Add vendoring to containerd master

Initial vendor list validated with empty $GOPATH
and only master checked out; followed by `make`
and verified that all binaries build properly.
Updates require github.com/LK4D4/vndr tool.

Signed-off-by: Phil Estes <estesp@linux.vnet.ibm.com>
This commit is contained in:
Phil Estes 2016-12-16 12:03:35 -05:00
parent 286ea04591
commit dd9309c15e
No known key found for this signature in database
GPG key ID: 0F386284C03A1162
407 changed files with 113562 additions and 0 deletions

201
vendor/github.com/prometheus/procfs/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

7
vendor/github.com/prometheus/procfs/NOTICE generated vendored Normal file
View file

@ -0,0 +1,7 @@
procfs provides functions to retrieve system, kernel and process
metrics from the pseudo-filesystem proc.
Copyright 2014-2015 The Prometheus Authors
This product includes software developed at
SoundCloud Ltd. (http://soundcloud.com/).

45
vendor/github.com/prometheus/procfs/doc.go generated vendored Normal file
View file

@ -0,0 +1,45 @@
// Copyright 2014 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package procfs provides functions to retrieve system, kernel and process
// metrics from the pseudo-filesystem proc.
//
// Example:
//
// package main
//
// import (
// "fmt"
// "log"
//
// "github.com/prometheus/procfs"
// )
//
// func main() {
// p, err := procfs.Self()
// if err != nil {
// log.Fatalf("could not get process: %s", err)
// }
//
// stat, err := p.NewStat()
// if err != nil {
// log.Fatalf("could not get process stat: %s", err)
// }
//
// fmt.Printf("command: %s\n", stat.Comm)
// fmt.Printf("cpu time: %fs\n", stat.CPUTime())
// fmt.Printf("vsize: %dB\n", stat.VirtualMemory())
// fmt.Printf("rss: %dB\n", stat.ResidentMemory())
// }
//
package procfs

33
vendor/github.com/prometheus/procfs/fs.go generated vendored Normal file
View file

@ -0,0 +1,33 @@
package procfs
import (
"fmt"
"os"
"path"
)
// FS represents the pseudo-filesystem proc, which provides an interface to
// kernel data structures.
type FS string
// DefaultMountPoint is the common mount point of the proc filesystem.
const DefaultMountPoint = "/proc"
// NewFS returns a new FS mounted under the given mountPoint. It will error
// if the mount point can't be read.
func NewFS(mountPoint string) (FS, error) {
info, err := os.Stat(mountPoint)
if err != nil {
return "", fmt.Errorf("could not read %s: %s", mountPoint, err)
}
if !info.IsDir() {
return "", fmt.Errorf("mount point %s is not a directory", mountPoint)
}
return FS(mountPoint), nil
}
// Path returns the path of the given subsystem relative to the procfs root.
func (fs FS) Path(p ...string) string {
return path.Join(append([]string{string(fs)}, p...)...)
}

224
vendor/github.com/prometheus/procfs/ipvs.go generated vendored Normal file
View file

