Merge pull request #115 from cyphar/toml-config

cmd: server: use TOML configuration file
This commit is contained in:
Mrunal Patel 2016-10-11 16:07:25 -07:00 committed by GitHub
commit e999610fd6
33 changed files with 3702 additions and 73 deletions

1
.gitignore vendored
View file

@ -5,4 +5,5 @@ conmon/conmon.o
pause/pause
pause/pause.o
/docs/ocid.8
/docs/ocid.conf.5
vendor/src/github.com/kubernetes-incubator/cri-o

View file

@ -49,7 +49,7 @@ clean:
rm -f ${OCID_LINK}
rm -f conmon/conmon.o conmon/conmon
rm -f pause/pause.o pause/pause
rm -f docs/*.1 docs/*.8
rm -f docs/*.1 docs/*.5 docs/*.8
find . -name \*~ -delete
find . -name \#\* -delete
@ -73,30 +73,35 @@ binaries: ${OCID_LINK} ocid ocic conmon pause
MANPAGES_MD = $(wildcard docs/*.md)
docs/%.1: docs/%.1.md
docs/%.8: docs/%.8.md
@which go-md2man > /dev/null 2>/dev/null || (echo "ERROR: go-md2man not found. Consider 'make install.tools' target" && false)
$(GO_MD2MAN) -in $< -out $@.tmp && touch $@.tmp && mv $@.tmp $@
docs/%.8: docs/%.8.md
docs/%.5: docs/%.5.md
@which go-md2man > /dev/null 2>/dev/null || (echo "ERROR: go-md2man not found. Consider 'make install.tools' target" && false)
$(GO_MD2MAN) -in $< -out $@.tmp && touch $@.tmp && mv $@.tmp $@
docs: $(MANPAGES_MD:%.md=%)
install:
install:
install -D -m 755 ocid ${INSTALLDIR}/ocid
install -D -m 755 ocic ${INSTALLDIR}/ocic
install -D -m 755 conmon/conmon $(PREFIX)/libexec/ocid/conmon
install -D -m 755 pause/pause $(PREFIX)/libexec/ocid/pause
install -d $(PREFIX)/share/man/man8
install -m 644 $(basename $(MANPAGES_MD)) $(PREFIX)/share/man/man8
install -m 644 $(wildcard docs/*.8.md) $(PREFIX)/share/man/man8
install -d $(PREFIX)/share/man/man5
install -m 644 $(wildcard docs/*.5.md) $(PREFIX)/share/man/man5
uninstall:
rm -f ${INSTALLDIR}/{ocid,ocic}
rm -f $(PREFIX)/libexec/ocid/{conmon,pause}
for i in $(basename $(MANPAGES_MD)); do \
for i in $(wildcard docs/*.8.md); do \
rm -f $(PREFIX)/share/man/man8/$$(basename $${i}); \
done
for i in $(wildcard docs/*.5.md); do \
rm -f $(PREFIX)/share/man/man5/$$(basename $${i}); \
done
.PHONY: .gitvalidation
# When this is running in travis, it will only check the travis commit range

View file

@ -19,7 +19,7 @@ const (
)
func getClientConnection(context *cli.Context) (*grpc.ClientConn, error) {
conn, err := grpc.Dial(context.GlobalString("socket"), grpc.WithInsecure(), grpc.WithTimeout(timeout),
conn, err := grpc.Dial(context.GlobalString("connect"), grpc.WithInsecure(), grpc.WithTimeout(timeout),
grpc.WithDialer(func(addr string, timeout time.Duration) (net.Conn, error) {
return net.DialTimeout("unix", addr, timeout)
}))
@ -83,7 +83,7 @@ func main() {
app.Flags = []cli.Flag{
cli.StringFlag{
Name: "socket",
Name: "connect",
Value: "/var/run/ocid.sock",
Usage: "Socket to connect to",
},

109
cmd/server/config.go Normal file
View file

@ -0,0 +1,109 @@
package main
import (
"os"
"path/filepath"
"text/template"
"github.com/kubernetes-incubator/cri-o/server"
"github.com/opencontainers/runc/libcontainer/selinux"
"github.com/urfave/cli"
)
const (
ocidRoot = "/var/lib/ocid"
conmonPath = "/usr/libexec/ocid/conmon"
pausePath = "/usr/libexec/ocid/pause"
)
var commentedConfigTemplate = template.Must(template.New("config").Parse(`
# The "ocid" table contains all of the server options.
[ocid]
# root is a path to the "root directory". OCID stores all of its state
# data, including container images, in this directory.
root = "{{ .Root }}"
# sandbox_dir is the directory where ocid will store all of its sandbox
# state and other information.
sandbox_dir = "{{ .SandboxDir }}"
# container_dir is the directory where ocid will store all of its
# container state and other information.
container_dir = "{{ .ContainerDir }}"
# The "ocid.api" table contains settings for the kubelet/gRPC
# interface (which is also used by ocic).
[ocid.api]
# listen is the path to the AF_LOCAL socket on which ocid will listen.
listen = "{{ .Listen }}"
# The "ocid.runtime" table contains settings pertaining to the OCI
# runtime used and options for how to set up and manage the OCI runtime.
[ocid.runtime]
# runtime is a path to the OCI runtime which ocid will be using.
runtime = "{{ .Runtime }}"
# conmon is the path to conmon binary, used for managing the runtime.
conmon = "{{ .Conmon }}"
# selinux indicates whether or not SELinux will be used for pod
# separation on the host. If you enable this flag, SELinux must be running
# on the host.
selinux = {{ .SELinux }}
# The "ocid.image" table contains settings pertaining to the
# management of OCI images.
[ocid.image]
# pause is the path to the statically linked pause container binary, used
# as the entrypoint for infra containers.
pause = "{{ .Pause }}"
`))
// DefaultConfig returns the default configuration for ocid.
func DefaultConfig() *server.Config {
return &server.Config{
RootConfig: server.RootConfig{
Root: ocidRoot,
SandboxDir: filepath.Join(ocidRoot, "sandboxes"),
ContainerDir: filepath.Join(ocidRoot, "containers"),
},
APIConfig: server.APIConfig{
Listen: "/var/run/ocid.sock",
},
RuntimeConfig: server.RuntimeConfig{
Runtime: "/usr/bin/runc",
Conmon: conmonPath,
SELinux: selinux.SelinuxEnabled(),
},
ImageConfig: server.ImageConfig{
Pause: pausePath,
ImageStore: filepath.Join(ocidRoot, "store"),
},
}
}
var configCommand = cli.Command{
Name: "config",
Usage: "generate ocid configuration files",
Flags: []cli.Flag{
cli.BoolFlag{
Name: "default",
Usage: "output the default configuration",
},
},
Action: func(c *cli.Context) error {
// At this point, app.Before has already parsed the user's chosen
// config file. So no need to handle that here.
config := c.App.Metadata["config"].(*server.Config)
if c.Bool("default") {
config = DefaultConfig()
}
// Output the commented config.
return commentedConfigTemplate.ExecuteTemplate(os.Stdout, "config", config)
},
}

