Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
package storage
|
|
|
|
|
|
|
|
import (
|
2017-07-20 08:01:23 +00:00
|
|
|
"errors"
|
2017-06-08 13:45:34 +00:00
|
|
|
"net"
|
2017-07-20 08:01:23 +00:00
|
|
|
"path/filepath"
|
|
|
|
"strings"
|
2017-06-08 13:45:34 +00:00
|
|
|
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
"github.com/containers/image/copy"
|
2017-03-24 15:34:12 +00:00
|
|
|
"github.com/containers/image/docker/reference"
|
2017-06-07 17:54:02 +00:00
|
|
|
"github.com/containers/image/image"
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
"github.com/containers/image/signature"
|
|
|
|
istorage "github.com/containers/image/storage"
|
2017-03-13 15:16:03 +00:00
|
|
|
"github.com/containers/image/transports/alltransports"
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
"github.com/containers/image/types"
|
2017-05-17 17:18:35 +00:00
|
|
|
"github.com/containers/storage"
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
// ImageResult wraps a subset of information about an image: its ID, its names,
|
|
|
|
// and the size, if known, or nil if it isn't.
|
|
|
|
type ImageResult struct {
|
|
|
|
ID string
|
|
|
|
Names []string
|
|
|
|
Size *uint64
|
|
|
|
}
|
|
|
|
|
2017-06-08 13:45:34 +00:00
|
|
|
type indexInfo struct {
|
|
|
|
name string
|
|
|
|
secure bool
|
|
|
|
}
|
|
|
|
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
type imageService struct {
|
2017-06-08 13:45:34 +00:00
|
|
|
store storage.Store
|
|
|
|
defaultTransport string
|
|
|
|
insecureRegistryCIDRs []*net.IPNet
|
|
|
|
indexConfigs map[string]*indexInfo
|
2017-07-20 08:01:23 +00:00
|
|
|
registries []string
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// ImageServer wraps up various CRI-related activities into a reusable
|
|
|
|
// implementation.
|
|
|
|
type ImageServer interface {
|
|
|
|
// ListImages returns list of all images which match the filter.
|
2017-08-31 15:48:10 +00:00
|
|
|
ListImages(systemContext *types.SystemContext, filter string) ([]ImageResult, error)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
// ImageStatus returns status of an image which matches the filter.
|
|
|
|
ImageStatus(systemContext *types.SystemContext, filter string) (*ImageResult, error)
|
|
|
|
// PullImage imports an image from the specified location.
|
|
|
|
PullImage(systemContext *types.SystemContext, imageName string, options *copy.Options) (types.ImageReference, error)
|
|
|
|
// RemoveImage deletes the specified image.
|
|
|
|
RemoveImage(systemContext *types.SystemContext, imageName string) error
|
|
|
|
// GetStore returns the reference to the storage library Store which
|
|
|
|
// the image server uses to hold images, and is the destination used
|
|
|
|
// when it's asked to pull an image.
|
|
|
|
GetStore() storage.Store
|
2017-06-07 17:54:02 +00:00
|
|
|
// CanPull preliminary checks whether we're allowed to pull an image
|
2017-06-08 13:45:34 +00:00
|
|
|
CanPull(imageName string, options *copy.Options) (bool, error)
|
2017-07-20 08:01:23 +00:00
|
|
|
// ResolveNames takes an image reference and if it's unqualified (w/o hostname),
|
|
|
|
// it uses crio's default registries to qualify it.
