force_suspend() is used as a
     driver's system suspend callback (Qingliang Li)

   - Simplify pm_runtime_get_if_active() usage and add a replacement for
     pm_runtime_put_autosuspend() (Sakari Ailus)

   - Add a tracepoint for runtime_status changes tracking (Vilas Bhat)

   - Fix section title markdown in the runtime PM documentation (Yiwei
     Lin)

   - Enable preferred core support in the amd-pstate cpufreq driver
     (Meng Li)

   - Fix min_perf assignment in amd_pstate_adjust_perf() and make the
     min/max limit perf values in amd-pstate always stay within the
     (highest perf, lowest perf) range (Tor Vic, Meng Li)

   - Allow intel_pstate to assign model-specific values to strings used
     in the EPP sysfs interface and make it do so on Meteor Lake
     (Srinivas Pandruvada)

   - Drop long-unused cpudata::prev_cummulative_iowait from the
     intel_pstate cpufreq driver (Jiri Slaby)

   - Prevent scaling_cur_freq from exceeding scaling_max_freq when the
     latter is an inefficient frequency (Shivnandan Kumar)

   - Change default transition delay in cpufreq to 2ms (Qais Yousef)

   - Remove references to 10ms minimum sampling rate from comments in
     the cpufreq code (Pierre Gondois)

   - Honour transition_latency over transition_delay_us in cpufreq (Qais
     Yousef)

   - Stop unregistering cpufreq cooling on CPU hot-remove (Viresh Kumar)

   - General enhancements / cleanups to ARM cpufreq drivers (tianyu2,
     Nícolas F. R. A. Prado, Erick Archer, Arnd Bergmann, Anastasia
     Belova)

   - Update cpufreq-dt-platdev to block/approve devices (Richard Acayan)

   - Make the SCMI cpufreq driver get a transition delay value from
     firmware (Pierre Gondois)

   - Prevent the haltpoll cpuidle governor from shrinking guest
     poll_limit_ns below grow_start (Parshuram Sangle)

   - Avoid potential overflow in integer multiplication when computing
     cpuidle state parameters (C Cheng)

   - Adjust MWAIT hint target C-state computation in the ACPI cpuidle
     driver and in intel_idle to return a correct value for C0 (He
     Rongguang)

   - Address multiple issues in the TPMI RAPL driver and add support for
     new platforms (Lunar Lake-M, Arrow Lake) to Intel RAPL (Zhang Rui)

   - Fix freq_qos_add_request() return value check in dtpm_cpu (Daniel
     Lezcano)

   - Fix kernel-doc for dtpm_create_hierarchy() (Yang Li)

   - Fix file leak in get_pkg_num() in x86_energy_perf_policy (Samasth
     Norway Ananda)

   - Fix cpupower-frequency-info.1 man page typo (Jan Kratochvil)

   - Fix a couple of warnings in the OPP core code related to W=1 builds
     (Viresh Kumar)

   - Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h (Viresh
     Kumar)

   - Extend dev_pm_opp_data with turbo support (Sibi Sankar)

   - dt-bindings: drop maxItems from inner items (David Heidelberg)"

* tag 'pm-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (95 commits)
  dt-bindings: opp: drop maxItems from inner items
  OPP: debugfs: Fix warning around icc_get_name()
  OPP: debugfs: Fix warning with W=1 builds
  cpufreq: Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h
  OPP: Extend dev_pm_opp_data with turbo support
  Fix cpupower-frequency-info.1 man page typo
  cpufreq: scmi: Set transition_delay_us
  firmware: arm_scmi: Populate fast channel rate_limit
  firmware: arm_scmi: Populate perf commands rate_limit
  cpuidle: ACPI/intel: fix MWAIT hint target C-state computation
  PM: sleep: wakeirq: fix wake irq warning in system suspend
  powercap: dtpm: Fix kernel-doc for dtpm_create_hierarchy() function
  cpufreq: Don't unregister cpufreq cooling on CPU hotplug
  PM: suspend: Set mem_sleep_current during kernel command line setup
  cpufreq: Honour transition_latency over transition_delay_us
  cpufreq: Limit resolving a frequency to policy min/max
  Documentation: PM: Fix runtime_pm.rst markdown syntax
  cpufreq: amd-pstate: adjust min/max limit perf
  cpufreq: Remove references to 10ms min sampling rate
  cpufreq: intel_pstate: Update default EPPs for Meteor Lake
  ...
2024-03-13 11:40:06 -07:00

