dd9309c15e
Initial vendor list validated with empty $GOPATH and only master checked out; followed by `make` and verified that all binaries build properly. Updates require github.com/LK4D4/vndr tool. Signed-off-by: Phil Estes <estesp@linux.vnet.ibm.com>
444 lines
14 KiB
Go
444 lines
14 KiB
Go
// Copyright 2015 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package prometheus
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"sync/atomic"
|
|
|
|
"github.com/golang/protobuf/proto"
|
|
|
|
dto "github.com/prometheus/client_model/go"
|
|
)
|
|
|
|
// A Histogram counts individual observations from an event or sample stream in
|
|
// configurable buckets. Similar to a summary, it also provides a sum of
|
|
// observations and an observation count.
|
|
//
|
|
// On the Prometheus server, quantiles can be calculated from a Histogram using
|
|
// the histogram_quantile function in the query language.
|
|
//
|
|
// Note that Histograms, in contrast to Summaries, can be aggregated with the
|
|
// Prometheus query language (see the documentation for detailed
|
|
// procedures). However, Histograms require the user to pre-define suitable
|
|
// buckets, and they are in general less accurate. The Observe method of a
|
|
// Histogram has a very low performance overhead in comparison with the Observe
|
|
// method of a Summary.
|
|
//
|
|
// To create Histogram instances, use NewHistogram.
|
|
type Histogram interface {
|
|
Metric
|
|
Collector
|
|
|
|
// Observe adds a single observation to the histogram.
|
|
Observe(float64)
|
|
}
|
|
|
|
// bucketLabel is used for the label that defines the upper bound of a
|
|
// bucket of a histogram ("le" -> "less or equal").
|
|
const bucketLabel = "le"
|
|
|
|
// DefBuckets are the default Histogram buckets. The default buckets are
|
|
// tailored to broadly measure the response time (in seconds) of a network
|
|
// service. Most likely, however, you will be required to define buckets
|
|
// customized to your use case.
|
|
var (
|
|
DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
|
|
|
|
errBucketLabelNotAllowed = fmt.Errorf(
|
|
"%q is not allowed as label name in histograms", bucketLabel,
|
|
)
|
|
)
|
|
|
|
// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
|
|
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
|
|
// and not included in the returned slice. The returned slice is meant to be
|
|
// used for the Buckets field of HistogramOpts.
|
|
//
|
|
// The function panics if 'count' is zero or negative.
|
|
func LinearBuckets(start, width float64, count int) []float64 {
|
|
if count < 1 {
|
|
panic("LinearBuckets needs a positive count")
|
|
}
|
|
buckets := make([]float64, count)
|
|
for i := range buckets {
|
|
buckets[i] = start
|
|
start += width
|
|
}
|
|
return buckets
|
|
}
|
|
|
|
// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
|
|
// upper bound of 'start' and each following bucket's upper bound is 'factor'
|
|
// times the previous bucket's upper bound. The final +Inf bucket is not counted
|
|
// and not included in the returned slice. The returned slice is meant to be
|
|
// used for the Buckets field of HistogramOpts.
|
|
//
|
|
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
|
|
// or if 'factor' is less than or equal 1.
|
|
func ExponentialBuckets(start, factor float64, count int) []float64 {
|
|
if count < 1 {
|
|
panic("ExponentialBuckets needs a positive count")
|
|
}
|
|
if start <= 0 {
|
|
panic("ExponentialBuckets needs a positive start value")
|
|
}
|
|
if factor <= 1 {
|
|
panic("ExponentialBuckets needs a factor greater than 1")
|
|
}
|
|
buckets := make([]float64, count)
|
|
for i := range buckets {
|
|
buckets[i] = start
|
|
start *= factor
|
|
}
|
|
return buckets
|
|
}
|
|
|
|
// HistogramOpts bundles the options for creating a Histogram metric. It is
|
|
// mandatory to set Name and Help to a non-empty string. All other fields are
|
|
// optional and can safely be left at their zero value.