|
|
|
|
ResolveNames(imageName string) ([]string, error)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
}
|
|
|
|
|
2017-08-31 15:48:10 +00:00
|
|
|
func (svc *imageService) getRef(name string) (types.ImageReference, error) {
|
|
|
|
ref, err := alltransports.ParseImageName(name)
|
|
|
|
if err != nil {
|
|
|
|
ref2, err2 := istorage.Transport.ParseStoreReference(svc.store, "@"+name)
|
|
|
|
if err2 != nil {
|
|
|
|
ref3, err3 := istorage.Transport.ParseStoreReference(svc.store, name)
|
|
|
|
if err3 != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
ref2 = ref3
|
|
|
|
}
|
|
|
|
ref = ref2
|
|
|
|
}
|
|
|
|
return ref, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) ListImages(systemContext *types.SystemContext, filter string) ([]ImageResult, error) {
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
results := []ImageResult{}
|
|
|
|
if filter != "" {
|
2017-08-31 15:48:10 +00:00
|
|
|
ref, err := svc.getRef(filter)
|
2017-04-06 17:28:55 +00:00
|
|
|
if err != nil {
|
2017-08-31 15:48:10 +00:00
|
|
|
return nil, err
|
2017-04-06 17:28:55 +00:00
|
|
|
}
|
|
|
|
if image, err := istorage.Transport.GetStoreImage(svc.store, ref); err == nil {
|
2017-08-31 15:48:10 +00:00
|
|
|
img, err := ref.NewImage(systemContext)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
results = append(results, ImageResult{
|
|
|
|
ID: image.ID,
|
|
|
|
Names: image.Names,
|
2017-08-31 15:48:10 +00:00
|
|
|
Size: imageSize(img),
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
})
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
images, err := svc.store.Images()
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
for _, image := range images {
|
2017-09-06 09:32:53 +00:00
|
|
|
var size *uint64
|
|
|
|
if len(image.Names) != 0 {
|
|
|
|
ref, err := svc.getRef(image.Names[0])
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
img, err := ref.NewImage(systemContext)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
size = imageSize(img)
|
2017-08-31 15:48:10 +00:00
|
|
|
}
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
results = append(results, ImageResult{
|
|
|
|
ID: image.ID,
|
|
|
|
Names: image.Names,
|
2017-09-06 09:32:53 +00:00
|
|
|
Size: size,
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
})
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return results, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) ImageStatus(systemContext *types.SystemContext, nameOrID string) (*ImageResult, error) {
|
2017-03-13 15:16:03 +00:00
|
|
|
ref, err := alltransports.ParseImageName(nameOrID)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if err != nil {
|
|
|
|
ref2, err2 := istorage.Transport.ParseStoreReference(svc.store, "@"+nameOrID)
|
|
|
|
if err2 != nil {
|
|
|
|
ref3, err3 := istorage.Transport.ParseStoreReference(svc.store, nameOrID)
|
|
|
|
if err3 != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
ref2 = ref3
|
|
|
|
}
|
|
|
|
ref = ref2
|
|
|
|
}
|
|
|
|
image, err := istorage.Transport.GetStoreImage(svc.store, ref)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
img, err := ref.NewImage(systemContext)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
size := imageSize(img)
|
|
|
|
img.Close()
|
|
|
|
|
|
|
|
return &ImageResult{
|
|
|
|
ID: image.ID,
|
|
|
|
Names: image.Names,
|
|
|
|
Size: size,
|
|
|
|
}, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func imageSize(img types.Image) *uint64 {
|
|
|
|
if sum, err := img.Size(); err == nil {
|
|
|
|
usum := uint64(sum)
|
|
|
|
return &usum
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
2017-06-08 13:45:34 +00:00
|
|
|
func (svc *imageService) CanPull(imageName string, options *copy.Options) (bool, error) {
|
|
|
|
srcRef, err := svc.prepareImage(imageName, options)
|
2017-06-07 17:54:02 +00:00
|
|
|
if err != nil {
|
2017-06-08 13:45:34 +00:00
|
|
|
return false, err
|
2017-06-07 17:54:02 +00:00
|
|
|
}
|
2017-06-08 13:45:34 +00:00
|
|
|
rawSource, err := srcRef.NewImageSource(options.SourceCtx, nil)
|
2017-06-07 17:54:02 +00:00
|
|
|
if err != nil {
|
|
|
|
return false, err
|
|
|
|
}
|
2017-07-26 19:44:38 +00:00
|
|
|
src, err := image.FromSource(rawSource)
|
2017-06-07 17:54:02 +00:00
|
|
|
if err != nil {
|
2017-07-26 19:44:38 +00:00
|
|
|
rawSource.Close()
|
2017-06-07 17:54:02 +00:00
|
|
|
return false, err
|
|
|
|
}
|
|
|
|
src.Close()
|
|
|
|
return true, nil
|
|
|
|
}
|
|
|
|
|
2017-06-08 13:45:34 +00:00
|
|
|
// prepareImage creates an image reference from an image string and set options
|
|
|
|
// for the source context
|
|
|
|
func (svc *imageService) prepareImage(imageName string, options *copy.Options) (types.ImageReference, error) {
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if imageName == "" {
|
|
|
|
return nil, storage.ErrNotAnImage
|
|
|
|
}
|
2017-06-08 13:45:34 +00:00
|
|
|
|
2017-03-13 15:16:03 +00:00
|
|
|
srcRef, err := alltransports.ParseImageName(imageName)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if err != nil {