1668 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/power/swap.c
*
* This file provides functions for reading the suspend image from
* and writing it to a swap partition.
*
* Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
*/
#define pr_fmt(fmt) "PM: " fmt
#include <linux/module.h>
#include <linux/file.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/cpumask.h>
#include <linux/atomic.h>
#include <linux/kthread.h>
#include <linux/crc32.h>
#include <linux/ktime.h>
#include "power.h"
#define HIBERNATE_SIG "S1SUSPEND"
u32 swsusp_hardware_signature;
/*
* When reading an {un,}compressed image, we may restore pages in place,
* in which case some architectures need these pages cleaning before they
* can be executed. We don't know which pages these may be, so clean the lot.
*/
static bool clean_pages_on_read;
static bool clean_pages_on_decompress;
/*
* The swap map is a data structure used for keeping track of each page
* written to a swap partition. It consists of many swap_map_page
* structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
* These structures are stored on the swap and linked together with the
* help of the .next_swap member.
*
* The swap map is created during suspend. The swap map pages are
* allocated and populated one at a time, so we only need one memory
* page to set up the entire structure.
*
* During resume we pick up all swap_map_page structures into a list.
*/
#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
/*
* Number of free pages that are not high.
*/
static inline unsigned long low_free_pages(void)
{
return nr_free_pages() - nr_free_highpages();
}
/*
* Number of pages required to be kept free while writing the image. Always
* half of all available low pages before the writing starts.
*/
static inline unsigned long reqd_free_pages(void)
{
return low_free_pages() / 2;
}
struct swap_map_page {
sector_t entries[MAP_PAGE_ENTRIES];
sector_t next_swap;
};
struct swap_map_page_list {
struct swap_map_page *map;
struct swap_map_page_list *next;
};
/*
* The swap_map_handle structure is used for handling swap in
* a file-alike way
*/
struct swap_map_handle {
struct swap_map_page *cur;
struct swap_map_page_list *maps;
sector_t cur_swap;
sector_t first_sector;
unsigned int k;
unsigned long reqd_free_pages;
u32 crc32;
};
struct swsusp_header {
char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
sizeof(u32) - sizeof(u32)];
u32 hw_sig;
u32 crc32;
sector_t image;
unsigned int flags; /* Flags to pass to the "boot" kernel */
char orig_sig[10];
char sig[10];
} __packed;
static struct swsusp_header *swsusp_header;
/*
* The following functions are used for tracing the allocated
* swap pages, so that they can be freed in case of an error.
*/
struct swsusp_extent {
struct rb_node node;
unsigned long start;
unsigned long end;
};
static struct rb_root swsusp_extents = RB_ROOT;
static int swsusp_extents_insert(unsigned long swap_offset)
{
struct rb_node **new = &(swsusp_extents.rb_node);
struct rb_node *parent = NULL;
struct swsusp_extent *ext;
/* Figure out where to put the new node */
while (*new) {
ext = rb_entry(*new, struct swsusp_extent, node);
parent = *new;
if (swap_offset < ext->start) {
/* Try to merge */
if (swap_offset == ext->start - 1) {
ext->start--;
return 0;
}
new = &((*new)->rb_left);
} else if (swap_offset > ext->end) {
/* Try to merge */
if (swap_offset == ext->end + 1) {
ext->end++;
return 0;
}
new = &((*new)->rb_right);
} else {
/* It already is in the tree */
return -EINVAL;
}
}
/* Add the new node and rebalance the tree. */
ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
if (!ext)
return -ENOMEM;
ext->start = swap_offset;
ext->end = swap_offset;
rb_link_node(&ext->node, parent, new);
rb_insert_color(&ext->node, &swsusp_extents);
return 0;
}
/*
* alloc_swapdev_block - allocate a swap page and register that it has
* been allocated, so that it can be freed in case of an error.
*/
sector_t alloc_swapdev_block(int swap)
{
unsigned long offset;
offset = swp_offset(get_swap_page_of_type(swap));
if (offset) {
if (swsusp_extents_insert(offset))
swap_free(swp_entry(swap, offset));
else
return swapdev_block(swap, offset);
}
return 0;
}
/*
* free_all_swap_pages - free swap pages allocated for saving image data.
* It also frees the extents used to register which swap entries had been
* allocated.
*/
void free_all_swap_pages(int swap)
{
struct rb_node *node;
while ((node = swsusp_extents.rb_node)) {
struct swsusp_extent *ext;
unsigned long offset;
ext = rb_entry(node, struct swsusp_extent, node);
rb_erase(node, &swsusp_extents);
for (offset = ext->start; offset <= ext->end; offset++)
swap_free(swp_entry(swap, offset));
kfree(ext);
}
}
int swsusp_swap_in_use(void)
{
return (swsusp_extents.rb_node != NULL);
}
/*
* General things
*/
static unsigned short root_swap = 0xffff;
static struct file *hib_resume_bdev_file;
struct hib_bio_batch {
atomic_t count;