View file

@ -4,7 +4,6 @@ import (
"fmt"
"net"
"os"
"path/filepath"
"github.com/Sirupsen/logrus"
"github.com/kubernetes-incubator/cri-o/server"
@ -14,52 +13,92 @@ import (
"k8s.io/kubernetes/pkg/kubelet/api/v1alpha1/runtime"
)
const (
ocidRoot = "/var/lib/ocid"
conmonPath = "/usr/libexec/ocid/conmon"
pausePath = "/usr/libexec/ocid/pause"
)
const ociConfigPath = "/etc/ocid.conf"
func mergeConfig(config *server.Config, ctx *cli.Context) error {
// Don't parse the config if the user explicitly set it to "".
if path := ctx.GlobalString("config"); path != "" {
if err := config.FromFile(path); err != nil {
if ctx.GlobalIsSet("config") || !os.IsNotExist(err) {
return err
}
// We don't error out if --config wasn't explicitly set and the
// default doesn't exist. But we will log a warning about it, so
// the user doesn't miss it.
logrus.Warnf("default configuration file does not exist: %s", ociConfigPath)
}
}
// Override options set with the CLI.
if ctx.GlobalIsSet("conmon") {
config.Conmon = ctx.GlobalString("conmon")
}
if ctx.GlobalIsSet("pause") {
config.Pause = ctx.GlobalString("pause")
}
if ctx.GlobalIsSet("root") {
config.Root = ctx.GlobalString("root")
}
if ctx.GlobalIsSet("sandboxdir") {
config.SandboxDir = ctx.GlobalString("sandboxdir")
}
if ctx.GlobalIsSet("containerdir") {
config.ContainerDir = ctx.GlobalString("containerdir")
}
if ctx.GlobalIsSet("listen") {
config.Listen = ctx.GlobalString("listen")
}
if ctx.GlobalIsSet("runtime") {
config.Runtime = ctx.GlobalString("runtime")
}
if ctx.GlobalIsSet("selinux") {
config.SELinux = ctx.GlobalBool("selinux")
}
return nil
}
func main() {
app := cli.NewApp()
app.Name = "ocid"
app.Usage = "ocid server"
app.Version = "0.0.1"
app.Metadata = map[string]interface{}{
"config": DefaultConfig(),
}
app.Flags = []cli.Flag{
cli.StringFlag{
Name: "config",
Value: ociConfigPath,
Usage: "path to configuration file",
},
cli.StringFlag{
Name: "conmon",
Value: conmonPath,
Usage: "path to the conmon executable",
},
cli.StringFlag{
Name: "pause",
Value: pausePath,
Usage: "path to the pause executable",
},
cli.StringFlag{
Name: "root",
Value: ocidRoot,
Usage: "ocid root dir",
},
cli.StringFlag{
Name: "sandboxdir",
Value: filepath.Join(ocidRoot, "sandboxes"),
Usage: "ocid pod sandbox dir",
},
cli.StringFlag{
Name: "containerdir",
Value: filepath.Join(ocidRoot, "containers"),
Usage: "ocid container dir",
},
cli.StringFlag{
Name: "socket",
Value: "/var/run/ocid.sock",
Name: "listen",
Usage: "path to ocid socket",
},
cli.StringFlag{
Name: "runtime",
Value: "/usr/bin/runc",
Usage: "OCI runtime path",
},
cli.BoolFlag{
@ -67,7 +106,7 @@ func main() {
Usage: "enable debug output for logging",
},
cli.BoolFlag{
Name: "selinux-enabled",
Name: "selinux",
Usage: "enable selinux support",
},
cli.StringFlag{
@ -82,13 +121,21 @@ func main() {
},
}
app.Commands = []cli.Command{
configCommand,
}
app.Before = func(c *cli.Context) error {
// Load the configuration file.
config := c.App.Metadata["config"].(*server.Config)
if err := mergeConfig(config, c); err != nil {
return err
}
if c.GlobalBool("debug") {
logrus.SetLevel(logrus.DebugLevel)
}
if !c.GlobalBool("selinux-enabled") {
selinux.SetDisabled()
}
if path := c.GlobalString("log"); path != "" {
f, err := os.OpenFile(path, os.O_CREATE|os.O_WRONLY|os.O_APPEND|os.O_SYNC, 0666)
if err != nil {
@ -96,10 +143,7 @@ func main() {
}
logrus.SetOutput(f)
}
if _, err := os.Stat(c.GlobalString("runtime")); os.IsNotExist(err) {
// path to runtime does not exist
return fmt.Errorf("invalid --runtime value %q", err)
}
switch c.GlobalString("log-format") {
case "text":
// retain logrus's default.
@ -108,29 +152,36 @@ func main() {
default:
return fmt.Errorf("unknown log-format %q", c.GlobalString("log-format"))
}
return nil
}
app.Action = func(c *cli.Context) error {
socketPath := c.String("socket")
config := c.App.Metadata["config"].(*server.Config)
if !config.SELinux {
selinux.SetDisabled()
}
if _, err := os.Stat(config.Runtime); os.IsNotExist(err) {
// path to runtime does not exist
return fmt.Errorf("invalid --runtime value %q", err)
}
// Remove the socket if it already exists
if _, err := os.Stat(socketPath); err == nil {
if err := os.Remove(socketPath); err != nil {
if _, err := os.Stat(config.Listen); err == nil {
if err := os.Remove(config.Listen); err != nil {
logrus.Fatal(err)
}
}
lis, err := net.Listen("unix", socketPath)
lis, err := net.Listen("unix", config.Listen)
if err != nil {
logrus.Fatalf("failed to listen: %v", err)
}
s := grpc.NewServer()
containerDir := c.String("containerdir")
sandboxDir := c.String("sandboxdir")
conmonPath := c.String("conmon")
pausePath := c.String("pause")
service, err := server.New(c.String("runtime"), c.String("root"), sandboxDir, containerDir, conmonPath, pausePath)
service, err := server.New(config)
if err != nil {
logrus.Fatal(err)
}

