containerd/vendor/github.com/nats-io/gnatsd/server/sublist.go
Phil Estes dd9309c15e
Add vendoring to containerd master
Initial vendor list validated with empty $GOPATH
and only master checked out; followed by `make`
and verified that all binaries build properly.
Updates require github.com/LK4D4/vndr tool.

Signed-off-by: Phil Estes <estesp@linux.vnet.ibm.com>
2017-01-11 16:59:06 -05:00

643 lines
13 KiB
Go

// Copyright 2016 Apcera Inc. All rights reserved.
// Package sublist is a routing mechanism to handle subject distribution
// and provides a facility to match subjects from published messages to
// interested subscribers. Subscribers can have wildcard subjects to match
// multiple published subjects.
package server
import (
"bytes"
"errors"
"strings"
"sync"
"sync/atomic"
)
// Common byte variables for wildcards and token separator.
const (
pwc = '*'
fwc = '>'
tsep = "."
btsep = '.'
)
// Sublist related errors
var (
ErrInvalidSubject = errors.New("sublist: Invalid Subject")
ErrNotFound = errors.New("sublist: No Matches Found")
)
// cacheMax is used to bound limit the frontend cache
const slCacheMax = 1024
// A result structure better optimized for queue subs.
type SublistResult struct {
psubs []*subscription
qsubs [][]*subscription // don't make this a map, too expensive to iterate
}
// A Sublist stores and efficiently retrieves subscriptions.
type Sublist struct {
sync.RWMutex
genid uint64
matches uint64
cacheHits uint64
inserts uint64
removes uint64
cache map[string]*SublistResult
root *level
count uint32
}
// A node contains subscriptions and a pointer to the next level.
type node struct {
next *level
psubs []*subscription
qsubs [][]*subscription
}
// A level represents a group of nodes and special pointers to
// wildcard nodes.
type level struct {
nodes map[string]*node
pwc, fwc *node
}
// Create a new default node.
func newNode() *node {
return &node{psubs: make([]*subscription, 0, 4)}
}
// Create a new default level. We use FNV1A as the hash
// algortihm for the tokens, which should be short.
func newLevel() *level {
return &level{nodes: make(map[string]*node)}
}
// New will create a default sublist
func NewSublist() *Sublist {
return &Sublist{root: newLevel(), cache: make(map[string]*SublistResult)}
}
// Insert adds a subscription into the sublist
func (s *Sublist) Insert(sub *subscription) error {
// copy the subject since we hold this and this might be part of a large byte slice.
subject := string(sub.subject)
tsa := [32]string{}
tokens := tsa[:0]
start := 0
for i := 0; i < len(subject); i++ {
if subject[i] == btsep {
tokens = append(tokens, subject[start:i])
start = i + 1
}
}
tokens = append(tokens, subject[start:])
s.Lock()
sfwc := false
l := s.root
var n *node
for _, t := range tokens {
if len(t) == 0 || sfwc {
s.Unlock()
return ErrInvalidSubject
}
switch t[0] {
case pwc:
n = l.pwc
case fwc:
n = l.fwc
sfwc = true
default:
n = l.nodes[t]
}
if n == nil {
n = newNode()
switch t[0] {
case pwc:
l.pwc = n
case fwc:
l.fwc = n
default:
l.nodes[t] = n
}
}
if n.next == nil {
n.next = newLevel()
}
l = n.next
}
if sub.queue == nil {
n.psubs = append(n.psubs, sub)
} else {
// This is a queue subscription
if i := findQSliceForSub(sub, n.qsubs); i >= 0 {
n.qsubs[i] = append(n.qsubs[i], sub)
} else {
n.qsubs = append(n.qsubs, []*subscription{sub})
}
}
s.count++
s.inserts++
s.addToCache(subject, sub)
atomic.AddUint64(&s.genid, 1)
s.Unlock()
return nil
}
// Deep copy
func copyResult(r *SublistResult) *SublistResult {
nr := &SublistResult{}
nr.psubs = append([]*subscription(nil), r.psubs...)