@ -0,0 +1,224 @@
package procfs
import (
"bufio"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"net"
"os"
"strconv"
"strings"
)
// IPVSStats holds IPVS statistics, as exposed by the kernel in `/proc/net/ip_vs_stats`.
type IPVSStats struct {
// Total count of connections.
Connections uint64
// Total incoming packages processed.
IncomingPackets uint64
// Total outgoing packages processed.
OutgoingPackets uint64
// Total incoming traffic.
IncomingBytes uint64
// Total outgoing traffic.
OutgoingBytes uint64
}
// IPVSBackendStatus holds current metrics of one virtual / real address pair.
type IPVSBackendStatus struct {
// The local (virtual) IP address.
LocalAddress net.IP
// The local (virtual) port.
LocalPort uint16
// The transport protocol (TCP, UDP).
Proto string
// The remote (real) IP address.
RemoteAddress net.IP
// The remote (real) port.
RemotePort uint16
// The current number of active connections for this virtual/real address pair.
ActiveConn uint64
// The current number of inactive connections for this virtual/real address pair.
InactConn uint64
// The current weight of this virtual/real address pair.
Weight uint64
}
// NewIPVSStats reads the IPVS statistics.
func NewIPVSStats() (IPVSStats, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return IPVSStats{}, err
}
return fs.NewIPVSStats()
}
// NewIPVSStats reads the IPVS statistics from the specified `proc` filesystem.
func (fs FS) NewIPVSStats() (IPVSStats, error) {
file, err := os.Open(fs.Path("net/ip_vs_stats"))
if err != nil {
return IPVSStats{}, err
}
defer file.Close()
return parseIPVSStats(file)
}
// parseIPVSStats performs the actual parsing of `ip_vs_stats`.
func parseIPVSStats(file io.Reader) (IPVSStats, error) {
var (
statContent []byte
statLines []string
statFields []string
stats IPVSStats
)
statContent, err := ioutil.ReadAll(file)
if err != nil {
return IPVSStats{}, err
}
statLines = strings.SplitN(string(statContent), "\n", 4)
if len(statLines) != 4 {
return IPVSStats{}, errors.New("ip_vs_stats corrupt: too short")
}
statFields = strings.Fields(statLines[2])
if len(statFields) != 5 {
return IPVSStats{}, errors.New("ip_vs_stats corrupt: unexpected number of fields")
}
stats.Connections, err = strconv.ParseUint(statFields[0], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.IncomingPackets, err = strconv.ParseUint(statFields[1], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.OutgoingPackets, err = strconv.ParseUint(statFields[2], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.IncomingBytes, err = strconv.ParseUint(statFields[3], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.OutgoingBytes, err = strconv.ParseUint(statFields[4], 16, 64)
if err != nil {
return IPVSStats{}, err
}
return stats, nil
}
// NewIPVSBackendStatus reads and returns the status of all (virtual,real) server pairs.
func NewIPVSBackendStatus() ([]IPVSBackendStatus, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return []IPVSBackendStatus{}, err
}
return fs.NewIPVSBackendStatus()
}
// NewIPVSBackendStatus reads and returns the status of all (virtual,real) server pairs from the specified `proc` filesystem.
func (fs FS) NewIPVSBackendStatus() ([]IPVSBackendStatus, error) {
file, err := os.Open(fs.Path("net/ip_vs"))
if err != nil {
return nil, err
}
defer file.Close()
return parseIPVSBackendStatus(file)
}
func parseIPVSBackendStatus(file io.Reader) ([]IPVSBackendStatus, error) {
var (
status []IPVSBackendStatus
scanner = bufio.NewScanner(file)
proto string
localAddress net.IP
localPort uint16
err error
)
for scanner.Scan() {
fields := strings.Fields(string(scanner.Text()))
if len(fields) == 0 {
continue
}
switch {
case fields[0] == "IP" || fields[0] == "Prot" || fields[1] == "RemoteAddress:Port":
continue
case fields[0] == "TCP" || fields[0] == "UDP":
if len(fields) < 2 {
continue
}
proto = fields[0]
localAddress, localPort, err = parseIPPort(fields[1])
if err != nil {
return nil, err
}
case fields[0] == "->":
if len(fields) < 6 {
continue
}
remoteAddress, remotePort, err := parseIPPort(fields[1])
if err != nil {
return nil, err
}
weight, err := strconv.ParseUint(fields[3], 10, 64)
if err != nil {
return nil, err
}
activeConn, err := strconv.ParseUint(fields[4], 10, 64)
if err != nil {
return nil, err
}
inactConn, err := strconv.ParseUint(fields[5], 10, 64)
if err != nil {
return nil, err
}
status = append(status, IPVSBackendStatus{
LocalAddress: localAddress,
LocalPort: localPort,
RemoteAddress: remoteAddress,
RemotePort: remotePort,
Proto: proto,
Weight: weight,
ActiveConn: activeConn,
InactConn: inactConn,
})
}
}
return status, nil
}
func parseIPPort(s string) (net.IP, uint16, error) {
tmp := strings.SplitN(s, ":", 2)
if len(tmp) != 2 {
return nil, 0, fmt.Errorf("invalid IP:Port: %s", s)
}
if len(tmp[0]) != 8 && len(tmp[0]) != 32 {
return nil, 0, fmt.Errorf("invalid IP: %s", tmp[0])
}
ip, err := hex.DecodeString(tmp[0])
if err != nil {
return nil, 0, err
}
port, err := strconv.ParseUint(tmp[1], 16, 16)
if err != nil {
return nil, 0, err
}
return ip, uint16(port), nil
}

138
vendor/github.com/prometheus/procfs/mdstat.go generated vendored Normal file
View file

@ -0,0 +1,138 @@
package procfs
import (
"fmt"
"io/ioutil"
"regexp"
"strconv"
"strings"
)
var (
statuslineRE = regexp.MustCompile(`(\d+) blocks .*\[(\d+)/(\d+)\] \[[U_]+\]`)
buildlineRE = regexp.MustCompile(`\((\d+)/\d+\)`)
)
// MDStat holds info parsed from /proc/mdstat.
type MDStat struct {
// Name of the device.
Name string
// activity-state of the device.
ActivityState string
// Number of active disks.
DisksActive int64
// Total number of disks the device consists of.
DisksTotal int64
// Number of blocks the device holds.
BlocksTotal int64
// Number of blocks on the device that are in sync.
BlocksSynced int64
}
// ParseMDStat parses an mdstat-file and returns a struct with the relevant infos.
func (fs FS) ParseMDStat() (mdstates []MDStat, err error) {
mdStatusFilePath := fs.Path("mdstat")
content, err := ioutil.ReadFile(mdStatusFilePath)
if err != nil {
return []MDStat{}, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
mdStates := []MDStat{}
lines := strings.Split(string(content), "\n")
for i, l := range lines {
if l == "" {
continue
}
if l[0] == ' ' {
continue
}
if strings.HasPrefix(l, "Personalities") || strings.HasPrefix(l, "unused") {
continue
}
mainLine := strings.Split(l, " ")
if len(mainLine) < 3 {
return mdStates, fmt.Errorf("error parsing mdline: %s", l)
}
mdName := mainLine[0]
activityState := mainLine[2]
if len(lines) <= i+3 {
return mdStates, fmt.Errorf(
"error parsing %s: too few lines for md device %s",
mdStatusFilePath,
mdName,
)
}
active, total, size, err := evalStatusline(lines[i+1])
if err != nil {
return mdStates, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
// j is the line number of the syncing-line.
j := i + 2
if strings.Contains(lines[i+2], "bitmap") { // skip bitmap line
j = i + 3
}
// If device is syncing at the moment, get the number of currently
// synced bytes, otherwise that number equals the size of the device.
syncedBlocks := size
if strings.Contains(lines[j], "recovery") || strings.Contains(lines[j], "resync") {
syncedBlocks, err = evalBuildline(lines[j])
if err != nil {
return mdStates, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
}
mdStates = append(mdStates, MDStat{
Name: mdName,
ActivityState: activityState,
DisksActive: active,
DisksTotal: total,
BlocksTotal: size,
BlocksSynced: syncedBlocks,
})
}
return mdStates, nil
}
func evalStatusline(statusline string) (active, total, size int64, err error) {
matches := statuslineRE.FindStringSubmatch(statusline)
if len(matches) != 4 {
return 0, 0, 0, fmt.Errorf("unexpected statusline: %s", statusline)
}
size, err = strconv.ParseInt(matches[1], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
total, err = strconv.ParseInt(matches[2], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
active, err = strconv.ParseInt(matches[3], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
return active, total, size, nil
}
func evalBuildline(buildline string) (syncedBlocks int64, err error) {
matches := buildlineRE.FindStringSubmatch(buildline)
if len(matches) != 2 {
return 0, fmt.Errorf("unexpected buildline: %s", buildline)
}
syncedBlocks, err = strconv.ParseInt(matches[1], 10, 64)
if err != nil {
return 0, fmt.Errorf("%s in buildline: %s", err, buildline)
}
return syncedBlocks, nil
}