View file

@ -10,14 +10,14 @@ ocid - Enable OCI Kubernetes Container Runtime daemon
[**--containerdir**=[*value*]]
[**--debug**]
[**--help**|**-h**]
[**--listen**=[*value*]]
[**--log**=[*value*]]
[**--log-format value**]
[**--pause**=[*value*]]
[**--root**=[*value*]]
[**--runtime**=[*value*]]
[**--sandboxdir**=[*value*]]
[**--selinux-enabled**]
[**--socket**=[*value*]]
[**--selinux**]
[**--version**|**-v**]
# DESCRIPTION
@ -32,9 +32,11 @@ ocid is meant to provide an integration path between OCI conformant runtimes and
* Monitoring and logging required to satisfy the CRI
* Resource isolation as required by the CRI
**ocid [OPTIONS]**
**ocid [GLOBAL OPTIONS]**
# OPTIONS
**ocid [GLOBAL OPTIONS] config [OPTIONS]**
# GLOBAL OPTIONS
**--conmon**=""
path to the conmon executable (default: "/usr/libexec/ocid/conmon")
@ -48,6 +50,9 @@ ocid is meant to provide an integration path between OCI conformant runtimes and
**--help, -h**
Print usage statement
**--listen**=""
Path to ocid socket (default: "/var/run/ocid.sock")
**--log**=""
Set the log file path where internal debug information is written
@ -66,14 +71,27 @@ ocid is meant to provide an integration path between OCI conformant runtimes and
**--sandboxdir**=""
OCID pod sandbox dir (default: "/var/lib/ocid/sandboxes")
**--selinux-enabled**
Enable selinux support
**--socket**=""
Path to ocid socket (default: "/var/run/ocid.sock")
**--selinux**
Enable selinux support (default: false)
**--version, -v**
Print the version
# COMMANDS
OCID's default command is to start the daemon. However, it currently offers a
single additional subcommand.
## config
Outputs a commented version of the configuration file that would've been used
by OCID. This allows you to save you current configuration setup and then load
it later with **--config**. Global options will modify the output.
**--default**
Output the default configuration (without taking into account any configuration options).
# SEE ALSO
ocid.conf(5)
# HISTORY
Sept 2016, Originally compiled by Dan Walsh <dwalsh@redhat.com>
Sept 2016, Originally compiled by Dan Walsh <dwalsh@redhat.com> and Aleksa Sarai <asarai@suse.de>

67
docs/ocid.conf.5.md Normal file
View file

@ -0,0 +1,67 @@
% ocid.conf(5) Open Container Initiative Daemon
% Aleksa Sarai
% OCTOBER 2016
# NAME
ocid.conf - Syntax of OCID configuration file
# DESCRIPTION
The OCID configuration file specifies all of the available command-line options
for the ocid(8) program, but in a TOML format that can be more easily modified
and versioned.
# FORMAT
The [TOML format][toml] is used as the encoding of the configuration file.
Every option and subtable listed here is nested under a global "ocid" table.
No bare options are used. The format of TOML can be simplified to:
[table]
option = value
[table.subtable1]
option = value
[table.subtable2]
option = value
## OCID TABLE
The `ocid` table supports the following options:
**container_dir**=""
OCID container dir (default: "/var/lib/ocid/containers")
**root**=""
OCID root dir (default: "/var/lib/ocid")
**sandbox_dir**=""
OCID pod sandbox dir (default: "/var/lib/ocid/sandboxes")
## OCID.API TABLE
**listen**=""
Path to ocid socket (default: "/var/run/ocid.sock")
## OCID.RUNTIME TABLE
**conmon**=""
path to the conmon executable (default: "/usr/libexec/ocid/conmon")
**runtime**=""
OCI runtime path (default: "/usr/bin/runc")
**selinux**
Enable selinux support (default: false)
## OCID.IMAGE TABLE
**pause**=""
Path to the pause executable (default: "/usr/libexec/ocid/pause")
# SEE ALSO
ocid(8)
# HISTORY
Oct 2016, Originally compiled by Aleksa Sarai <asarai@suse.de>

View file

@ -46,6 +46,7 @@ case $# in
;;
esac
clone git github.com/BurntSushi/toml v0.2.0
clone git github.com/Sirupsen/logrus v0.10.0
clone git github.com/containers/image f6f11ab5cf8b1e70ef4aa3f8b6fdb4b671d16abd
clone git github.com/opencontainers/image-spec master

135
server/config.go Normal file
View file

@ -0,0 +1,135 @@
package server
import (
"bytes"
"io/ioutil"
"github.com/BurntSushi/toml"
)
// Config represents the entire set of configuration values that can be set for
// the server. This is intended to be loaded from a toml-encoded config file.
type Config struct {
RootConfig
APIConfig
RuntimeConfig
ImageConfig
}
// This structure is necessary to fake the TOML tables when parsing,
// while also not requiring a bunch of layered structs for no good
// reason.
// RootConfig represents the root of the "ocid" TOML config table.
type RootConfig struct {
// Root is a path to the "root directory" where all information not
// explicitly handled by other options will be stored.
Root string `toml:"root"`
// SandboxDir is the directory where ocid will store all of its sandbox
// state and other information.
SandboxDir string `toml:"sandbox_dir"`
// ContainerDir is the directory where ocid will store all of its container
// state and other information.
ContainerDir string `toml:"container_dir"`
}
// APIConfig represents the "ocid.api" TOML config table.
type APIConfig struct {
// Listen is the path to the AF_LOCAL socket on which cri-o will listen.
// This may support proto://addr formats later, but currently this is just
// a path.
Listen string `toml:"listen"`
}
// RuntimeConfig represents the "ocid.runtime" TOML config table.
type RuntimeConfig struct {
// Runtime is a path to the OCI runtime which ocid will be using. Currently
// the only known working choice is runC, simply because the OCI has not
// yet merged a CLI API (so we assume runC's API here).
Runtime string `toml:"runtime"`
// Conmon is the path to conmon binary, used for managing the runtime.
Conmon string `toml:"conmon"`
// SELinux determines whether or not SELinux is used for pod separation.
SELinux bool `toml:"selinux"`
}
// ImageConfig represents the "ocid.image" TOML config table.
type ImageConfig struct {
// Pause is the path to the statically linked pause container binary, used
// as the entrypoint for infra containers.
//
// TODO(cyphar): This should be replaced with a path to an OCI image
// bundle, once the OCI image/storage code has been implemented.
Pause string `toml:"pause"`
// ImageStore is the directory where the ocid image store will be stored.
ImageStore string
}
// tomlConfig is another way of looking at a Config, which is
// TOML-friendly (it has all of the explicit tables). It's just used for
// conversions.
type tomlConfig struct {
Ocid struct {
RootConfig
API struct{ APIConfig } `toml:"api"`
Runtime struct{ RuntimeConfig } `toml:"runtime"`
Image struct{ ImageConfig } `toml:"image"`
} `toml:"ocid"`
}
func (t *tomlConfig) toConfig(c *Config) {
c.RootConfig = t.Ocid.RootConfig
c.APIConfig = t.Ocid.API.APIConfig
c.RuntimeConfig = t.Ocid.Runtime.RuntimeConfig
c.ImageConfig = t.Ocid.Image.ImageConfig
}
func (t *tomlConfig) fromConfig(c *Config) {
t.Ocid.RootConfig = c.RootConfig
t.Ocid.API.APIConfig = c.APIConfig
t.Ocid.Runtime.RuntimeConfig = c.RuntimeConfig
t.Ocid.Image.ImageConfig = c.ImageConfig
}
// FromFile populates the Config from the TOML-encoded file at the given path.
// Returns errors encountered when reading or parsing the files, or nil
// otherwise.
func (c *Config) FromFile(path string) error {
data, err := ioutil.ReadFile(path)
if err != nil {
return err
}
t := new(tomlConfig)
t.fromConfig(c)
_, err = toml.Decode(string(data), t)
if err != nil {
return err
}
t.toConfig(c)
return nil
}
// ToFile outputs the given Config as a TOML-encoded file at the given path.
// Returns errors encountered when generating or writing the file, or nil
// otherwise.
func (c *Config) ToFile(path string) error {
var w bytes.Buffer
e := toml.NewEncoder(&w)
t := new(tomlConfig)
t.fromConfig(c)
if err := e.Encode(*t); err != nil {
return err
}
return ioutil.WriteFile(path, w.Bytes(), 0644)
}