wait_queue_head_t wait;
blk_status_t error;
struct blk_plug plug;
};
static void hib_init_batch(struct hib_bio_batch *hb)
{
atomic_set(&hb->count, 0);
init_waitqueue_head(&hb->wait);
hb->error = BLK_STS_OK;
blk_start_plug(&hb->plug);
}
static void hib_finish_batch(struct hib_bio_batch *hb)
{
blk_finish_plug(&hb->plug);
}
static void hib_end_io(struct bio *bio)
{
struct hib_bio_batch *hb = bio->bi_private;
struct page *page = bio_first_page_all(bio);
if (bio->bi_status) {
pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
}
if (bio_data_dir(bio) == WRITE)
put_page(page);
else if (clean_pages_on_read)
flush_icache_range((unsigned long)page_address(page),
(unsigned long)page_address(page) + PAGE_SIZE);
if (bio->bi_status && !hb->error)
hb->error = bio->bi_status;
if (atomic_dec_and_test(&hb->count))
wake_up(&hb->wait);
bio_put(bio);
}
static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
struct hib_bio_batch *hb)
{
struct page *page = virt_to_page(addr);
struct bio *bio;
int error = 0;
bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
GFP_NOIO | __GFP_HIGH);
bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
pr_err("Adding page to bio failed at %llu\n",
(unsigned long long)bio->bi_iter.bi_sector);
bio_put(bio);
return -EFAULT;
}
if (hb) {
bio->bi_end_io = hib_end_io;
bio->bi_private = hb;
atomic_inc(&hb->count);
submit_bio(bio);
} else {
error = submit_bio_wait(bio);
bio_put(bio);
}
return error;
}
static int hib_wait_io(struct hib_bio_batch *hb)
{
/*
* We are relying on the behavior of blk_plug that a thread with
* a plug will flush the plug list before sleeping.
*/
wait_event(hb->wait, atomic_read(&hb->count) == 0);
return blk_status_to_errno(hb->error);
}
/*
* Saving part
*/
static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
{
int error;
hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
!memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
swsusp_header->image = handle->first_sector;
if (swsusp_hardware_signature) {
swsusp_header->hw_sig = swsusp_hardware_signature;
flags |= SF_HW_SIG;
}
swsusp_header->flags = flags;
if (flags & SF_CRC32_MODE)
swsusp_header->crc32 = handle->crc32;
error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
swsusp_resume_block, swsusp_header, NULL);
} else {
pr_err("Swap header not found!\n");
error = -ENODEV;
}
return error;
}
/*
* Hold the swsusp_header flag. This is used in software_resume() in
* 'kernel/power/hibernate' to check if the image is compressed and query
* for the compression algorithm support(if so).
*/
unsigned int swsusp_header_flags;
/**
* swsusp_swap_check - check if the resume device is a swap device
* and get its index (if so)
*
* This is called before saving image
*/
static int swsusp_swap_check(void)
{
int res;
if (swsusp_resume_device)
res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
else
res = find_first_swap(&swsusp_resume_device);
if (res < 0)
return res;
root_swap = res;
hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
BLK_OPEN_WRITE, NULL, NULL);
if (IS_ERR(hib_resume_bdev_file))
return PTR_ERR(hib_resume_bdev_file);
res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
if (res < 0)
fput(hib_resume_bdev_file);
return res;
}
/**
* write_page - Write one page to given swap location.
* @buf: Address we're writing.
* @offset: Offset of the swap page we're writing to.
* @hb: bio completion batch
*/
static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
{
void *src;
int ret;
if (!offset)
return -ENOSPC;
if (hb) {
src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
__GFP_NORETRY);
if (src) {
copy_page(src, buf);
} else {
ret = hib_wait_io(hb); /* Free pages */
if (ret)
return ret;
src = (void *)__get_free_page(GFP_NOIO |
__GFP_NOWARN |
__GFP_NORETRY);
if (src) {
copy_page(src, buf);
} else {
WARN_ON_ONCE(1);
hb = NULL; /* Go synchronous */
src = buf;
}
}
} else {
src = buf;
}
return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
}
static void release_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
}
static int get_swap_writer(struct swap_map_handle *handle)
{
int ret;
ret = swsusp_swap_check();
if (ret) {
if (ret != -ENOSPC)
pr_err("Cannot find swap device, try swapon -a\n");
return ret;
}
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
if (!handle->cur) {
ret = -ENOMEM;
goto err_close;
}
handle->cur_swap = alloc_swapdev_block(root_swap);
if (!handle->cur_swap) {
ret = -ENOSPC;
goto err_rel;
}
handle->k = 0;
handle->reqd_free_pages = reqd_free_pages();
handle->first_sector = handle->cur_swap;
return 0;
err_rel:
release_swap_writer(handle);
err_close:
swsusp_close();
return ret;
}
static int swap_write_page(struct swap_map_handle *handle, void *buf,
struct hib_bio_batch *hb)
{
int error;
sector_t offset;
if (!handle->cur)
return -EINVAL;
offset = alloc_swapdev_block(root_swap);
error = write_page(buf, offset, hb);
if (error)
return error;