for _, qr := range r.qsubs {
nqr := append([]*subscription(nil), qr...)
nr.qsubs = append(nr.qsubs, nqr)
}
return nr
}
// addToCache will add the new entry to existing cache
// entries if needed. Assumes write lock is held.
func (s *Sublist) addToCache(subject string, sub *subscription) {
for k, r := range s.cache {
if matchLiteral(k, subject) {
// Copy since others may have a reference.
nr := copyResult(r)
if sub.queue == nil {
nr.psubs = append(nr.psubs, sub)
} else {
if i := findQSliceForSub(sub, nr.qsubs); i >= 0 {
nr.qsubs[i] = append(nr.qsubs[i], sub)
} else {
nr.qsubs = append(nr.qsubs, []*subscription{sub})
}
}
s.cache[k] = nr
}
}
}
// removeFromCache will remove the sub from any active cache entries.
// Assumes write lock is held.
func (s *Sublist) removeFromCache(subject string, sub *subscription) {
for k := range s.cache {
if !matchLiteral(k, subject) {
continue
}
// Since someone else may be referecing, can't modify the list
// safely, just let it re-populate.
delete(s.cache, k)
}
}
// Match will match all entries to the literal subject.
// It will return a set of results for both normal and queue subscribers.
func (s *Sublist) Match(subject string) *SublistResult {
s.RLock()
atomic.AddUint64(&s.matches, 1)
rc, ok := s.cache[subject]
s.RUnlock()
if ok {
atomic.AddUint64(&s.cacheHits, 1)
return rc
}
tsa := [32]string{}
tokens := tsa[:0]
start := 0
for i := 0; i < len(subject); i++ {
if subject[i] == btsep {
tokens = append(tokens, subject[start:i])
start = i + 1
}
}
tokens = append(tokens, subject[start:])
// FIXME(dlc) - Make shared pool between sublist and client readLoop?
result := &SublistResult{}
s.Lock()
matchLevel(s.root, tokens, result)
// Add to our cache
s.cache[subject] = result
// Bound the number of entries to sublistMaxCache
if len(s.cache) > slCacheMax {
for k := range s.cache {
delete(s.cache, k)
break
}
}
s.Unlock()
return result
}
// This will add in a node's results to the total results.
func addNodeToResults(n *node, results *SublistResult) {
results.psubs = append(results.psubs, n.psubs...)
for _, qr := range n.qsubs {
if len(qr) == 0 {
continue
}
// Need to find matching list in results
if i := findQSliceForSub(qr[0], results.qsubs); i >= 0 {
results.qsubs[i] = append(results.qsubs[i], qr...)
} else {
results.qsubs = append(results.qsubs, qr)
}
}
}
// We do not use a map here since we want iteration to be past when
// processing publishes in L1 on client. So we need to walk sequentially
// for now. Keep an eye on this in case we start getting large number of
// different queue subscribers for the same subject.
func findQSliceForSub(sub *subscription, qsl [][]*subscription) int {
if sub.queue == nil {
return -1
}
for i, qr := range qsl {
if len(qr) > 0 && bytes.Equal(sub.queue, qr[0].queue) {
return i
}
}
return -1
}
// matchLevel is used to recursively descend into the trie.
func matchLevel(l *level, toks []string, results *SublistResult) {
var pwc, n *node
for i, t := range toks {
if l == nil {
return
}
if l.fwc != nil {
addNodeToResults(l.fwc, results)
}
if pwc = l.pwc; pwc != nil {
matchLevel(pwc.next, toks[i+1:], results)
}
n = l.nodes[t]
if n != nil {
l = n.next
} else {
l = nil
}
}
if n != nil {
addNodeToResults(n, results)
}
if pwc != nil {
addNodeToResults(pwc, results)
}
}
// lnt is used to track descent into levels for a removal for pruning.