552
vendor/github.com/prometheus/procfs/mountstats.go generated vendored Normal file
View file

@ -0,0 +1,552 @@
package procfs
// While implementing parsing of /proc/[pid]/mountstats, this blog was used
// heavily as a reference:
// https://utcc.utoronto.ca/~cks/space/blog/linux/NFSMountstatsIndex
//
// Special thanks to Chris Siebenmann for all of his posts explaining the
// various statistics available for NFS.
import (
"bufio"
"fmt"
"io"
"strconv"
"strings"
"time"
)
// Constants shared between multiple functions.
const (
deviceEntryLen = 8
fieldBytesLen = 8
fieldEventsLen = 27
statVersion10 = "1.0"
statVersion11 = "1.1"
fieldTransport10Len = 10
fieldTransport11Len = 13
)
// A Mount is a device mount parsed from /proc/[pid]/mountstats.
type Mount struct {
// Name of the device.
Device string
// The mount point of the device.
Mount string
// The filesystem type used by the device.
Type string
// If available additional statistics related to this Mount.
// Use a type assertion to determine if additional statistics are available.
Stats MountStats
}
// A MountStats is a type which contains detailed statistics for a specific
// type of Mount.
type MountStats interface {
mountStats()
}
// A MountStatsNFS is a MountStats implementation for NFSv3 and v4 mounts.
type MountStatsNFS struct {
// The version of statistics provided.
StatVersion string
// The age of the NFS mount.
Age time.Duration
// Statistics related to byte counters for various operations.
Bytes NFSBytesStats
// Statistics related to various NFS event occurrences.
Events NFSEventsStats
// Statistics broken down by filesystem operation.
Operations []NFSOperationStats
// Statistics about the NFS RPC transport.
Transport NFSTransportStats
}
// mountStats implements MountStats.
func (m MountStatsNFS) mountStats() {}
// A NFSBytesStats contains statistics about the number of bytes read and written
// by an NFS client to and from an NFS server.
type NFSBytesStats struct {
// Number of bytes read using the read() syscall.
Read int
// Number of bytes written using the write() syscall.
Write int
// Number of bytes read using the read() syscall in O_DIRECT mode.
DirectRead int
// Number of bytes written using the write() syscall in O_DIRECT mode.
DirectWrite int
// Number of bytes read from the NFS server, in total.
ReadTotal int
// Number of bytes written to the NFS server, in total.
WriteTotal int
// Number of pages read directly via mmap()'d files.
ReadPages int
// Number of pages written directly via mmap()'d files.
WritePages int
}
// A NFSEventsStats contains statistics about NFS event occurrences.
type NFSEventsStats struct {
// Number of times cached inode attributes are re-validated from the server.
InodeRevalidate int
// Number of times cached dentry nodes are re-validated from the server.
DnodeRevalidate int
// Number of times an inode cache is cleared.
DataInvalidate int
// Number of times cached inode attributes are invalidated.
AttributeInvalidate int
// Number of times files or directories have been open()'d.
VFSOpen int
// Number of times a directory lookup has occurred.
VFSLookup int
// Number of times permissions have been checked.
VFSAccess int
// Number of updates (and potential writes) to pages.
VFSUpdatePage int
// Number of pages read directly via mmap()'d files.
VFSReadPage int
// Number of times a group of pages have been read.
VFSReadPages int
// Number of pages written directly via mmap()'d files.
VFSWritePage int
// Number of times a group of pages have been written.
VFSWritePages int
// Number of times directory entries have been read with getdents().
VFSGetdents int
// Number of times attributes have been set on inodes.
VFSSetattr int
// Number of pending writes that have been forcefully flushed to the server.
VFSFlush int
// Number of times fsync() has been called on directories and files.
VFSFsync int
// Number of times locking has been attemped on a file.
VFSLock int
// Number of times files have been closed and released.
VFSFileRelease int
// Unknown. Possibly unused.
CongestionWait int
// Number of times files have been truncated.
Truncation int
// Number of times a file has been grown due to writes beyond its existing end.
WriteExtension int
// Number of times a file was removed while still open by another process.
SillyRename int
// Number of times the NFS server gave less data than expected while reading.
ShortRead int
// Number of times the NFS server wrote less data than expected while writing.
ShortWrite int
// Number of times the NFS server indicated EJUKEBOX; retrieving data from
// offline storage.
JukeboxDelay int
// Number of NFS v4.1+ pNFS reads.
PNFSRead int
// Number of NFS v4.1+ pNFS writes.
PNFSWrite int
}
// A NFSOperationStats contains statistics for a single operation.
type NFSOperationStats struct {
// The name of the operation.
Operation string
// Number of requests performed for this operation.
Requests int