handle->cur->entries[handle->k++] = offset;
if (handle->k >= MAP_PAGE_ENTRIES) {
offset = alloc_swapdev_block(root_swap);
if (!offset)
return -ENOSPC;
handle->cur->next_swap = offset;
error = write_page(handle->cur, handle->cur_swap, hb);
if (error)
goto out;
clear_page(handle->cur);
handle->cur_swap = offset;
handle->k = 0;
if (hb && low_free_pages() <= handle->reqd_free_pages) {
error = hib_wait_io(hb);
if (error)
goto out;
/*
* Recalculate the number of required free pages, to
* make sure we never take more than half.
*/
handle->reqd_free_pages = reqd_free_pages();
}
}
out:
return error;
}
static int flush_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur && handle->cur_swap)
return write_page(handle->cur, handle->cur_swap, NULL);
else
return -EINVAL;
}
static int swap_writer_finish(struct swap_map_handle *handle,
unsigned int flags, int error)
{
if (!error) {
pr_info("S");
error = mark_swapfiles(handle, flags);
pr_cont("|\n");
flush_swap_writer(handle);
}
if (error)
free_all_swap_pages(root_swap);
release_swap_writer(handle);
swsusp_close();
return error;
}
/*
* Bytes we need for compressed data in worst case. We assume(limitation)
* this is the worst of all the compression algorithms.
*/
#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
/* We need to remember how much compressed data we need to read. */
#define CMP_HEADER sizeof(size_t)
/* Number of pages/bytes we'll compress at one time. */
#define UNC_PAGES 32
#define UNC_SIZE (UNC_PAGES * PAGE_SIZE)
/* Number of pages we need for compressed data (worst case). */
#define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
CMP_HEADER, PAGE_SIZE)
#define CMP_SIZE (CMP_PAGES * PAGE_SIZE)
/* Maximum number of threads for compression/decompression. */
#define CMP_THREADS 3
/* Minimum/maximum number of pages for read buffering. */
#define CMP_MIN_RD_PAGES 1024
#define CMP_MAX_RD_PAGES 8192
/**
* save_image - save the suspend image data
*/
static int save_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_write)
{
unsigned int m;
int ret;
int nr_pages;
int err2;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
hib_init_batch(&hb);
pr_info("Saving image data pages (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
while (1) {
ret = snapshot_read_next(snapshot);
if (ret <= 0)
break;
ret = swap_write_page(handle, data_of(*snapshot), &hb);
if (ret)
break;
if (!(nr_pages % m))
pr_info("Image saving progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
hib_finish_batch(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret)
pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
return ret;
}
/*
* Structure used for CRC32.
*/
struct crc_data {
struct task_struct *thr; /* thread */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
unsigned run_threads; /* nr current threads */
wait_queue_head_t go; /* start crc update */
wait_queue_head_t done; /* crc update done */
u32 *crc32; /* points to handle's crc32 */
size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */
unsigned char *unc[CMP_THREADS]; /* uncompressed data */
};
/*
* CRC32 update function that runs in its own thread.
*/
static int crc32_threadfn(void *data)
{
struct crc_data *d = data;
unsigned i;
while (1) {
wait_event(d->go, atomic_read_acquire(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
for (i = 0; i < d->run_threads; i++)
*d->crc32 = crc32_le(*d->crc32,
d->unc[i], *d->unc_len[i]);
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/*
* Structure used for data compression.
*/
struct cmp_data {
struct task_struct *thr; /* thread */
struct crypto_comp *cc; /* crypto compressor stream */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
int ret; /* return code */
wait_queue_head_t go; /* start compression */
wait_queue_head_t done; /* compression done */
size_t unc_len; /* uncompressed length */
size_t cmp_len; /* compressed length */
unsigned char unc[UNC_SIZE]; /* uncompressed buffer */
unsigned char cmp[CMP_SIZE]; /* compressed buffer */
};
/* Indicates the image size after compression */
static atomic_t compressed_size = ATOMIC_INIT(0);
/*
* Compression function that runs in its own thread.
*/
static int compress_threadfn(void *data)
{
struct cmp_data *d = data;
unsigned int cmp_len = 0;
while (1) {
wait_event(d->go, atomic_read_acquire(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
d->ret = -1;
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
cmp_len = CMP_SIZE - CMP_HEADER;
d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
d->cmp + CMP_HEADER,
&cmp_len);
d->cmp_len = cmp_len;
atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/**
* save_compressed_image - Save the suspend image data after compression.
* @handle: Swap map handle to use for saving the image.
* @snapshot: Image to read data from.
* @nr_to_write: Number of pages to save.
*/
static int save_compressed_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_write)
{