type lnt struct {
l *level
n *node
t string
}
// Remove will remove a subscription.
func (s *Sublist) Remove(sub *subscription) error {
subject := string(sub.subject)
tsa := [32]string{}
tokens := tsa[:0]
start := 0
for i := 0; i < len(subject); i++ {
if subject[i] == btsep {
tokens = append(tokens, subject[start:i])
start = i + 1
}
}
tokens = append(tokens, subject[start:])
s.Lock()
defer s.Unlock()
sfwc := false
l := s.root
var n *node
// Track levels for pruning
var lnts [32]lnt
levels := lnts[:0]
for _, t := range tokens {
if len(t) == 0 || sfwc {
return ErrInvalidSubject
}
if l == nil {
return ErrNotFound
}
switch t[0] {
case pwc:
n = l.pwc
case fwc:
n = l.fwc
sfwc = true
default:
n = l.nodes[t]
}
if n != nil {
levels = append(levels, lnt{l, n, t})
l = n.next
} else {
l = nil
}
}
if !s.removeFromNode(n, sub) {
return ErrNotFound
}
s.count--
s.removes++
for i := len(levels) - 1; i >= 0; i-- {
l, n, t := levels[i].l, levels[i].n, levels[i].t
if n.isEmpty() {
l.pruneNode(n, t)
}
}
s.removeFromCache(subject, sub)
atomic.AddUint64(&s.genid, 1)
return nil
}
// pruneNode is used to prune an empty node from the tree.
func (l *level) pruneNode(n *node, t string) {
if n == nil {
return
}
if n == l.fwc {
l.fwc = nil
} else if n == l.pwc {
l.pwc = nil
} else {
delete(l.nodes, t)
}
}
// isEmpty will test if the node has any entries. Used
// in pruning.
func (n *node) isEmpty() bool {
if len(n.psubs) == 0 && len(n.qsubs) == 0 {
if n.next == nil || n.next.numNodes() == 0 {
return true
}
}
return false
}
// Return the number of nodes for the given level.
func (l *level) numNodes() int {
num := len(l.nodes)
if l.pwc != nil {
num++
}
if l.fwc != nil {
num++
}
return num
}
// Removes a sub from a list.
func removeSubFromList(sub *subscription, sl []*subscription) ([]*subscription, bool) {
for i := 0; i < len(sl); i++ {
if sl[i] == sub {
last := len(sl) - 1
sl[i] = sl[last]
sl[last] = nil
sl = sl[:last]
return shrinkAsNeeded(sl), true
}
}
return sl, false
}
// Remove the sub for the given node.
func (s *Sublist) removeFromNode(n *node, sub *subscription) (found bool) {
if n == nil {
return false
}
if sub.queue == nil {
n.psubs, found = removeSubFromList(sub, n.psubs)
return found
}
// We have a queue group subscription here
if i := findQSliceForSub(sub, n.qsubs); i >= 0 {
n.qsubs[i], found = removeSubFromList(sub, n.qsubs[i])
if len(n.qsubs[i]) == 0 {
last := len(n.qsubs) - 1
n.qsubs[i] = n.qsubs[last]
n.qsubs[last] = nil
n.qsubs = n.qsubs[:last]
if len(n.qsubs) == 0 {
n.qsubs = nil
}
}
return found
}
return false
}
// Checks if we need to do a resize. This is for very large growth then
// subsequent return to a more normal size from unsubscribe.
func shrinkAsNeeded(sl []*subscription) []*subscription {
lsl := len(sl)
csl := cap(sl)
// Don't bother if list not too big
if csl <= 8 {
return sl
}
pFree := float32(csl-lsl) / float32(csl)
if pFree > 0.50 {
return append([]*subscription(nil), sl...)