|
|
type HistogramOpts struct {
|
|
// Namespace, Subsystem, and Name are components of the fully-qualified
|
|
// name of the Histogram (created by joining these components with
|
|
// "_"). Only Name is mandatory, the others merely help structuring the
|
|
// name. Note that the fully-qualified name of the Histogram must be a
|
|
// valid Prometheus metric name.
|
|
Namespace string
|
|
Subsystem string
|
|
Name string
|
|
|
|
// Help provides information about this Histogram. Mandatory!
|
|
//
|
|
// Metrics with the same fully-qualified name must have the same Help
|
|
// string.
|
|
Help string
|
|
|
|
// ConstLabels are used to attach fixed labels to this
|
|
// Histogram. Histograms with the same fully-qualified name must have the
|
|
// same label names in their ConstLabels.
|
|
//
|
|
// Note that in most cases, labels have a value that varies during the
|
|
// lifetime of a process. Those labels are usually managed with a
|
|
// HistogramVec. ConstLabels serve only special purposes. One is for the
|
|
// special case where the value of a label does not change during the
|
|
// lifetime of a process, e.g. if the revision of the running binary is
|
|
// put into a label. Another, more advanced purpose is if more than one
|
|
// Collector needs to collect Histograms with the same fully-qualified
|
|
// name. In that case, those Summaries must differ in the values of
|
|
// their ConstLabels. See the Collector examples.
|
|
//
|
|
// If the value of a label never changes (not even between binaries),
|
|
// that label most likely should not be a label at all (but part of the
|
|
// metric name).
|
|
ConstLabels Labels
|
|
|
|
// Buckets defines the buckets into which observations are counted. Each
|
|
// element in the slice is the upper inclusive bound of a bucket. The
|
|
// values must be sorted in strictly increasing order. There is no need
|
|
// to add a highest bucket with +Inf bound, it will be added
|
|
// implicitly. The default value is DefBuckets.
|
|
Buckets []float64
|
|
}
|
|
|
|
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
|
|
// panics if the buckets in HistogramOpts are not in strictly increasing order.
|
|
func NewHistogram(opts HistogramOpts) Histogram {
|
|
return newHistogram(
|
|
NewDesc(
|
|
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
|
opts.Help,
|
|
nil,
|
|
opts.ConstLabels,
|
|
),
|
|
opts,
|
|
)
|
|
}
|
|
|
|
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
|
|
if len(desc.variableLabels) != len(labelValues) {
|
|
panic(errInconsistentCardinality)
|
|
}
|
|
|
|
for _, n := range desc.variableLabels {
|
|
if n == bucketLabel {
|
|
panic(errBucketLabelNotAllowed)
|
|
}
|
|
}
|
|
for _, lp := range desc.constLabelPairs {
|
|
if lp.GetName() == bucketLabel {
|
|
panic(errBucketLabelNotAllowed)
|
|
}
|
|
}
|
|
|
|
if len(opts.Buckets) == 0 {
|
|
opts.Buckets = DefBuckets
|
|
}
|
|
|
|
h := &histogram{
|
|
desc: desc,
|
|
upperBounds: opts.Buckets,
|
|
labelPairs: makeLabelPairs(desc, labelValues),
|
|
}
|
|
for i, upperBound := range h.upperBounds {
|
|
if i < len(h.upperBounds)-1 {
|
|
if upperBound >= h.upperBounds[i+1] {
|
|
panic(fmt.Errorf(
|
|
"histogram buckets must be in increasing order: %f >= %f",
|
|
upperBound, h.upperBounds[i+1],
|
|
))
|
|
}
|
|
} else {
|
|
if math.IsInf(upperBound, +1) {
|
|
// The +Inf bucket is implicit. Remove it here.
|
|
h.upperBounds = h.upperBounds[:i]
|
|
}
|
|
}
|
|
}
|
|
// Finally we know the final length of h.upperBounds and can make counts.
|
|
h.counts = make([]uint64, len(h.upperBounds))
|
|
|
|
h.init(h) // Init self-collection.