unsigned int m;
int ret = 0;
int nr_pages;
int err2;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
size_t off;
unsigned thr, run_threads, nr_threads;
unsigned char *page = NULL;
struct cmp_data *data = NULL;
struct crc_data *crc = NULL;
hib_init_batch(&hb);
atomic_set(&compressed_size, 0);
/*
* We'll limit the number of threads for compression to limit memory
* footprint.
*/
nr_threads = num_online_cpus() - 1;
nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
if (!page) {
pr_err("Failed to allocate %s page\n", hib_comp_algo);
ret = -ENOMEM;
goto out_clean;
}
data = vzalloc(array_size(nr_threads, sizeof(*data)));
if (!data) {
pr_err("Failed to allocate %s data\n", hib_comp_algo);
ret = -ENOMEM;
goto out_clean;
}
crc = kzalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
/*
* Start the compression threads.
*/
for (thr = 0; thr < nr_threads; thr++) {
init_waitqueue_head(&data[thr].go);
init_waitqueue_head(&data[thr].done);
data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
if (IS_ERR_OR_NULL(data[thr].cc)) {
pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
ret = -EFAULT;
goto out_clean;
}
data[thr].thr = kthread_run(compress_threadfn,
&data[thr],
"image_compress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
pr_err("Cannot start compression threads\n");
ret = -ENOMEM;
goto out_clean;
}
}
/*
* Start the CRC32 thread.
*/
init_waitqueue_head(&crc->go);
init_waitqueue_head(&crc->done);
handle->crc32 = 0;
crc->crc32 = &handle->crc32;
for (thr = 0; thr < nr_threads; thr++) {
crc->unc[thr] = data[thr].unc;
crc->unc_len[thr] = &data[thr].unc_len;
}
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
/*
* Adjust the number of required free pages after all allocations have
* been done. We don't want to run out of pages when writing.
*/
handle->reqd_free_pages = reqd_free_pages();
pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
pr_info("Compressing and saving image data (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
for (;;) {
for (thr = 0; thr < nr_threads; thr++) {
for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
ret = snapshot_read_next(snapshot);
if (ret < 0)
goto out_finish;
if (!ret)
break;
memcpy(data[thr].unc + off,
data_of(*snapshot), PAGE_SIZE);
if (!(nr_pages % m))
pr_info("Image saving progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
if (!off)
break;
data[thr].unc_len = off;
atomic_set_release(&data[thr].ready, 1);
wake_up(&data[thr].go);
}
if (!thr)
break;
crc->run_threads = thr;
atomic_set_release(&crc->ready, 1);
wake_up(&crc->go);
for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
wait_event(data[thr].done,
atomic_read_acquire(&data[thr].stop));
atomic_set(&data[thr].stop, 0);
ret = data[thr].ret;
if (ret < 0) {
pr_err("%s compression failed\n", hib_comp_algo);
goto out_finish;
}
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
bytes_worst_compress(data[thr].unc_len))) {
pr_err("Invalid %s compressed length\n", hib_comp_algo);
ret = -1;
goto out_finish;
}
*(size_t *)data[thr].cmp = data[thr].cmp_len;
/*
* Given we are writing one page at a time to disk, we
* copy that much from the buffer, although the last
* bit will likely be smaller than full page. This is
* OK - we saved the length of the compressed data, so
* any garbage at the end will be discarded when we
* read it.
*/
for (off = 0;
off < CMP_HEADER + data[thr].cmp_len;
off += PAGE_SIZE) {
memcpy(page, data[thr].cmp + off, PAGE_SIZE);
ret = swap_write_page(handle, page, &hb);
if (ret)
goto out_finish;
}
}
wait_event(crc->done, atomic_read_acquire(&crc->stop));
atomic_set(&crc->stop, 0);
}
out_finish:
err2 = hib_wait_io(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret)
pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
pr_info("Image size after compression: %d kbytes\n",
(atomic_read(&compressed_size) / 1024));
out_clean:
hib_finish_batch(&hb);
if (crc) {
if (crc->thr)
kthread_stop(crc->thr);
kfree(crc);
}
if (data) {
for (thr = 0; thr < nr_threads; thr++) {
if (data[thr].thr)
kthread_stop(data[thr].thr);
if (data[thr].cc)
crypto_free_comp(data[thr].cc);
}
vfree(data);
}
if (page) free_page((unsigned long)page);
return ret;
}
/**
* enough_swap - Make sure we have enough swap to save the image.
*
* Returns TRUE or FALSE after checking the total amount of swap
* space available from the resume partition.
*/
static int enough_swap(unsigned int nr_pages)
{
unsigned int free_swap = count_swap_pages(root_swap, 1);
unsigned int required;
pr_debug("Free swap pages: %u\n", free_swap);
required = PAGES_FOR_IO + nr_pages;
return free_swap > required;
}
/**
* swsusp_write - Write entire image and metadata.
* @flags: flags to pass to the "boot" kernel in the image header
*
* It is important _NOT_ to umount filesystems at this point. We want
* them synced (in case something goes wrong) but we DO not want to mark
* filesystem clean: it is not. (And it does not matter, if we resume