// Number of times an actual RPC request has been transmitted for this operation.
Transmissions int
// Number of times a request has had a major timeout.
MajorTimeouts int
// Number of bytes sent for this operation, including RPC headers and payload.
BytesSent int
// Number of bytes received for this operation, including RPC headers and payload.
BytesReceived int
// Duration all requests spent queued for transmission before they were sent.
CumulativeQueueTime time.Duration
// Duration it took to get a reply back after the request was transmitted.
CumulativeTotalResponseTime time.Duration
// Duration from when a request was enqueued to when it was completely handled.
CumulativeTotalRequestTime time.Duration
}
// A NFSTransportStats contains statistics for the NFS mount RPC requests and
// responses.
type NFSTransportStats struct {
// The local port used for the NFS mount.
Port int
// Number of times the client has had to establish a connection from scratch
// to the NFS server.
Bind int
// Number of times the client has made a TCP connection to the NFS server.
Connect int
// Duration (in jiffies, a kernel internal unit of time) the NFS mount has
// spent waiting for connections to the server to be established.
ConnectIdleTime int
// Duration since the NFS mount last saw any RPC traffic.
IdleTime time.Duration
// Number of RPC requests for this mount sent to the NFS server.
Sends int
// Number of RPC responses for this mount received from the NFS server.
Receives int
// Number of times the NFS server sent a response with a transaction ID
// unknown to this client.
BadTransactionIDs int
// A running counter, incremented on each request as the current difference
// ebetween sends and receives.
CumulativeActiveRequests int
// A running counter, incremented on each request by the current backlog
// queue size.
CumulativeBacklog int
// Stats below only available with stat version 1.1.
// Maximum number of simultaneously active RPC requests ever used.
MaximumRPCSlotsUsed int
// A running counter, incremented on each request as the current size of the
// sending queue.
CumulativeSendingQueue int
// A running counter, incremented on each request as the current size of the
// pending queue.
CumulativePendingQueue int
}
// parseMountStats parses a /proc/[pid]/mountstats file and returns a slice
// of Mount structures containing detailed information about each mount.
// If available, statistics for each mount are parsed as well.
func parseMountStats(r io.Reader) ([]*Mount, error) {
const (
device = "device"
statVersionPrefix = "statvers="
nfs3Type = "nfs"
nfs4Type = "nfs4"
)
var mounts []*Mount
s := bufio.NewScanner(r)
for s.Scan() {
// Only look for device entries in this function
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 || ss[0] != device {
continue
}
m, err := parseMount(ss)
if err != nil {
return nil, err
}
// Does this mount also possess statistics information?
if len(ss) > deviceEntryLen {
// Only NFSv3 and v4 are supported for parsing statistics
if m.Type != nfs3Type && m.Type != nfs4Type {
return nil, fmt.Errorf("cannot parse MountStats for fstype %q", m.Type)
}
statVersion := strings.TrimPrefix(ss[8], statVersionPrefix)
stats, err := parseMountStatsNFS(s, statVersion)
if err != nil {
return nil, err
}
m.Stats = stats
}
mounts = append(mounts, m)
}
return mounts, s.Err()
}
// parseMount parses an entry in /proc/[pid]/mountstats in the format:
// device [device] mounted on [mount] with fstype [type]
func parseMount(ss []string) (*Mount, error) {
if len(ss) < deviceEntryLen {
return nil, fmt.Errorf("invalid device entry: %v", ss)
}
// Check for specific words appearing at specific indices to ensure
// the format is consistent with what we expect
format := []struct {
i int
s string
}{
{i: 0, s: "device"},
{i: 2, s: "mounted"},
{i: 3, s: "on"},
{i: 5, s: "with"},
{i: 6, s: "fstype"},
}
for _, f := range format {
if ss[f.i] != f.s {
return nil, fmt.Errorf("invalid device entry: %v", ss)
}
}
return &Mount{
Device: ss[1],
Mount: ss[4],
Type: ss[7],
}, nil
}
// parseMountStatsNFS parses a MountStatsNFS by scanning additional information
// related to NFS statistics.
func parseMountStatsNFS(s *bufio.Scanner, statVersion string) (*MountStatsNFS, error) {
// Field indicators for parsing specific types of data
const (
fieldAge = "age:"
fieldBytes = "bytes:"
fieldEvents = "events:"
fieldPerOpStats = "per-op"
fieldTransport = "xprt:"
)
stats := &MountStatsNFS{
StatVersion: statVersion,
}
for s.Scan() {
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 {
break
}
if len(ss) < 2 {
return nil, fmt.Errorf("not enough information for NFS stats: %v", ss)
}
switch ss[0] {
case fieldAge:
// Age integer is in seconds
d, err := time.ParseDuration(ss[1] + "s")
if err != nil {
return nil, err
}
stats.Age = d
case fieldBytes:
bstats, err := parseNFSBytesStats(ss[1:])
if err != nil {
return nil, err
}
stats.Bytes = *bstats