|
|
|
|
if svc.defaultTransport == "" {
|
|
|
|
return nil, err
|
|
|
|
}
|
2017-03-13 15:16:03 +00:00
|
|
|
srcRef2, err2 := alltransports.ParseImageName(svc.defaultTransport + imageName)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if err2 != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
srcRef = srcRef2
|
|
|
|
}
|
2017-06-08 13:45:34 +00:00
|
|
|
|
|
|
|
if options.SourceCtx == nil {
|
|
|
|
options.SourceCtx = &types.SystemContext{}
|
|
|
|
}
|
|
|
|
|
|
|
|
hostname := reference.Domain(srcRef.DockerReference())
|
|
|
|
if secure := svc.isSecureIndex(hostname); !secure {
|
|
|
|
options.SourceCtx.DockerInsecureSkipTLSVerify = !secure
|
|
|
|
}
|
|
|
|
return srcRef, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) PullImage(systemContext *types.SystemContext, imageName string, options *copy.Options) (types.ImageReference, error) {
|
|
|
|
policy, err := signature.DefaultPolicy(systemContext)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
policyContext, err := signature.NewPolicyContext(policy)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if options == nil {
|
|
|
|
options = ©.Options{}
|
|
|
|
}
|
|
|
|
|
|
|
|
srcRef, err := svc.prepareImage(imageName, options)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
dest := imageName
|
|
|
|
if srcRef.DockerReference() != nil {
|
2017-03-13 15:16:03 +00:00
|
|
|
dest = srcRef.DockerReference().Name()
|
2017-03-24 15:34:12 +00:00
|
|
|
if tagged, ok := srcRef.DockerReference().(reference.NamedTagged); ok {
|
|
|
|
dest = dest + ":" + tagged.Tag()
|
|
|
|
}
|
2017-04-06 17:28:55 +00:00
|
|
|
if canonical, ok := srcRef.DockerReference().(reference.Canonical); ok {
|
|
|
|
dest = dest + "@" + canonical.Digest().String()
|
|
|
|
}
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
}
|
|
|
|
destRef, err := istorage.Transport.ParseStoreReference(svc.store, dest)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
err = copy.Image(policyContext, destRef, srcRef, options)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
return destRef, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) RemoveImage(systemContext *types.SystemContext, nameOrID string) error {
|
2017-03-13 15:16:03 +00:00
|
|
|
ref, err := alltransports.ParseImageName(nameOrID)
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if err != nil {
|
|
|
|
ref2, err2 := istorage.Transport.ParseStoreReference(svc.store, "@"+nameOrID)
|
|
|
|
if err2 != nil {
|
|
|
|
ref3, err3 := istorage.Transport.ParseStoreReference(svc.store, nameOrID)
|
|
|
|
if err3 != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
ref2 = ref3
|
|
|
|
}
|
|
|
|
ref = ref2
|
|
|
|
}
|
|
|
|
return ref.DeleteImage(systemContext)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) GetStore() storage.Store {
|
|
|
|
return svc.store
|
|
|
|
}
|
|
|
|
|
2017-06-08 13:45:34 +00:00
|
|
|
func (svc *imageService) isSecureIndex(indexName string) bool {
|
|
|
|
if index, ok := svc.indexConfigs[indexName]; ok {
|
|
|
|
return index.secure
|
|
|
|
}
|
|
|
|
|
|
|
|
host, _, err := net.SplitHostPort(indexName)
|
|
|
|
if err != nil {
|
|
|
|
// assume indexName is of the form `host` without the port and go on.
|
|
|
|
host = indexName
|
|
|
|
}
|
|
|
|
|
|
|
|
addrs, err := net.LookupIP(host)
|
|
|
|
if err != nil {
|
|
|
|
ip := net.ParseIP(host)
|
|
|
|
if ip != nil {
|
|
|
|
addrs = []net.IP{ip}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if ip == nil, then `host` is neither an IP nor it could be looked up,
|
|
|
|
// either because the index is unreachable, or because the index is behind an HTTP proxy.
|
|
|
|
// So, len(addrs) == 0 and we're not aborting.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Try CIDR notation only if addrs has any elements, i.e. if `host`'s IP could be determined.
|
|
|
|
for _, addr := range addrs {
|
|
|
|
for _, ipnet := range svc.insecureRegistryCIDRs {
|
|
|
|
// check if the addr falls in the subnet
|
2017-08-22 10:35:19 +00:00
|
|
|
if ipnet.Contains(addr) {
|
2017-06-08 13:45:34 +00:00
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
2017-07-20 08:01:23 +00:00
|
|
|
func isValidHostname(hostname string) bool {
|
|
|
|
return hostname != "" && !strings.Contains(hostname, "/") &&
|
|
|
|
(strings.Contains(hostname, ".") ||
|
|
|
|
strings.Contains(hostname, ":") || hostname == "localhost")
|
|
|
|
}
|
|
|
|
|
|
|
|
func (svc *imageService) ResolveNames(imageName string) ([]string, error) {
|
|
|
|
r, err := reference.ParseNormalizedNamed(imageName)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
domain, rest := splitDomain(r.Name())
|
|
|
|
if len(domain) != 0 && isValidHostname(domain) {
|
|
|
|
// this means the image is already fully qualified
|
|
|
|
return []string{imageName}, nil
|
|
|
|
}
|
|
|
|
// we got an unqualified image here, we can't go ahead w/o registries configured
|
|
|
|
// properly.