View file

@ -55,10 +55,10 @@ func (s *Server) PullImage(ctx context.Context, req *pb.PullImageRequest) (*pb.P
return nil, err
}
if err = os.Mkdir(filepath.Join(imageStore, tr.StringWithinTransport()), 0755); err != nil {
if err = os.Mkdir(filepath.Join(s.config.ImageStore, tr.StringWithinTransport()), 0755); err != nil {
return nil, err
}
dir, err := directory.NewReference(filepath.Join(imageStore, tr.StringWithinTransport()))
dir, err := directory.NewReference(filepath.Join(s.config.ImageStore, tr.StringWithinTransport()))
if err != nil {
return nil, err
}

View file

@ -99,7 +99,7 @@ func (s *Server) RunPodSandbox(ctx context.Context, req *pb.RunPodSandboxRequest
if err != nil {
return nil, err
}
podSandboxDir := filepath.Join(s.sandboxDir, id)
podSandboxDir := filepath.Join(s.config.SandboxDir, id)
if _, err = os.Stat(podSandboxDir); err == nil {
return nil, fmt.Errorf("pod sandbox (%s) already exists", podSandboxDir)
}
@ -120,7 +120,7 @@ func (s *Server) RunPodSandbox(ctx context.Context, req *pb.RunPodSandboxRequest
// creates a spec Generator with the default spec.
g := generate.New()
podInfraRootfs := filepath.Join(s.root, "graph/vfs/pause")
podInfraRootfs := filepath.Join(s.config.Root, "graph/vfs/pause")
// setup defaults for the pod sandbox
g.SetRootPath(filepath.Join(podInfraRootfs, "rootfs"))
g.SetRootReadonly(true)
@ -236,7 +236,7 @@ func (s *Server) RunPodSandbox(ctx context.Context, req *pb.RunPodSandboxRequest
if _, err = os.Stat(podInfraRootfs); err != nil {
if os.IsNotExist(err) {
// TODO: Replace by rootfs creation API when it is ready
if err = utils.CreateInfraRootfs(podInfraRootfs, s.pausePath); err != nil {
if err = utils.CreateInfraRootfs(podInfraRootfs, s.config.Pause); err != nil {
return nil, err
}
} else {
@ -362,7 +362,7 @@ func (s *Server) RemovePodSandbox(ctx context.Context, req *pb.RemovePodSandboxR
}
// Remove the files related to the sandbox
podSandboxDir := filepath.Join(s.sandboxDir, sb.id)
podSandboxDir := filepath.Join(s.config.SandboxDir, sb.id)
if err := os.RemoveAll(podSandboxDir); err != nil {
return nil, fmt.Errorf("failed to remove sandbox %s directory: %v", sb.id, err)
}

View file

@ -20,15 +20,12 @@ import (
const (
runtimeAPIVersion = "v1alpha1"
imageStore = "/var/lib/ocid/images"
)
// Server implements the RuntimeService and ImageService
type Server struct {
root string
config Config
runtime *oci.Runtime
sandboxDir string
pausePath string
stateLock sync.Mutex
state *serverState
netPlugin ocicni.CNIPlugin
@ -83,7 +80,7 @@ func (s *Server) loadContainer(id string) error {
}
func (s *Server) loadSandbox(id string) error {
config, err := ioutil.ReadFile(filepath.Join(s.sandboxDir, id, "config.json"))
config, err := ioutil.ReadFile(filepath.Join(s.config.SandboxDir, id, "config.json"))
if err != nil {
return err
}
@ -114,7 +111,7 @@ func (s *Server) loadSandbox(id string) error {
processLabel: processLabel,
mountLabel: mountLabel,
})
sandboxPath := filepath.Join(s.sandboxDir, id)
sandboxPath := filepath.Join(s.config.SandboxDir, id)
if err := label.ReserveLabel(processLabel); err != nil {
return err
@ -142,7 +139,7 @@ func (s *Server) loadSandbox(id string) error {
}
func (s *Server) restore() {
sandboxDir, err := ioutil.ReadDir(s.sandboxDir)
sandboxDir, err := ioutil.ReadDir(s.config.SandboxDir)
if err != nil && !os.IsNotExist(err) {
logrus.Warnf("could not read sandbox directory %s: %v", sandboxDir, err)
}
@ -208,7 +205,7 @@ func (s *Server) releaseContainerName(name string) {
}
// New creates a new Server with options provided
func New(runtimePath, root, sandboxDir, containerDir, conmonPath, pausePath string) (*Server, error) {
func New(config *Config) (*Server, error) {
// TODO: This will go away later when we have wrapper process or systemd acting as
// subreaper.
if err := utils.SetSubreaper(1); err != nil {
@ -217,15 +214,15 @@ func New(runtimePath, root, sandboxDir, containerDir, conmonPath, pausePath stri
utils.StartReaper()
if err := os.MkdirAll(imageStore, 0755); err != nil {
if err := os.MkdirAll(config.ImageStore, 0755); err != nil {
return nil, err
}
if err := os.MkdirAll(sandboxDir, 0755); err != nil {
if err := os.MkdirAll(config.SandboxDir, 0755); err != nil {
return nil, err
}
r, err := oci.New(runtimePath, containerDir, conmonPath)
r, err := oci.New(config.Runtime, config.ContainerDir, config.Conmon)
if err != nil {
return nil, err
}
@ -236,11 +233,9 @@ func New(runtimePath, root, sandboxDir, containerDir, conmonPath, pausePath stri
return nil, err
}
s := &Server{
root: root,
runtime: r,
netPlugin: netPlugin,
sandboxDir: sandboxDir,
pausePath: pausePath,
runtime: r,
netPlugin: netPlugin,
config: *config,
state: &serverState{
sandboxes: sandboxes,
containers: containers,