case fieldEvents:
estats, err := parseNFSEventsStats(ss[1:])
if err != nil {
return nil, err
}
stats.Events = *estats
case fieldTransport:
if len(ss) < 3 {
return nil, fmt.Errorf("not enough information for NFS transport stats: %v", ss)
}
tstats, err := parseNFSTransportStats(ss[2:], statVersion)
if err != nil {
return nil, err
}
stats.Transport = *tstats
}
// When encountering "per-operation statistics", we must break this
// loop and parse them seperately to ensure we can terminate parsing
// before reaching another device entry; hence why this 'if' statement
// is not just another switch case
if ss[0] == fieldPerOpStats {
break
}
}
if err := s.Err(); err != nil {
return nil, err
}
// NFS per-operation stats appear last before the next device entry
perOpStats, err := parseNFSOperationStats(s)
if err != nil {
return nil, err
}
stats.Operations = perOpStats
return stats, nil
}
// parseNFSBytesStats parses a NFSBytesStats line using an input set of
// integer fields.
func parseNFSBytesStats(ss []string) (*NFSBytesStats, error) {
if len(ss) != fieldBytesLen {
return nil, fmt.Errorf("invalid NFS bytes stats: %v", ss)
}
ns := make([]int, 0, fieldBytesLen)
for _, s := range ss {
n, err := strconv.Atoi(s)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
return &NFSBytesStats{
Read: ns[0],
Write: ns[1],
DirectRead: ns[2],
DirectWrite: ns[3],
ReadTotal: ns[4],
WriteTotal: ns[5],
ReadPages: ns[6],
WritePages: ns[7],
}, nil
}
// parseNFSEventsStats parses a NFSEventsStats line using an input set of
// integer fields.
func parseNFSEventsStats(ss []string) (*NFSEventsStats, error) {
if len(ss) != fieldEventsLen {
return nil, fmt.Errorf("invalid NFS events stats: %v", ss)
}
ns := make([]int, 0, fieldEventsLen)
for _, s := range ss {
n, err := strconv.Atoi(s)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
return &NFSEventsStats{
InodeRevalidate: ns[0],
DnodeRevalidate: ns[1],
DataInvalidate: ns[2],
AttributeInvalidate: ns[3],
VFSOpen: ns[4],
VFSLookup: ns[5],
VFSAccess: ns[6],
VFSUpdatePage: ns[7],
VFSReadPage: ns[8],
VFSReadPages: ns[9],
VFSWritePage: ns[10],
VFSWritePages: ns[11],
VFSGetdents: ns[12],
VFSSetattr: ns[13],
VFSFlush: ns[14],
VFSFsync: ns[15],
VFSLock: ns[16],
VFSFileRelease: ns[17],
CongestionWait: ns[18],
Truncation: ns[19],
WriteExtension: ns[20],
SillyRename: ns[21],
ShortRead: ns[22],
ShortWrite: ns[23],
JukeboxDelay: ns[24],
PNFSRead: ns[25],
PNFSWrite: ns[26],
}, nil
}
// parseNFSOperationStats parses a slice of NFSOperationStats by scanning
// additional information about per-operation statistics until an empty
// line is reached.
func parseNFSOperationStats(s *bufio.Scanner) ([]NFSOperationStats, error) {
const (
// Number of expected fields in each per-operation statistics set
numFields = 9
)
var ops []NFSOperationStats
for s.Scan() {
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 {
// Must break when reading a blank line after per-operation stats to
// enable top-level function to parse the next device entry
break
}
if len(ss) != numFields {
return nil, fmt.Errorf("invalid NFS per-operations stats: %v", ss)
}
// Skip string operation name for integers
ns := make([]int, 0, numFields-1)
for _, st := range ss[1:] {
n, err := strconv.Atoi(st)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
ops = append(ops, NFSOperationStats{
Operation: strings.TrimSuffix(ss[0], ":"),
Requests: ns[0],
Transmissions: ns[1],
MajorTimeouts: ns[2],
BytesSent: ns[3],
BytesReceived: ns[4],
CumulativeQueueTime: time.Duration(ns[5]) * time.Millisecond,
CumulativeTotalResponseTime: time.Duration(ns[6]) * time.Millisecond,
CumulativeTotalRequestTime: time.Duration(ns[7]) * time.Millisecond,
})
}
return ops, s.Err()
}
// parseNFSTransportStats parses a NFSTransportStats line using an input set of
// integer fields matched to a specific stats version.
func parseNFSTransportStats(ss []string, statVersion string) (*NFSTransportStats, error) {
switch statVersion {
case statVersion10:
if len(ss) != fieldTransport10Len {
return nil, fmt.Errorf("invalid NFS transport stats 1.0 statement: %v", ss)
}
case statVersion11:
if len(ss) != fieldTransport11Len {
return nil, fmt.Errorf("invalid NFS transport stats 1.1 statement: %v", ss)
}
default:
return nil, fmt.Errorf("unrecognized NFS transport stats version: %q", statVersion)
}
// Allocate enough for v1.1 stats since zero value for v1.1 stats will be okay
// in a v1.0 response
ns := make([]int, 0, fieldTransport11Len)
for _, s := range ss {
n, err := strconv.Atoi(s)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
return &NFSTransportStats{
Port: ns[0],
Bind: ns[1],
Connect: ns[2],
ConnectIdleTime: ns[3],
IdleTime: time.Duration(ns[4]) * time.Second,
Sends: ns[5],
Receives: ns[6],
BadTransactionIDs: ns[7],
CumulativeActiveRequests: ns[8],
CumulativeBacklog: ns[9],
MaximumRPCSlotsUsed: ns[10],
CumulativeSendingQueue: ns[11],
CumulativePendingQueue: ns[12],
}, nil
}