}
return sl
}
// Count returns the number of subscriptions.
func (s *Sublist) Count() uint32 {
s.RLock()
defer s.RUnlock()
return s.count
}
// CacheCount returns the number of result sets in the cache.
func (s *Sublist) CacheCount() int {
s.RLock()
defer s.RUnlock()
return len(s.cache)
}
// Public stats for the sublist
type SublistStats struct {
NumSubs uint32 `json:"num_subscriptions"`
NumCache uint32 `json:"num_cache"`
NumInserts uint64 `json:"num_inserts"`
NumRemoves uint64 `json:"num_removes"`
NumMatches uint64 `json:"num_matches"`
CacheHitRate float64 `json:"cache_hit_rate"`
MaxFanout uint32 `json:"max_fanout"`
AvgFanout float64 `json:"avg_fanout"`
}
// Stats will return a stats structure for the current state.
func (s *Sublist) Stats() *SublistStats {
s.Lock()
defer s.Unlock()
st := &SublistStats{}
st.NumSubs = s.count
st.NumCache = uint32(len(s.cache))
st.NumInserts = s.inserts
st.NumRemoves = s.removes
st.NumMatches = s.matches
if s.matches > 0 {
st.CacheHitRate = float64(s.cacheHits) / float64(s.matches)
}
// whip through cache for fanout stats
tot, max := 0, 0
for _, r := range s.cache {
l := len(r.psubs) + len(r.qsubs)
tot += l
if l > max {
max = l
}
}
st.MaxFanout = uint32(max)
if tot > 0 {
st.AvgFanout = float64(tot) / float64(len(s.cache))
}
return st
}
// numLevels will return the maximum number of levels
// contained in the Sublist tree.
func (s *Sublist) numLevels() int {
return visitLevel(s.root, 0)
}
// visitLevel is used to descend the Sublist tree structure
// recursively.
func visitLevel(l *level, depth int) int {
if l == nil || l.numNodes() == 0 {
return depth
}
depth++
maxDepth := depth
for _, n := range l.nodes {
if n == nil {
continue
}
newDepth := visitLevel(n.next, depth)
if newDepth > maxDepth {
maxDepth = newDepth
}
}
if l.pwc != nil {
pwcDepth := visitLevel(l.pwc.next, depth)
if pwcDepth > maxDepth {
maxDepth = pwcDepth
}
}
if l.fwc != nil {
fwcDepth := visitLevel(l.fwc.next, depth)
if fwcDepth > maxDepth {
maxDepth = fwcDepth
}
}
return maxDepth
}
// IsValidSubject returns true if a subject is valid, false otherwise
func IsValidSubject(subject string) bool {
if subject == "" {
return false
}
sfwc := false
tokens := strings.Split(string(subject), tsep)
for _, t := range tokens {
if len(t) == 0 || sfwc {
return false
}
if len(t) > 1 {
continue
}
switch t[0] {
case fwc:
sfwc = true
}
}
return true
}
// IsValidLiteralSubject returns true if a subject is valid and literal (no wildcards), false otherwise
func IsValidLiteralSubject(subject string) bool {
tokens := strings.Split(string(subject), tsep)
for _, t := range tokens {
if len(t) == 0 {
return false
}
if len(t) > 1 {
continue
}
switch t[0] {
case pwc, fwc:
return false
}
}
return true
}
// matchLiteral is used to test literal subjects, those that do not have any
// wildcards, with a target subject. This is used in the cache layer.
func matchLiteral(literal, subject string) bool {
li := 0
ll := len(literal)
for i := 0; i < len(subject); i++ {
if li >= ll {
return false
}
b := subject[i]
switch b {
case pwc:
// Skip token in literal
ll := len(literal)
for {
if li >= ll || literal[li] == btsep {
li--
break
}
li++
}
case fwc:
return true
default:
if b != literal[li] {
return false
}
}
li++
}
// Make sure we have processed all of the literal's chars..
if li < ll {
return false
}
return true
}