* correctly, we'll mark system clean, anyway.)
*/
int swsusp_write(unsigned int flags)
{
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
unsigned long pages;
int error;
pages = snapshot_get_image_size();
error = get_swap_writer(&handle);
if (error) {
pr_err("Cannot get swap writer\n");
return error;
}
if (flags & SF_NOCOMPRESS_MODE) {
if (!enough_swap(pages)) {
pr_err("Not enough free swap\n");
error = -ENOSPC;
goto out_finish;
}
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_read_next(&snapshot);
if (error < (int)PAGE_SIZE) {
if (error >= 0)
error = -EFAULT;
goto out_finish;
}
header = (struct swsusp_info *)data_of(snapshot);
error = swap_write_page(&handle, header, NULL);
if (!error) {
error = (flags & SF_NOCOMPRESS_MODE) ?
save_image(&handle, &snapshot, pages - 1) :
save_compressed_image(&handle, &snapshot, pages - 1);
}
out_finish:
error = swap_writer_finish(&handle, flags, error);
return error;
}
/*
* The following functions allow us to read data using a swap map
* in a file-like way.
*/
static void release_swap_reader(struct swap_map_handle *handle)
{
struct swap_map_page_list *tmp;
while (handle->maps) {
if (handle->maps->map)
free_page((unsigned long)handle->maps->map);
tmp = handle->maps;
handle->maps = handle->maps->next;
kfree(tmp);
}
handle->cur = NULL;
}
static int get_swap_reader(struct swap_map_handle *handle,
unsigned int *flags_p)
{
int error;
struct swap_map_page_list *tmp, *last;
sector_t offset;
*flags_p = swsusp_header->flags;
if (!swsusp_header->image) /* how can this happen? */
return -EINVAL;
handle->cur = NULL;
last = handle->maps = NULL;
offset = swsusp_header->image;
while (offset) {
tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
if (!tmp) {
release_swap_reader(handle);
return -ENOMEM;
}
if (!handle->maps)
handle->maps = tmp;
if (last)
last->next = tmp;
last = tmp;
tmp->map = (struct swap_map_page *)
__get_free_page(GFP_NOIO | __GFP_HIGH);
if (!tmp->map) {
release_swap_reader(handle);
return -ENOMEM;
}
error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
if (error) {
release_swap_reader(handle);
return error;
}
offset = tmp->map->next_swap;
}
handle->k = 0;
handle->cur = handle->maps->map;
return 0;
}
static int swap_read_page(struct swap_map_handle *handle, void *buf,
struct hib_bio_batch *hb)
{
sector_t offset;
int error;
struct swap_map_page_list *tmp;
if (!handle->cur)
return -EINVAL;
offset = handle->cur->entries[handle->k];
if (!offset)
return -EFAULT;
error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
if (error)
return error;
if (++handle->k >= MAP_PAGE_ENTRIES) {
handle->k = 0;
free_page((unsigned long)handle->maps->map);
tmp = handle->maps;
handle->maps = handle->maps->next;
kfree(tmp);
if (!handle->maps)
release_swap_reader(handle);
else
handle->cur = handle->maps->map;
}
return error;
}
static int swap_reader_finish(struct swap_map_handle *handle)
{
release_swap_reader(handle);
return 0;
}
/**
* load_image - load the image using the swap map handle
* @handle and the snapshot handle @snapshot
* (assume there are @nr_pages pages to load)
*/
static int load_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_read)
{
unsigned int m;
int ret = 0;
ktime_t start;
ktime_t stop;
struct hib_bio_batch hb;
int err2;
unsigned nr_pages;
hib_init_batch(&hb);
clean_pages_on_read = true;
pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
for ( ; ; ) {
ret = snapshot_write_next(snapshot);
if (ret <= 0)
break;
ret = swap_read_page(handle, data_of(*snapshot), &hb);
if (ret)
break;
if (snapshot->sync_read)
ret = hib_wait_io(&hb);
if (ret)
break;
if (!(nr_pages % m))
pr_info("Image loading progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
hib_finish_batch(&hb);
stop = ktime_get();
if (!ret)
ret = err2;
if (!ret) {
pr_info("Image loading done\n");
ret = snapshot_write_finalize(snapshot);
if (!ret && !snapshot_image_loaded(snapshot))
ret = -ENODATA;
}
swsusp_show_speed(start, stop, nr_to_read, "Read");
return ret;
}
/*
* Structure used for data decompression.
*/
struct dec_data {
struct task_struct *thr; /* thread */
struct crypto_comp *cc; /* crypto compressor stream */
atomic_t ready; /* ready to start flag */
atomic_t stop; /* ready to stop flag */
int ret; /* return code */
wait_queue_head_t go; /* start decompression */
wait_queue_head_t done; /* decompression done */
size_t unc_len; /* uncompressed length */
size_t cmp_len; /* compressed length */
unsigned char unc[UNC_SIZE]; /* uncompressed buffer */
unsigned char cmp[CMP_SIZE]; /* compressed buffer */
};
/*
* Decompression function that runs in its own thread.
*/
static int decompress_threadfn(void *data)
{
struct dec_data *d = data;
unsigned int unc_len = 0;
while (1) {
wait_event(d->go, atomic_read_acquire(&d->ready) ||
kthread_should_stop());
if (kthread_should_stop()) {
d->thr = NULL;
d->ret = -1;
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