224
vendor/github.com/prometheus/procfs/proc.go generated vendored Normal file
View file

@ -0,0 +1,224 @@
package procfs
import (
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
)
// Proc provides information about a running process.
type Proc struct {
// The process ID.
PID int
fs FS
}
// Procs represents a list of Proc structs.
type Procs []Proc
func (p Procs) Len() int { return len(p) }
func (p Procs) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p Procs) Less(i, j int) bool { return p[i].PID < p[j].PID }
// Self returns a process for the current process read via /proc/self.
func Self() (Proc, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return Proc{}, err
}
return fs.Self()
}
// NewProc returns a process for the given pid under /proc.
func NewProc(pid int) (Proc, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return Proc{}, err
}
return fs.NewProc(pid)
}
// AllProcs returns a list of all currently available processes under /proc.
func AllProcs() (Procs, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return Procs{}, err
}
return fs.AllProcs()
}
// Self returns a process for the current process.
func (fs FS) Self() (Proc, error) {
p, err := os.Readlink(fs.Path("self"))
if err != nil {
return Proc{}, err
}
pid, err := strconv.Atoi(strings.Replace(p, string(fs), "", -1))
if err != nil {
return Proc{}, err
}
return fs.NewProc(pid)
}
// NewProc returns a process for the given pid.
func (fs FS) NewProc(pid int) (Proc, error) {
if _, err := os.Stat(fs.Path(strconv.Itoa(pid))); err != nil {
return Proc{}, err
}
return Proc{PID: pid, fs: fs}, nil
}
// AllProcs returns a list of all currently available processes.
func (fs FS) AllProcs() (Procs, error) {
d, err := os.Open(fs.Path())
if err != nil {
return Procs{}, err
}
defer d.Close()
names, err := d.Readdirnames(-1)
if err != nil {
return Procs{}, fmt.Errorf("could not read %s: %s", d.Name(), err)
}
p := Procs{}
for _, n := range names {
pid, err := strconv.ParseInt(n, 10, 64)
if err != nil {
continue
}
p = append(p, Proc{PID: int(pid), fs: fs})
}
return p, nil
}
// CmdLine returns the command line of a process.
func (p Proc) CmdLine() ([]string, error) {
f, err := os.Open(p.path("cmdline"))
if err != nil {
return nil, err
}
defer f.Close()
data, err := ioutil.ReadAll(f)
if err != nil {
return nil, err
}
if len(data) < 1 {
return []string{}, nil
}
return strings.Split(string(data[:len(data)-1]), string(byte(0))), nil
}
// Comm returns the command name of a process.
func (p Proc) Comm() (string, error) {
f, err := os.Open(p.path("comm"))
if err != nil {
return "", err
}
defer f.Close()
data, err := ioutil.ReadAll(f)
if err != nil {
return "", err
}
return strings.TrimSpace(string(data)), nil
}
// Executable returns the absolute path of the executable command of a process.
func (p Proc) Executable() (string, error) {
exe, err := os.Readlink(p.path("exe"))
if os.IsNotExist(err) {
return "", nil
}
return exe, err
}
// FileDescriptors returns the currently open file descriptors of a process.
func (p Proc) FileDescriptors() ([]uintptr, error) {
names, err := p.fileDescriptors()
if err != nil {
return nil, err
}
fds := make([]uintptr, len(names))
for i, n := range names {
fd, err := strconv.ParseInt(n, 10, 32)
if err != nil {
return nil, fmt.Errorf("could not parse fd %s: %s", n, err)
}
fds[i] = uintptr(fd)
}
return fds, nil
}
// FileDescriptorTargets returns the targets of all file descriptors of a process.
// If a file descriptor is not a symlink to a file (like a socket), that value will be the empty string.
func (p Proc) FileDescriptorTargets() ([]string, error) {
names, err := p.fileDescriptors()
if err != nil {
return nil, err
}
targets := make([]string, len(names))
for i, name := range names {
target, err := os.Readlink(p.path("fd", name))
if err == nil {
targets[i] = target
}
}
return targets, nil
}
// FileDescriptorsLen returns the number of currently open file descriptors of
// a process.
func (p Proc) FileDescriptorsLen() (int, error) {
fds, err := p.fileDescriptors()
if err != nil {
return 0, err
}
return len(fds), nil
}
// MountStats retrieves statistics and configuration for mount points in a
// process's namespace.
func (p Proc) MountStats() ([]*Mount, error) {
f, err := os.Open(p.path("mountstats"))
if err != nil {
return nil, err
}
defer f.Close()
return parseMountStats(f)
}
func (p Proc) fileDescriptors() ([]string, error) {
d, err := os.Open(p.path("fd"))
if err != nil {
return nil, err
}
defer d.Close()
names, err := d.Readdirnames(-1)
if err != nil {
return nil, fmt.Errorf("could not read %s: %s", d.Name(), err)
}
return names, nil
}
func (p Proc) path(pa ...string) string {
return p.fs.Path(append([]string{strconv.Itoa(p.PID)}, pa...)...)
}

55
vendor/github.com/prometheus/procfs/proc_io.go generated vendored Normal file
View file