|
|
|
|
if len(svc.registries) == 0 {
|
|
|
|
return nil, errors.New("no registries configured while trying to pull an unqualified image")
|
|
|
|
}
|
|
|
|
// this means we got an image in the form of "busybox"
|
|
|
|
// we need to use additional registries...
|
|
|
|
// normalize the unqualified image to be domain/repo/image...
|
|
|
|
images := []string{}
|
|
|
|
for _, r := range svc.registries {
|
|
|
|
path := rest
|
|
|
|
if !isValidHostname(domain) {
|
|
|
|
// This is the case where we have an image like "runcom/busybox"
|
|
|
|
path = imageName
|
|
|
|
}
|
|
|
|
images = append(images, filepath.Join(r, path))
|
|
|
|
}
|
|
|
|
return images, nil
|
|
|
|
}
|
|
|
|
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
// GetImageService returns an ImageServer that uses the passed-in store, and
|
|
|
|
// which will prepend the passed-in defaultTransport value to an image name if
|
|
|
|
// a name that's passed to its PullImage() method can't be resolved to an image
|
|
|
|
// in the store and can't be resolved to a source on its own.
|
2017-07-20 08:01:23 +00:00
|
|
|
func GetImageService(store storage.Store, defaultTransport string, insecureRegistries []string, registries []string) (ImageServer, error) {
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
if store == nil {
|
|
|
|
var err error
|
|
|
|
store, err = storage.GetStore(storage.DefaultStoreOptions)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
}
|
2017-06-08 13:45:34 +00:00
|
|
|
|
2017-07-20 08:01:23 +00:00
|
|
|
seenRegistries := make(map[string]bool, len(registries))
|
|
|
|
cleanRegistries := []string{}
|
|
|
|
for _, r := range registries {
|
|
|
|
if seenRegistries[r] {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
cleanRegistries = append(cleanRegistries, r)
|
|
|
|
seenRegistries[r] = true
|
|
|
|
}
|
|
|
|
|
2017-06-08 13:45:34 +00:00
|
|
|
is := &imageService{
|
|
|
|
store: store,
|
|
|
|
defaultTransport: defaultTransport,
|
|
|
|
indexConfigs: make(map[string]*indexInfo, 0),
|
|
|
|
insecureRegistryCIDRs: make([]*net.IPNet, 0),
|
2017-07-20 08:01:23 +00:00
|
|
|
registries: cleanRegistries,
|
2017-06-08 13:45:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
insecureRegistries = append(insecureRegistries, "127.0.0.0/8")
|
|
|
|
// Split --insecure-registry into CIDR and registry-specific settings.
|
|
|
|
for _, r := range insecureRegistries {
|
|
|
|
// Check if CIDR was passed to --insecure-registry
|
|
|
|
_, ipnet, err := net.ParseCIDR(r)
|
|
|
|
if err == nil {
|
|
|
|
// Valid CIDR.
|
|
|
|
is.insecureRegistryCIDRs = append(is.insecureRegistryCIDRs, ipnet)
|
|
|
|
} else {
|
|
|
|
// Assume `host:port` if not CIDR.
|
|
|
|
is.indexConfigs[r] = &indexInfo{
|
|
|
|
name: r,
|
|
|
|
secure: false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return is, nil
|
Add storage utility functions
Add an intermediate API layer that uses containers/storage, and a
containers/image that has been patched to use it, to manage images and
containers, storing the data that we need to know about containers and
pods in the metadata fields provided by containers/storage.
While ocid manages pods and containers as different types of items, with
disjoint sets of IDs and names, it remains true that every pod includes
at least one container. When a container's only purpose is to serve as
a home for namespaces that are shared with the other containers in the
pod, it is referred to as the pod's infrastructure container.
At the storage level, a pod is stored as its set of containers. We keep
track of both pod IDs and container IDs in the metadata field of
Container objects that the storage library manages for us. Containers
which bear the same pod ID are members of the pod which has that ID.
Other information about the pod, which ocid needs to remember in order
to answer requests for information about the pod, is also kept in the
metadata field of its member containers.
The container's runtime configuration should be stored in the
container's ContainerDirectory, and used as a template. Each time the
container is about to be started, its layer should be mounted, that
configuration template should be read, the template's rootfs location
should be replaced with the mountpoint for the container's layer, and
the result should be saved to the container's ContainerRunDirectory,
for use as the configuration for the container.
Signed-off-by: Nalin Dahyabhai <nalin@redhat.com>
2016-11-22 18:50:33 +00:00
|
|
|
}
|