View file

@ -23,6 +23,7 @@ RUNC_BINARY=${RUNC_PATH:-/usr/local/sbin/runc}
TESTDIR=$(mktemp -d)
OCID_SOCKET="$TESTDIR/ocid.sock"
OCID_CONFIG="$TESTDIR/ocid.conf"
cp "$CONMON_BINARY" "$TESTDIR/conmon"
@ -36,7 +37,7 @@ function ocid() {
# Run ocic using the binary specified by $OCID_BINARY.
function ocic() {
"$OCIC_BINARY" --socket "$OCID_SOCKET" "$@"
"$OCIC_BINARY" --connect "$OCID_SOCKET" "$@"
}
# Communicate with Docker on the host machine.
@ -72,7 +73,8 @@ function wait_until_reachable() {
# Start ocid.
function start_ocid() {
"$OCID_BINARY" --conmon "$CONMON_BINARY" --pause "$PAUSE_BINARY" --debug --socket "$TESTDIR/ocid.sock" --runtime "$RUNC_BINARY" --root "$TESTDIR/ocid" --sandboxdir "$TESTDIR/sandboxes" --containerdir "$TESTDIR/ocid/containers" & OCID_PID=$!
"$OCID_BINARY" --conmon "$CONMON_BINARY" --pause "$PAUSE_BINARY" --listen "$OCID_SOCKET" --runtime "$RUNC_BINARY" --root "$TESTDIR/ocid" --sandboxdir "$TESTDIR/sandboxes" --containerdir "$TESTDIR/ocid/containers" config >$OCID_CONFIG
"$OCID_BINARY" --debug --config "$OCID_CONFIG" & OCID_PID=$!
wait_until_reachable
}
@ -106,6 +108,7 @@ function cleanup_pods() {
function stop_ocid() {
if [ "$OCID_PID" != "" ]; then
kill "$OCID_PID" >/dev/null 2>&1
rm -f "$OCID_CONFIG"
fi
}

View file

@ -0,0 +1,5 @@
TAGS
tags
.*.swp
tomlcheck/tomlcheck
toml.test

View file

@ -0,0 +1,11 @@
language: go
go:
- 1.1
- 1.2
- tip
install:
- go install ./...
- go get github.com/BurntSushi/toml-test
script:
- export PATH="$PATH:$HOME/gopath/bin"
- make test

View file

@ -0,0 +1,2 @@
Compatible with TOML version
[v0.2.0](https://github.com/mojombo/toml/blob/master/versions/toml-v0.2.0.md)

View file

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View file

@ -0,0 +1,18 @@
install:
go install ./...
test: install
go test -v
toml-test toml-test-decoder
toml-test -encoder toml-test-encoder
fmt:
gofmt -w *.go */*.go
colcheck *.go */*.go
tags:
find ./ -name '*.go' -print0 | xargs -0 gotags > TAGS
push:
git push origin master
git push github master

View file

@ -0,0 +1,219 @@
## TOML parser and encoder for Go with reflection
TOML stands for Tom's Obvious, Minimal Language. This Go package provides a
reflection interface similar to Go's standard library `json` and `xml`
packages. This package also supports the `encoding.TextUnmarshaler` and
`encoding.TextMarshaler` interfaces so that you can define custom data
representations. (There is an example of this below.)
Spec: https://github.com/mojombo/toml
Compatible with TOML version
[v0.2.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md)
Documentation: http://godoc.org/github.com/BurntSushi/toml
Installation:
```bash
go get github.com/BurntSushi/toml
```
Try the toml validator:
```bash
go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml
```
[![Build status](https://api.travis-ci.org/BurntSushi/toml.png)](https://travis-ci.org/BurntSushi/toml)
### Testing
This package passes all tests in
[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder
and the encoder.
### Examples
This package works similarly to how the Go standard library handles `XML`
and `JSON`. Namely, data is loaded into Go values via reflection.
For the simplest example, consider some TOML file as just a list of keys
and values:
```toml
Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z
```
Which could be defined in Go as:
```go
type Config struct {
Age int
Cats []string
Pi float64
Perfection []int
DOB time.Time // requires `import time`
}
```
And then decoded with:
```go
var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
// handle error
}
```
You can also use struct tags if your struct field name doesn't map to a TOML
key value directly:
```toml
some_key_NAME = "wat"
```
```go
type TOML struct {
ObscureKey string `toml:"some_key_NAME"`
}
```
### Using the `encoding.TextUnmarshaler` interface
Here's an example that automatically parses duration strings into
`time.Duration` values:
```toml
[[song]]
name = "Thunder Road"
duration = "4m49s"
[[song]]
name = "Stairway to Heaven"
duration = "8m03s"
```
Which can be decoded with:
```go
type song struct {
Name string
Duration duration
}
type songs struct {
Song []song
}
var favorites songs
if _, err := toml.Decode(blob, &favorites); err != nil {
log.Fatal(err)
}
for _, s := range favorites.Song {
fmt.Printf("%s (%s)\n", s.Name, s.Duration)
}
```
And you'll also need a `duration` type that satisfies the
`encoding.TextUnmarshaler` interface:
```go
type duration struct {
time.Duration
}
func (d *duration) UnmarshalText(text []byte) error {
var err error
d.Duration, err = time.ParseDuration(string(text))
return err
}
```
### More complex usage
Here's an example of how to load the example from the official spec page:
```toml
# This is a TOML document. Boom.
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]
```
And the corresponding Go types are:
```go
type tomlConfig struct {
Title string
Owner ownerInfo
DB database `toml:"database"`
Servers map[string]server
Clients clients
}
type ownerInfo struct {
Name string
Org string `toml:"organization"`
Bio string
DOB time.Time
}
type database struct {
Server string
Ports []int
ConnMax int `toml:"connection_max"`
Enabled bool
}
type server struct {
IP string
DC string
}
type clients struct {
Data [][]interface{}
Hosts []string
}
```
Note that a case insensitive match will be tried if an exact match can't be
found.
A working example of the above can be found in `_examples/example.{go,toml}`.