@ -0,0 +1,55 @@
package procfs
import (
"fmt"
"io/ioutil"
"os"
)
// ProcIO models the content of /proc/<pid>/io.
type ProcIO struct {
// Chars read.
RChar uint64
// Chars written.
WChar uint64
// Read syscalls.
SyscR uint64
// Write syscalls.
SyscW uint64
// Bytes read.
ReadBytes uint64
// Bytes written.
WriteBytes uint64
// Bytes written, but taking into account truncation. See
// Documentation/filesystems/proc.txt in the kernel sources for
// detailed explanation.
CancelledWriteBytes int64
}
// NewIO creates a new ProcIO instance from a given Proc instance.
func (p Proc) NewIO() (ProcIO, error) {
pio := ProcIO{}
f, err := os.Open(p.path("io"))
if err != nil {
return pio, err
}
defer f.Close()
data, err := ioutil.ReadAll(f)
if err != nil {
return pio, err
}
ioFormat := "rchar: %d\nwchar: %d\nsyscr: %d\nsyscw: %d\n" +
"read_bytes: %d\nwrite_bytes: %d\n" +
"cancelled_write_bytes: %d\n"
_, err = fmt.Sscanf(string(data), ioFormat, &pio.RChar, &pio.WChar, &pio.SyscR,
&pio.SyscW, &pio.ReadBytes, &pio.WriteBytes, &pio.CancelledWriteBytes)
if err != nil {
return pio, err
}
return pio, nil
}

137
vendor/github.com/prometheus/procfs/proc_limits.go generated vendored Normal file
View file

@ -0,0 +1,137 @@
package procfs
import (
"bufio"
"fmt"
"os"
"regexp"
"strconv"
)
// ProcLimits represents the soft limits for each of the process's resource
// limits. For more information see getrlimit(2):
// http://man7.org/linux/man-pages/man2/getrlimit.2.html.
type ProcLimits struct {
// CPU time limit in seconds.
CPUTime int
// Maximum size of files that the process may create.
FileSize int
// Maximum size of the process's data segment (initialized data,
// uninitialized data, and heap).
DataSize int
// Maximum size of the process stack in bytes.
StackSize int
// Maximum size of a core file.
CoreFileSize int
// Limit of the process's resident set in pages.
ResidentSet int
// Maximum number of processes that can be created for the real user ID of
// the calling process.
Processes int
// Value one greater than the maximum file descriptor number that can be
// opened by this process.
OpenFiles int
// Maximum number of bytes of memory that may be locked into RAM.
LockedMemory int
// Maximum size of the process's virtual memory address space in bytes.
AddressSpace int
// Limit on the combined number of flock(2) locks and fcntl(2) leases that
// this process may establish.
FileLocks int
// Limit of signals that may be queued for the real user ID of the calling
// process.
PendingSignals int
// Limit on the number of bytes that can be allocated for POSIX message
// queues for the real user ID of the calling process.
MsqqueueSize int
// Limit of the nice priority set using setpriority(2) or nice(2).
NicePriority int
// Limit of the real-time priority set using sched_setscheduler(2) or
// sched_setparam(2).
RealtimePriority int
// Limit (in microseconds) on the amount of CPU time that a process
// scheduled under a real-time scheduling policy may consume without making
// a blocking system call.
RealtimeTimeout int
}
const (
limitsFields = 3
limitsUnlimited = "unlimited"
)
var (
limitsDelimiter = regexp.MustCompile(" +")
)
// NewLimits returns the current soft limits of the process.
func (p Proc) NewLimits() (ProcLimits, error) {
f, err := os.Open(p.path("limits"))
if err != nil {
return ProcLimits{}, err
}
defer f.Close()
var (
l = ProcLimits{}
s = bufio.NewScanner(f)
)
for s.Scan() {
fields := limitsDelimiter.Split(s.Text(), limitsFields)
if len(fields) != limitsFields {
return ProcLimits{}, fmt.Errorf(
"couldn't parse %s line %s", f.Name(), s.Text())
}
switch fields[0] {
case "Max cpu time":
l.CPUTime, err = parseInt(fields[1])
case "Max file size":
l.FileSize, err = parseInt(fields[1])
case "Max data size":
l.DataSize, err = parseInt(fields[1])
case "Max stack size":
l.StackSize, err = parseInt(fields[1])
case "Max core file size":
l.CoreFileSize, err = parseInt(fields[1])
case "Max resident set":
l.ResidentSet, err = parseInt(fields[1])
case "Max processes":
l.Processes, err = parseInt(fields[1])
case "Max open files":
l.OpenFiles, err = parseInt(fields[1])
case "Max locked memory":
l.LockedMemory, err = parseInt(fields[1])
case "Max address space":
l.AddressSpace, err = parseInt(fields[1])
case "Max file locks":
l.FileLocks, err = parseInt(fields[1])
case "Max pending signals":
l.PendingSignals, err = parseInt(fields[1])
case "Max msgqueue size":
l.MsqqueueSize, err = parseInt(fields[1])
case "Max nice priority":
l.NicePriority, err = parseInt(fields[1])
case "Max realtime priority":
l.RealtimePriority, err = parseInt(fields[1])
case "Max realtime timeout":
l.RealtimeTimeout, err = parseInt(fields[1])
}
if err != nil {
return ProcLimits{}, err
}
}
return l, s.Err()
}
func parseInt(s string) (int, error) {
if s == limitsUnlimited {
return -1, nil
}
i, err := strconv.ParseInt(s, 10, 32)
if err != nil {
return 0, fmt.Errorf("couldn't parse value %s: %s", s, err)
}
return int(i), nil
}

175
vendor/github.com/prometheus/procfs/proc_stat.go generated vendored Normal file
View file