|
|
return h
|
|
}
|
|
|
|
type histogram struct {
|
|
// sumBits contains the bits of the float64 representing the sum of all
|
|
// observations. sumBits and count have to go first in the struct to
|
|
// guarantee alignment for atomic operations.
|
|
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
|
|
sumBits uint64
|
|
count uint64
|
|
|
|
selfCollector
|
|
// Note that there is no mutex required.
|
|
|
|
desc *Desc
|
|
|
|
upperBounds []float64
|
|
counts []uint64
|
|
|
|
labelPairs []*dto.LabelPair
|
|
}
|
|
|
|
func (h *histogram) Desc() *Desc {
|
|
return h.desc
|
|
}
|
|
|
|
func (h *histogram) Observe(v float64) {
|
|
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
|
|
// slightly faster than the binary search. If we really care, we could
|
|
// switch from one search strategy to the other depending on the number
|
|
// of buckets.
|
|
//
|
|
// Microbenchmarks (BenchmarkHistogramNoLabels):
|
|
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
|
|
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
|
|
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
|
|
i := sort.SearchFloat64s(h.upperBounds, v)
|
|
if i < len(h.counts) {
|
|
atomic.AddUint64(&h.counts[i], 1)
|
|
}
|
|
atomic.AddUint64(&h.count, 1)
|
|
for {
|
|
oldBits := atomic.LoadUint64(&h.sumBits)
|
|
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
|
|
if atomic.CompareAndSwapUint64(&h.sumBits, oldBits, newBits) {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func (h *histogram) Write(out *dto.Metric) error {
|
|
his := &dto.Histogram{}
|
|
buckets := make([]*dto.Bucket, len(h.upperBounds))
|
|
|
|
his.SampleSum = proto.Float64(math.Float64frombits(atomic.LoadUint64(&h.sumBits)))
|
|
his.SampleCount = proto.Uint64(atomic.LoadUint64(&h.count))
|
|
var count uint64
|
|
for i, upperBound := range h.upperBounds {
|
|
count += atomic.LoadUint64(&h.counts[i])
|
|
buckets[i] = &dto.Bucket{
|
|
CumulativeCount: proto.Uint64(count),
|
|
UpperBound: proto.Float64(upperBound),
|
|
}
|
|
}
|
|
his.Bucket = buckets
|
|
out.Histogram = his
|
|
out.Label = h.labelPairs
|
|
return nil
|
|
}
|
|
|
|
// HistogramVec is a Collector that bundles a set of Histograms that all share the
|
|
// same Desc, but have different values for their variable labels. This is used
|
|
// if you want to count the same thing partitioned by various dimensions
|
|
// (e.g. HTTP request latencies, partitioned by status code and method). Create
|
|
// instances with NewHistogramVec.
|
|
type HistogramVec struct {
|
|
*MetricVec
|
|
}
|
|
|
|
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
|
|
// partitioned by the given label names. At least one label name must be
|
|
// provided.
|
|
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
|
|
desc := NewDesc(
|
|
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
|
|
opts.Help,
|
|
labelNames,
|
|
opts.ConstLabels,
|
|
)
|
|
return &HistogramVec{
|
|
MetricVec: newMetricVec(desc, func(lvs ...string) Metric {
|
|
return newHistogram(desc, opts, lvs...)
|
|
}),
|
|
}
|
|
}
|
|
|
|
// GetMetricWithLabelValues replaces the method of the same name in
|
|
// MetricVec. The difference is that this method returns a Histogram and not a
|
|
// Metric so that no type conversion is required.
|
|
func (m *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Histogram, error) {
|
|
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
|
|
if metric != nil {
|
|
return metric.(Histogram), err
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
// GetMetricWith replaces the method of the same name in MetricVec. The
|
|
// difference is that this method returns a Histogram and not a Metric so that no
|
|
// type conversion is required.