View file

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View file

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View file

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View file

@ -0,0 +1,505 @@
package toml
import (
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"time"
)
var e = fmt.Errorf
// Unmarshaler is the interface implemented by objects that can unmarshal a
// TOML description of themselves.
type Unmarshaler interface {
UnmarshalTOML(interface{}) error
}
// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
func Unmarshal(p []byte, v interface{}) error {
_, err := Decode(string(p), v)
return err
}
// Primitive is a TOML value that hasn't been decoded into a Go value.
// When using the various `Decode*` functions, the type `Primitive` may
// be given to any value, and its decoding will be delayed.
//
// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
//
// The underlying representation of a `Primitive` value is subject to change.
// Do not rely on it.
//
// N.B. Primitive values are still parsed, so using them will only avoid
// the overhead of reflection. They can be useful when you don't know the
// exact type of TOML data until run time.
type Primitive struct {
undecoded interface{}
context Key
}
// DEPRECATED!
//
// Use MetaData.PrimitiveDecode instead.
func PrimitiveDecode(primValue Primitive, v interface{}) error {
md := MetaData{decoded: make(map[string]bool)}
return md.unify(primValue.undecoded, rvalue(v))
}
// PrimitiveDecode is just like the other `Decode*` functions, except it
// decodes a TOML value that has already been parsed. Valid primitive values
// can *only* be obtained from values filled by the decoder functions,
// including this method. (i.e., `v` may contain more `Primitive`
// values.)
//
// Meta data for primitive values is included in the meta data returned by
// the `Decode*` functions with one exception: keys returned by the Undecoded
// method will only reflect keys that were decoded. Namely, any keys hidden
// behind a Primitive will be considered undecoded. Executing this method will
// update the undecoded keys in the meta data. (See the example.)
func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
md.context = primValue.context
defer func() { md.context = nil }()
return md.unify(primValue.undecoded, rvalue(v))
}
// Decode will decode the contents of `data` in TOML format into a pointer
// `v`.
//
// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
// used interchangeably.)
//
// TOML arrays of tables correspond to either a slice of structs or a slice
// of maps.
//
// TOML datetimes correspond to Go `time.Time` values.
//
// All other TOML types (float, string, int, bool and array) correspond
// to the obvious Go types.
//
// An exception to the above rules is if a type implements the
// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
// (floats, strings, integers, booleans and datetimes) will be converted to
// a byte string and given to the value's UnmarshalText method. See the
// Unmarshaler example for a demonstration with time duration strings.
//
// Key mapping
//
// TOML keys can map to either keys in a Go map or field names in a Go
// struct. The special `toml` struct tag may be used to map TOML keys to
// struct fields that don't match the key name exactly. (See the example.)
// A case insensitive match to struct names will be tried if an exact match
// can't be found.
//
// The mapping between TOML values and Go values is loose. That is, there
// may exist TOML values that cannot be placed into your representation, and
// there may be parts of your representation that do not correspond to
// TOML values. This loose mapping can be made stricter by using the IsDefined
// and/or Undecoded methods on the MetaData returned.
//
// This decoder will not handle cyclic types. If a cyclic type is passed,
// `Decode` will not terminate.
func Decode(data string, v interface{}) (MetaData, error) {
p, err := parse(data)
if err != nil {
return MetaData{}, err
}
md := MetaData{
p.mapping, p.types, p.ordered,
make(map[string]bool, len(p.ordered)), nil,
}
return md, md.unify(p.mapping, rvalue(v))
}
// DecodeFile is just like Decode, except it will automatically read the
// contents of the file at `fpath` and decode it for you.
func DecodeFile(fpath string, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadFile(fpath)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// DecodeReader is just like Decode, except it will consume all bytes
// from the reader and decode it for you.
func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadAll(r)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// unify performs a sort of type unification based on the structure of `rv`,
// which is the client representation.
//
// Any type mismatch produces an error. Finding a type that we don't know
// how to handle produces an unsupported type error.
func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
// Special case. Look for a `Primitive` value.
if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
// Save the undecoded data and the key context into the primitive
// value.
context := make(Key, len(md.context))
copy(context, md.context)
rv.Set(reflect.ValueOf(Primitive{
undecoded: data,
context: context,
}))
return nil
}
// Special case. Unmarshaler Interface support.
if rv.CanAddr() {
if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
return v.UnmarshalTOML(data)
}
}
// Special case. Handle time.Time values specifically.
// TODO: Remove this code when we decide to drop support for Go 1.1.
// This isn't necessary in Go 1.2 because time.Time satisfies the encoding
// interfaces.
if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
return md.unifyDatetime(data, rv)
}
// Special case. Look for a value satisfying the TextUnmarshaler interface.
if v, ok := rv.Interface().(TextUnmarshaler); ok {
return md.unifyText(data, v)
}
// BUG(burntsushi)
// The behavior here is incorrect whenever a Go type satisfies the
// encoding.TextUnmarshaler interface but also corresponds to a TOML
// hash or array. In particular, the unmarshaler should only be applied
// to primitive TOML values. But at this point, it will be applied to
// all kinds of values and produce an incorrect error whenever those values
// are hashes or arrays (including arrays of tables).
k := rv.Kind()
// laziness
if k >= reflect.Int && k <= reflect.Uint64 {
return md.unifyInt(data, rv)
}
switch k {
case reflect.Ptr:
elem := reflect.New(rv.Type().Elem())
err := md.unify(data, reflect.Indirect(elem))
if err != nil {
return err
}
rv.Set(elem)
return nil
case reflect.Struct:
return md.unifyStruct(data, rv)
case reflect.Map:
return md.unifyMap(data, rv)
case reflect.Array:
return md.unifyArray(data, rv)
case reflect.Slice:
return md.unifySlice(data, rv)
case reflect.String:
return md.unifyString(data, rv)
case reflect.Bool:
return md.unifyBool(data, rv)
case reflect.Interface:
// we only support empty interfaces.
if rv.NumMethod() > 0 {
return e("Unsupported type '%s'.", rv.Kind())
}
return md.unifyAnything(data, rv)
case reflect.Float32:
fallthrough
case reflect.Float64:
return md.unifyFloat64(data, rv)
}
return e("Unsupported type '%s'.", rv.Kind())
}
func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if mapping == nil {
return nil
}
return mismatch(rv, "map", mapping)
}
for key, datum := range tmap {
var f *field
fields := cachedTypeFields(rv.Type())
for i := range fields {
ff := &fields[i]
if ff.name == key {
f = ff
break
}
if f == nil && strings.EqualFold(ff.name, key) {
f = ff
}
}
if f != nil {
subv := rv
for _, i := range f.index {
subv = indirect(subv.Field(i))
}
if isUnifiable(subv) {
md.decoded[md.context.add(key).String()] = true
md.context = append(md.context, key)
if err := md.unify(datum, subv); err != nil {
return e("Type mismatch for '%s.%s': %s",
rv.Type().String(), f.name, err)
}
md.context = md.context[0 : len(md.context)-1]
} else if f.name != "" {
// Bad user! No soup for you!
return e("Field '%s.%s' is unexported, and therefore cannot "+
"be loaded with reflection.", rv.Type().String(), f.name)
}
}
}
return nil
}
func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if tmap == nil {
return nil
}
return badtype("map", mapping)
}
if rv.IsNil() {
rv.Set(reflect.MakeMap(rv.Type()))
}
for k, v := range tmap {
md.decoded[md.context.add(k).String()] = true
md.context = append(md.context, k)
rvkey := indirect(reflect.New(rv.Type().Key()))
rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
if err := md.unify(v, rvval); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
rvkey.SetString(k)
rv.SetMapIndex(rvkey, rvval)
}
return nil
}
func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
sliceLen := datav.Len()
if sliceLen != rv.Len() {
return e("expected array length %d; got TOML array of length %d",
rv.Len(), sliceLen)
}
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
n := datav.Len()
if rv.IsNil() || rv.Cap() < n {
rv.Set(reflect.MakeSlice(rv.Type(), n, n))
}
rv.SetLen(n)
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
sliceLen := data.Len()
for i := 0; i < sliceLen; i++ {
v := data.Index(i).Interface()
sliceval := indirect(rv.Index(i))
if err := md.unify(v, sliceval); err != nil {
return err
}
}
return nil
}
func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
if _, ok := data.(time.Time); ok {
rv.Set(reflect.ValueOf(data))
return nil
}
return badtype("time.Time", data)
}
func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
if s, ok := data.(string); ok {
rv.SetString(s)
return nil
}
return badtype("string", data)
}
func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
if num, ok := data.(float64); ok {
switch rv.Kind() {
case reflect.Float32:
fallthrough
case reflect.Float64:
rv.SetFloat(num)
default:
panic("bug")
}
return nil
}
return badtype("float", data)
}
func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
if num, ok := data.(int64); ok {
if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
switch rv.Kind() {
case reflect.Int, reflect.Int64:
// No bounds checking necessary.
case reflect.Int8:
if num < math.MinInt8 || num > math.MaxInt8 {
return e("Value '%d' is out of range for int8.", num)
}
case reflect.Int16:
if num < math.MinInt16 || num > math.MaxInt16 {
return e("Value '%d' is out of range for int16.", num)
}
case reflect.Int32:
if num < math.MinInt32 || num > math.MaxInt32 {
return e("Value '%d' is out of range for int32.", num)
}
}
rv.SetInt(num)
} else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
unum := uint64(num)
switch rv.Kind() {
case reflect.Uint, reflect.Uint64:
// No bounds checking necessary.
case reflect.Uint8:
if num < 0 || unum > math.MaxUint8 {
return e("Value '%d' is out of range for uint8.", num)
}
case reflect.Uint16:
if num < 0 || unum > math.MaxUint16 {
return e("Value '%d' is out of range for uint16.", num)
}
case reflect.Uint32:
if num < 0 || unum > math.MaxUint32 {
return e("Value '%d' is out of range for uint32.", num)
}
}
rv.SetUint(unum)
} else {
panic("unreachable")
}
return nil
}
return badtype("integer", data)
}
func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
if b, ok := data.(bool); ok {
rv.SetBool(b)
return nil
}
return badtype("boolean", data)
}
func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
rv.Set(reflect.ValueOf(data))
return nil
}
func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
var s string
switch sdata := data.(type) {
case TextMarshaler:
text, err := sdata.MarshalText()
if err != nil {
return err
}
s = string(text)
case fmt.Stringer:
s = sdata.String()
case string:
s = sdata
case bool:
s = fmt.Sprintf("%v", sdata)
case int64:
s = fmt.Sprintf("%d", sdata)
case float64:
s = fmt.Sprintf("%f", sdata)
default:
return badtype("primitive (string-like)", data)
}
if err := v.UnmarshalText([]byte(s)); err != nil {
return err
}
return nil
}
// rvalue returns a reflect.Value of `v`. All pointers are resolved.
func rvalue(v interface{}) reflect.Value {
return indirect(reflect.ValueOf(v))
}
// indirect returns the value pointed to by a pointer.
// Pointers are followed until the value is not a pointer.
// New values are allocated for each nil pointer.
//
// An exception to this rule is if the value satisfies an interface of
// interest to us (like encoding.TextUnmarshaler).
func indirect(v reflect.Value) reflect.Value {
if v.Kind() != reflect.Ptr {
if v.CanAddr() {
pv := v.Addr()
if _, ok := pv.Interface().(TextUnmarshaler); ok {
return pv
}
}
return v
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
return indirect(reflect.Indirect(v))
}
func isUnifiable(rv reflect.Value) bool {
if rv.CanSet() {
return true
}
if _, ok := rv.Interface().(TextUnmarshaler); ok {
return true
}
return false
}
func badtype(expected string, data interface{}) error {
return e("Expected %s but found '%T'.", expected, data)
}
func mismatch(user reflect.Value, expected string, data interface{}) error {
return e("Type mismatch for %s. Expected %s but found '%T'.",
user.Type().String(), expected, data)
}