@ -0,0 +1,175 @@
package procfs
import (
"bytes"
"fmt"
"io/ioutil"
"os"
)
// Originally, this USER_HZ value was dynamically retrieved via a sysconf call
// which required cgo. However, that caused a lot of problems regarding
// cross-compilation. Alternatives such as running a binary to determine the
// value, or trying to derive it in some other way were all problematic. After
// much research it was determined that USER_HZ is actually hardcoded to 100 on
// all Go-supported platforms as of the time of this writing. This is why we
// decided to hardcode it here as well. It is not impossible that there could
// be systems with exceptions, but they should be very exotic edge cases, and
// in that case, the worst outcome will be two misreported metrics.
//
// See also the following discussions:
//
// - https://github.com/prometheus/node_exporter/issues/52
// - https://github.com/prometheus/procfs/pull/2
// - http://stackoverflow.com/questions/17410841/how-does-user-hz-solve-the-jiffy-scaling-issue
const userHZ = 100
// ProcStat provides status information about the process,
// read from /proc/[pid]/stat.
type ProcStat struct {
// The process ID.
PID int
// The filename of the executable.
Comm string
// The process state.
State string
// The PID of the parent of this process.
PPID int
// The process group ID of the process.
PGRP int
// The session ID of the process.
Session int
// The controlling terminal of the process.
TTY int
// The ID of the foreground process group of the controlling terminal of
// the process.
TPGID int
// The kernel flags word of the process.
Flags uint
// The number of minor faults the process has made which have not required
// loading a memory page from disk.
MinFlt uint
// The number of minor faults that the process's waited-for children have
// made.
CMinFlt uint
// The number of major faults the process has made which have required
// loading a memory page from disk.
MajFlt uint
// The number of major faults that the process's waited-for children have
// made.
CMajFlt uint
// Amount of time that this process has been scheduled in user mode,
// measured in clock ticks.
UTime uint
// Amount of time that this process has been scheduled in kernel mode,
// measured in clock ticks.
STime uint
// Amount of time that this process's waited-for children have been
// scheduled in user mode, measured in clock ticks.
CUTime uint
// Amount of time that this process's waited-for children have been
// scheduled in kernel mode, measured in clock ticks.
CSTime uint
// For processes running a real-time scheduling policy, this is the negated
// scheduling priority, minus one.
Priority int
// The nice value, a value in the range 19 (low priority) to -20 (high
// priority).
Nice int
// Number of threads in this process.
NumThreads int
// The time the process started after system boot, the value is expressed
// in clock ticks.
Starttime uint64
// Virtual memory size in bytes.
VSize int
// Resident set size in pages.
RSS int
fs FS
}
// NewStat returns the current status information of the process.
func (p Proc) NewStat() (ProcStat, error) {
f, err := os.Open(p.path("stat"))
if err != nil {
return ProcStat{}, err
}
defer f.Close()
data, err := ioutil.ReadAll(f)
if err != nil {
return ProcStat{}, err
}
var (
ignore int
s = ProcStat{PID: p.PID, fs: p.fs}
l = bytes.Index(data, []byte("("))
r = bytes.LastIndex(data, []byte(")"))
)
if l < 0 || r < 0 {
return ProcStat{}, fmt.Errorf(
"unexpected format, couldn't extract comm: %s",
data,
)
}
s.Comm = string(data[l+1 : r])
_, err = fmt.Fscan(
bytes.NewBuffer(data[r+2:]),
&s.State,
&s.PPID,
&s.PGRP,
&s.Session,
&s.TTY,
&s.TPGID,
&s.Flags,
&s.MinFlt,
&s.CMinFlt,
&s.MajFlt,
&s.CMajFlt,
&s.UTime,
&s.STime,
&s.CUTime,
&s.CSTime,
&s.Priority,
&s.Nice,
&s.NumThreads,
&ignore,
&s.Starttime,
&s.VSize,
&s.RSS,
)
if err != nil {
return ProcStat{}, err
}
return s, nil
}
// VirtualMemory returns the virtual memory size in bytes.
func (s ProcStat) VirtualMemory() int {
return s.VSize
}
// ResidentMemory returns the resident memory size in bytes.
func (s ProcStat) ResidentMemory() int {
return s.RSS * os.Getpagesize()
}
// StartTime returns the unix timestamp of the process in seconds.
func (s ProcStat) StartTime() (float64, error) {
stat, err := s.fs.NewStat()
if err != nil {
return 0, err
}
return float64(stat.BootTime) + (float64(s.Starttime) / userHZ), nil
}
// CPUTime returns the total CPU user and system time in seconds.
func (s ProcStat) CPUTime() float64 {
return float64(s.UTime+s.STime) / userHZ
}

56
vendor/github.com/prometheus/procfs/stat.go generated vendored Normal file
View file

@ -0,0 +1,56 @@
package procfs
import (
"bufio"
"fmt"
"os"
"strconv"
"strings"
)
// Stat represents kernel/system statistics.
type Stat struct {
// Boot time in seconds since the Epoch.
BootTime int64
}
// NewStat returns kernel/system statistics read from /proc/stat.
func NewStat() (Stat, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return Stat{}, err
}
return fs.NewStat()
}
// NewStat returns an information about current kernel/system statistics.
func (fs FS) NewStat() (Stat, error) {
f, err := os.Open(fs.Path("stat"))
if err != nil {
return Stat{}, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
if !strings.HasPrefix(line, "btime") {
continue
}
fields := strings.Fields(line)
if len(fields) != 2 {
return Stat{}, fmt.Errorf("couldn't parse %s line %s", f.Name(), line)
}
i, err := strconv.ParseInt(fields[1], 10, 32)
if err != nil {
return Stat{}, fmt.Errorf("couldn't parse %s: %s", fields[1], err)
}
return Stat{BootTime: i}, nil
}
if err := s.Err(); err != nil {
return Stat{}, fmt.Errorf("couldn't parse %s: %s", f.Name(), err)
}
return Stat{}, fmt.Errorf("couldn't parse %s, missing btime", f.Name())
}