break;
}
atomic_set(&d->ready, 0);
unc_len = UNC_SIZE;
d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
d->unc, &unc_len);
d->unc_len = unc_len;
if (clean_pages_on_decompress)
flush_icache_range((unsigned long)d->unc,
(unsigned long)d->unc + d->unc_len);
atomic_set_release(&d->stop, 1);
wake_up(&d->done);
}
return 0;
}
/**
* load_compressed_image - Load compressed image data and decompress it.
* @handle: Swap map handle to use for loading data.
* @snapshot: Image to copy uncompressed data into.
* @nr_to_read: Number of pages to load.
*/
static int load_compressed_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_to_read)
{
unsigned int m;
int ret = 0;
int eof = 0;
struct hib_bio_batch hb;
ktime_t start;
ktime_t stop;
unsigned nr_pages;
size_t off;
unsigned i, thr, run_threads, nr_threads;
unsigned ring = 0, pg = 0, ring_size = 0,
have = 0, want, need, asked = 0;
unsigned long read_pages = 0;
unsigned char **page = NULL;
struct dec_data *data = NULL;
struct crc_data *crc = NULL;
hib_init_batch(&hb);
/*
* We'll limit the number of threads for decompression to limit memory
* footprint.
*/
nr_threads = num_online_cpus() - 1;
nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
if (!page) {
pr_err("Failed to allocate %s page\n", hib_comp_algo);
ret = -ENOMEM;
goto out_clean;
}
data = vzalloc(array_size(nr_threads, sizeof(*data)));
if (!data) {
pr_err("Failed to allocate %s data\n", hib_comp_algo);
ret = -ENOMEM;
goto out_clean;
}
crc = kzalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
clean_pages_on_decompress = true;
/*
* Start the decompression threads.
*/
for (thr = 0; thr < nr_threads; thr++) {
init_waitqueue_head(&data[thr].go);
init_waitqueue_head(&data[thr].done);
data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
if (IS_ERR_OR_NULL(data[thr].cc)) {
pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
ret = -EFAULT;
goto out_clean;
}
data[thr].thr = kthread_run(decompress_threadfn,
&data[thr],
"image_decompress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
pr_err("Cannot start decompression threads\n");
ret = -ENOMEM;
goto out_clean;
}
}
/*
* Start the CRC32 thread.
*/
init_waitqueue_head(&crc->go);
init_waitqueue_head(&crc->done);
handle->crc32 = 0;
crc->crc32 = &handle->crc32;
for (thr = 0; thr < nr_threads; thr++) {
crc->unc[thr] = data[thr].unc;
crc->unc_len[thr] = &data[thr].unc_len;
}
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
/*
* Set the number of pages for read buffering.
* This is complete guesswork, because we'll only know the real
* picture once prepare_image() is called, which is much later on
* during the image load phase. We'll assume the worst case and
* say that none of the image pages are from high memory.
*/
if (low_free_pages() > snapshot_get_image_size())
read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
for (i = 0; i < read_pages; i++) {
page[i] = (void *)__get_free_page(i < CMP_PAGES ?
GFP_NOIO | __GFP_HIGH :
GFP_NOIO | __GFP_NOWARN |
__GFP_NORETRY);
if (!page[i]) {
if (i < CMP_PAGES) {
ring_size = i;
pr_err("Failed to allocate %s pages\n", hib_comp_algo);
ret = -ENOMEM;
goto out_clean;
} else {
break;
}
}
}
want = ring_size = i;
pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
pr_info("Loading and decompressing image data (%u pages)...\n",
nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
nr_pages = 0;
start = ktime_get();
ret = snapshot_write_next(snapshot);
if (ret <= 0)
goto out_finish;
for(;;) {
for (i = 0; !eof && i < want; i++) {
ret = swap_read_page(handle, page[ring], &hb);
if (ret) {
/*
* On real read error, finish. On end of data,
* set EOF flag and just exit the read loop.
*/
if (handle->cur &&
handle->cur->entries[handle->k]) {
goto out_finish;
} else {
eof = 1;
break;
}
}
if (++ring >= ring_size)
ring = 0;
}
asked += i;
want -= i;
/*
* We are out of data, wait for some more.
*/
if (!have) {
if (!asked)
break;
ret = hib_wait_io(&hb);
if (ret)
goto out_finish;
have += asked;
asked = 0;
if (eof)
eof = 2;
}
if (crc->run_threads) {
wait_event(crc->done, atomic_read_acquire(&crc->stop));
atomic_set(&crc->stop, 0);
crc->run_threads = 0;
}
for (thr = 0; have && thr < nr_threads; thr++) {
data[thr].cmp_len = *(size_t *)page[pg];
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
bytes_worst_compress(UNC_SIZE))) {
pr_err("Invalid %s compressed length\n", hib_comp_algo);
ret = -1;
goto out_finish;
}
need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
PAGE_SIZE);
if (need > have) {
if (eof > 1) {
ret = -1;
goto out_finish;
}
break;
}
for (off = 0;
off < CMP_HEADER + data[thr].cmp_len;
off += PAGE_SIZE) {
memcpy(data[thr].cmp + off,
page[pg], PAGE_SIZE);
have--;
want++;
if (++pg >= ring_size)
pg = 0;
}
atomic_set_release(&data[thr].ready, 1);
wake_up(&data[thr].go);
}
/*
* Wait for more data while we are decompressing.
*/
if (have < CMP_PAGES && asked) {
ret = hib_wait_io(&hb);