View file

@ -0,0 +1,122 @@
package toml
import "strings"
// MetaData allows access to meta information about TOML data that may not
// be inferrable via reflection. In particular, whether a key has been defined
// and the TOML type of a key.
type MetaData struct {
mapping map[string]interface{}
types map[string]tomlType
keys []Key
decoded map[string]bool
context Key // Used only during decoding.
}
// IsDefined returns true if the key given exists in the TOML data. The key
// should be specified hierarchially. e.g.,
//
// // access the TOML key 'a.b.c'
// IsDefined("a", "b", "c")
//
// IsDefined will return false if an empty key given. Keys are case sensitive.
func (md *MetaData) IsDefined(key ...string) bool {
if len(key) == 0 {
return false
}
var hash map[string]interface{}
var ok bool
var hashOrVal interface{} = md.mapping
for _, k := range key {
if hash, ok = hashOrVal.(map[string]interface{}); !ok {
return false
}
if hashOrVal, ok = hash[k]; !ok {
return false
}
}
return true
}
// Type returns a string representation of the type of the key specified.
//
// Type will return the empty string if given an empty key or a key that
// does not exist. Keys are case sensitive.
func (md *MetaData) Type(key ...string) string {
fullkey := strings.Join(key, ".")
if typ, ok := md.types[fullkey]; ok {
return typ.typeString()
}
return ""
}
// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
// to get values of this type.
type Key []string
func (k Key) String() string {
return strings.Join(k, ".")
}
func (k Key) maybeQuotedAll() string {
var ss []string
for i := range k {
ss = append(ss, k.maybeQuoted(i))
}
return strings.Join(ss, ".")
}
func (k Key) maybeQuoted(i int) string {
quote := false
for _, c := range k[i] {
if !isBareKeyChar(c) {
quote = true
break
}
}
if quote {
return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
} else {
return k[i]
}
}
func (k Key) add(piece string) Key {
newKey := make(Key, len(k)+1)
copy(newKey, k)
newKey[len(k)] = piece
return newKey
}
// Keys returns a slice of every key in the TOML data, including key groups.
// Each key is itself a slice, where the first element is the top of the
// hierarchy and the last is the most specific.
//
// The list will have the same order as the keys appeared in the TOML data.
//
// All keys returned are non-empty.
func (md *MetaData) Keys() []Key {
return md.keys
}
// Undecoded returns all keys that have not been decoded in the order in which
// they appear in the original TOML document.
//
// This includes keys that haven't been decoded because of a Primitive value.
// Once the Primitive value is decoded, the keys will be considered decoded.
//
// Also note that decoding into an empty interface will result in no decoding,
// and so no keys will be considered decoded.
//
// In this sense, the Undecoded keys correspond to keys in the TOML document
// that do not have a concrete type in your representation.
func (md *MetaData) Undecoded() []Key {
undecoded := make([]Key, 0, len(md.keys))
for _, key := range md.keys {
if !md.decoded[key.String()] {
undecoded = append(undecoded, key)
}
}
return undecoded
}

View file

@ -0,0 +1,27 @@
/*
Package toml provides facilities for decoding and encoding TOML configuration
files via reflection. There is also support for delaying decoding with
the Primitive type, and querying the set of keys in a TOML document with the
MetaData type.
The specification implemented: https://github.com/mojombo/toml
The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
whether a file is a valid TOML document. It can also be used to print the
type of each key in a TOML document.
Testing
There are two important types of tests used for this package. The first is
contained inside '*_test.go' files and uses the standard Go unit testing
framework. These tests are primarily devoted to holistically testing the
decoder and encoder.
The second type of testing is used to verify the implementation's adherence
to the TOML specification. These tests have been factored into their own
project: https://github.com/BurntSushi/toml-test
The reason the tests are in a separate project is so that they can be used by
any implementation of TOML. Namely, it is language agnostic.
*/
package toml