|
|
func (m *HistogramVec) GetMetricWith(labels Labels) (Histogram, error) {
|
|
metric, err := m.MetricVec.GetMetricWith(labels)
|
|
if metric != nil {
|
|
return metric.(Histogram), err
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
// WithLabelValues works as GetMetricWithLabelValues, but panics where
|
|
// GetMetricWithLabelValues would have returned an error. By not returning an
|
|
// error, WithLabelValues allows shortcuts like
|
|
// myVec.WithLabelValues("404", "GET").Observe(42.21)
|
|
func (m *HistogramVec) WithLabelValues(lvs ...string) Histogram {
|
|
return m.MetricVec.WithLabelValues(lvs...).(Histogram)
|
|
}
|
|
|
|
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
|
|
// returned an error. By not returning an error, With allows shortcuts like
|
|
// myVec.With(Labels{"code": "404", "method": "GET"}).Observe(42.21)
|
|
func (m *HistogramVec) With(labels Labels) Histogram {
|
|
return m.MetricVec.With(labels).(Histogram)
|
|
}
|
|
|
|
type constHistogram struct {
|
|
desc *Desc
|
|
count uint64
|
|
sum float64
|
|
buckets map[float64]uint64
|
|
labelPairs []*dto.LabelPair
|
|
}
|
|
|
|
func (h *constHistogram) Desc() *Desc {
|
|
return h.desc
|
|
}
|
|
|
|
func (h *constHistogram) Write(out *dto.Metric) error {
|
|
his := &dto.Histogram{}
|
|
buckets := make([]*dto.Bucket, 0, len(h.buckets))
|
|
|
|
his.SampleCount = proto.Uint64(h.count)
|
|
his.SampleSum = proto.Float64(h.sum)
|
|
|
|
for upperBound, count := range h.buckets {
|
|
buckets = append(buckets, &dto.Bucket{
|
|
CumulativeCount: proto.Uint64(count),
|
|
UpperBound: proto.Float64(upperBound),
|
|
})
|
|
}
|
|
|
|
if len(buckets) > 0 {
|
|
sort.Sort(buckSort(buckets))
|
|
}
|
|
his.Bucket = buckets
|
|
|
|
out.Histogram = his
|
|
out.Label = h.labelPairs
|
|
|
|
return nil
|
|
}
|
|
|
|
// NewConstHistogram returns a metric representing a Prometheus histogram with
|
|
// fixed values for the count, sum, and bucket counts. As those parameters
|
|
// cannot be changed, the returned value does not implement the Histogram
|
|
// interface (but only the Metric interface). Users of this package will not
|
|
// have much use for it in regular operations. However, when implementing custom
|
|
// Collectors, it is useful as a throw-away metric that is generated on the fly
|
|
// to send it to Prometheus in the Collect method.
|
|
//
|
|
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
|
|
// bucket.
|
|
//
|
|
// NewConstHistogram returns an error if the length of labelValues is not
|
|
// consistent with the variable labels in Desc.
|
|
func NewConstHistogram(
|
|
desc *Desc,
|
|
count uint64,
|
|
sum float64,
|
|
buckets map[float64]uint64,
|
|
labelValues ...string,
|
|
) (Metric, error) {
|
|
if len(desc.variableLabels) != len(labelValues) {
|
|
return nil, errInconsistentCardinality
|
|
}
|
|
return &constHistogram{
|
|
desc: desc,
|
|
count: count,
|
|
sum: sum,
|
|
buckets: buckets,
|
|
labelPairs: makeLabelPairs(desc, labelValues),
|
|
}, nil
|
|
}
|
|
|
|
// MustNewConstHistogram is a version of NewConstHistogram that panics where
|
|
// NewConstMetric would have returned an error.
|
|
func MustNewConstHistogram(
|
|
desc *Desc,
|
|
count uint64,
|
|
sum float64,
|
|
buckets map[float64]uint64,
|
|
labelValues ...string,
|
|
) Metric {
|
|
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return m
|
|
}
|
|
|
|
type buckSort []*dto.Bucket
|
|
|
|
func (s buckSort) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
func (s buckSort) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
func (s buckSort) Less(i, j int) bool {
|
|
return s[i].GetUpperBound() < s[j].GetUpperBound()
|
|
}
|