if (ret)
goto out_finish;
have += asked;
asked = 0;
if (eof)
eof = 2;
}
for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
wait_event(data[thr].done,
atomic_read_acquire(&data[thr].stop));
atomic_set(&data[thr].stop, 0);
ret = data[thr].ret;
if (ret < 0) {
pr_err("%s decompression failed\n", hib_comp_algo);
goto out_finish;
}
if (unlikely(!data[thr].unc_len ||
data[thr].unc_len > UNC_SIZE ||
data[thr].unc_len & (PAGE_SIZE - 1))) {
pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
ret = -1;
goto out_finish;
}
for (off = 0;
off < data[thr].unc_len; off += PAGE_SIZE) {
memcpy(data_of(*snapshot),
data[thr].unc + off, PAGE_SIZE);
if (!(nr_pages % m))
pr_info("Image loading progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
ret = snapshot_write_next(snapshot);
if (ret <= 0) {
crc->run_threads = thr + 1;
atomic_set_release(&crc->ready, 1);
wake_up(&crc->go);
goto out_finish;
}
}
}
crc->run_threads = thr;
atomic_set_release(&crc->ready, 1);
wake_up(&crc->go);
}
out_finish:
if (crc->run_threads) {
wait_event(crc->done, atomic_read_acquire(&crc->stop));
atomic_set(&crc->stop, 0);
}
stop = ktime_get();
if (!ret) {
pr_info("Image loading done\n");
ret = snapshot_write_finalize(snapshot);
if (!ret && !snapshot_image_loaded(snapshot))
ret = -ENODATA;
if (!ret) {
if (swsusp_header->flags & SF_CRC32_MODE) {
if(handle->crc32 != swsusp_header->crc32) {
pr_err("Invalid image CRC32!\n");
ret = -ENODATA;
}
}
}
}
swsusp_show_speed(start, stop, nr_to_read, "Read");
out_clean:
hib_finish_batch(&hb);
for (i = 0; i < ring_size; i++)
free_page((unsigned long)page[i]);
if (crc) {
if (crc->thr)
kthread_stop(crc->thr);
kfree(crc);
}
if (data) {
for (thr = 0; thr < nr_threads; thr++) {
if (data[thr].thr)
kthread_stop(data[thr].thr);
if (data[thr].cc)
crypto_free_comp(data[thr].cc);
}
vfree(data);
}
vfree(page);
return ret;
}
/**
* swsusp_read - read the hibernation image.
* @flags_p: flags passed by the "frozen" kernel in the image header should
* be written into this memory location
*/
int swsusp_read(unsigned int *flags_p)
{
int error;
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_write_next(&snapshot);
if (error < (int)PAGE_SIZE)
return error < 0 ? error : -EFAULT;
header = (struct swsusp_info *)data_of(snapshot);
error = get_swap_reader(&handle, flags_p);
if (error)
goto end;
if (!error)
error = swap_read_page(&handle, header, NULL);
if (!error) {
error = (*flags_p & SF_NOCOMPRESS_MODE) ?
load_image(&handle, &snapshot, header->pages - 1) :
load_compressed_image(&handle, &snapshot, header->pages - 1);
}
swap_reader_finish(&handle);
end:
if (!error)
pr_debug("Image successfully loaded\n");
else
pr_debug("Error %d resuming\n", error);
return error;
}
static void *swsusp_holder;
/**
* swsusp_check - Open the resume device and check for the swsusp signature.
* @exclusive: Open the resume device exclusively.
*/
int swsusp_check(bool exclusive)
{
void *holder = exclusive ? &swsusp_holder : NULL;
int error;
hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
BLK_OPEN_READ, holder, NULL);
if (!IS_ERR(hib_resume_bdev_file)) {
set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
clear_page(swsusp_header);
error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
swsusp_header, NULL);
if (error)
goto put;
if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
swsusp_header_flags = swsusp_header->flags;
/* Reset swap signature now */
error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
swsusp_resume_block,
swsusp_header, NULL);
} else {
error = -EINVAL;
}
if (!error && swsusp_header->flags & SF_HW_SIG &&
swsusp_header->hw_sig != swsusp_hardware_signature) {
pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
swsusp_header->hw_sig, swsusp_hardware_signature);
error = -EINVAL;
}
put:
if (error)
fput(hib_resume_bdev_file);
else
pr_debug("Image signature found, resuming\n");
} else {
error = PTR_ERR(hib_resume_bdev_file);
}
if (error)
pr_debug("Image not found (code %d)\n", error);
return error;
}
/**
* swsusp_close - close resume device.
*/
void swsusp_close(void)
{
if (IS_ERR(hib_resume_bdev_file)) {
pr_debug("Image device not initialised\n");
return;
}
fput(hib_resume_bdev_file);
}
/**
* swsusp_unmark - Unmark swsusp signature in the resume device
*/
#ifdef CONFIG_SUSPEND
int swsusp_unmark(void)
{
int error;
hib_submit_io(REQ_OP_READ, swsusp_resume_block,
swsusp_header, NULL);
if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
swsusp_resume_block,
swsusp_header, NULL);
} else {
pr_err("Cannot find swsusp signature!\n");
error = -ENODEV;
}
/*
* We just returned from suspend, we don't need the image any more.
*/
free_all_swap_pages(root_swap);
return error;
}
#endif
static int __init swsusp_header_init(void)
{
swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
if (!swsusp_header)
panic("Could not allocate memory for swsusp_header\n");
return 0;
}
core_initcall(swsusp_header_init);