View file

@ -0,0 +1,549 @@
package toml
import (
"bufio"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"strings"
"time"
)
type tomlEncodeError struct{ error }
var (
errArrayMixedElementTypes = errors.New(
"can't encode array with mixed element types")
errArrayNilElement = errors.New(
"can't encode array with nil element")
errNonString = errors.New(
"can't encode a map with non-string key type")
errAnonNonStruct = errors.New(
"can't encode an anonymous field that is not a struct")
errArrayNoTable = errors.New(
"TOML array element can't contain a table")
errNoKey = errors.New(
"top-level values must be a Go map or struct")
errAnything = errors.New("") // used in testing
)
var quotedReplacer = strings.NewReplacer(
"\t", "\\t",
"\n", "\\n",
"\r", "\\r",
"\"", "\\\"",
"\\", "\\\\",
)
// Encoder controls the encoding of Go values to a TOML document to some
// io.Writer.
//
// The indentation level can be controlled with the Indent field.
type Encoder struct {
// A single indentation level. By default it is two spaces.
Indent string
// hasWritten is whether we have written any output to w yet.
hasWritten bool
w *bufio.Writer
}
// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
// given. By default, a single indentation level is 2 spaces.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
w: bufio.NewWriter(w),
Indent: " ",
}
}
// Encode writes a TOML representation of the Go value to the underlying
// io.Writer. If the value given cannot be encoded to a valid TOML document,
// then an error is returned.
//
// The mapping between Go values and TOML values should be precisely the same
// as for the Decode* functions. Similarly, the TextMarshaler interface is
// supported by encoding the resulting bytes as strings. (If you want to write
// arbitrary binary data then you will need to use something like base64 since
// TOML does not have any binary types.)
//
// When encoding TOML hashes (i.e., Go maps or structs), keys without any
// sub-hashes are encoded first.
//
// If a Go map is encoded, then its keys are sorted alphabetically for
// deterministic output. More control over this behavior may be provided if
// there is demand for it.
//
// Encoding Go values without a corresponding TOML representation---like map
// types with non-string keys---will cause an error to be returned. Similarly
// for mixed arrays/slices, arrays/slices with nil elements, embedded
// non-struct types and nested slices containing maps or structs.
// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
// and so is []map[string][]string.)
func (enc *Encoder) Encode(v interface{}) error {
rv := eindirect(reflect.ValueOf(v))
if err := enc.safeEncode(Key([]string{}), rv); err != nil {
return err
}
return enc.w.Flush()
}
func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
defer func() {
if r := recover(); r != nil {
if terr, ok := r.(tomlEncodeError); ok {
err = terr.error
return
}
panic(r)
}
}()
enc.encode(key, rv)
return nil
}
func (enc *Encoder) encode(key Key, rv reflect.Value) {
// Special case. Time needs to be in ISO8601 format.
// Special case. If we can marshal the type to text, then we used that.
// Basically, this prevents the encoder for handling these types as
// generic structs (or whatever the underlying type of a TextMarshaler is).
switch rv.Interface().(type) {
case time.Time, TextMarshaler:
enc.keyEqElement(key, rv)
return
}
k := rv.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64,
reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
enc.keyEqElement(key, rv)
case reflect.Array, reflect.Slice:
if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
enc.eArrayOfTables(key, rv)
} else {
enc.keyEqElement(key, rv)
}
case reflect.Interface:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Map:
if rv.IsNil() {
return
}
enc.eTable(key, rv)
case reflect.Ptr:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Struct:
enc.eTable(key, rv)
default:
panic(e("Unsupported type for key '%s': %s", key, k))
}
}
// eElement encodes any value that can be an array element (primitives and
// arrays).
func (enc *Encoder) eElement(rv reflect.Value) {
switch v := rv.Interface().(type) {
case time.Time:
// Special case time.Time as a primitive. Has to come before
// TextMarshaler below because time.Time implements
// encoding.TextMarshaler, but we need to always use UTC.
enc.wf(v.In(time.FixedZone("UTC", 0)).Format("2006-01-02T15:04:05Z"))
return
case TextMarshaler:
// Special case. Use text marshaler if it's available for this value.
if s, err := v.MarshalText(); err != nil {
encPanic(err)
} else {
enc.writeQuoted(string(s))
}
return
}
switch rv.Kind() {
case reflect.Bool:
enc.wf(strconv.FormatBool(rv.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64:
enc.wf(strconv.FormatInt(rv.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64:
enc.wf(strconv.FormatUint(rv.Uint(), 10))
case reflect.Float32:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
case reflect.Float64:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
case reflect.Array, reflect.Slice:
enc.eArrayOrSliceElement(rv)
case reflect.Interface:
enc.eElement(rv.Elem())
case reflect.String:
enc.writeQuoted(rv.String())
default:
panic(e("Unexpected primitive type: %s", rv.Kind()))
}
}
// By the TOML spec, all floats must have a decimal with at least one
// number on either side.
func floatAddDecimal(fstr string) string {
if !strings.Contains(fstr, ".") {
return fstr + ".0"
}
return fstr
}
func (enc *Encoder) writeQuoted(s string) {
enc.wf("\"%s\"", quotedReplacer.Replace(s))
}
func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
length := rv.Len()
enc.wf("[")
for i := 0; i < length; i++ {
elem := rv.Index(i)
enc.eElement(elem)
if i != length-1 {
enc.wf(", ")
}
}
enc.wf("]")
}
func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
for i := 0; i < rv.Len(); i++ {
trv := rv.Index(i)
if isNil(trv) {
continue
}
panicIfInvalidKey(key)
enc.newline()
enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
enc.eMapOrStruct(key, trv)
}
}
func (enc *Encoder) eTable(key Key, rv reflect.Value) {
panicIfInvalidKey(key)
if len(key) == 1 {
// Output an extra new line between top-level tables.
// (The newline isn't written if nothing else has been written though.)
enc.newline()
}
if len(key) > 0 {
enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
}
enc.eMapOrStruct(key, rv)
}
func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
switch rv := eindirect(rv); rv.Kind() {
case reflect.Map:
enc.eMap(key, rv)
case reflect.Struct:
enc.eStruct(key, rv)
default:
panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
}
}
func (enc *Encoder) eMap(key Key, rv reflect.Value) {
rt := rv.Type()
if rt.Key().Kind() != reflect.String {
encPanic(errNonString)
}
// Sort keys so that we have deterministic output. And write keys directly
// underneath this key first, before writing sub-structs or sub-maps.
var mapKeysDirect, mapKeysSub []string
for _, mapKey := range rv.MapKeys() {
k := mapKey.String()
if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
mapKeysSub = append(mapKeysSub, k)
} else {
mapKeysDirect = append(mapKeysDirect, k)
}
}
var writeMapKeys = func(mapKeys []string) {
sort.Strings(mapKeys)
for _, mapKey := range mapKeys {
mrv := rv.MapIndex(reflect.ValueOf(mapKey))
if isNil(mrv) {
// Don't write anything for nil fields.
continue
}
enc.encode(key.add(mapKey), mrv)
}
}
writeMapKeys(mapKeysDirect)
writeMapKeys(mapKeysSub)
}
func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
// Write keys for fields directly under this key first, because if we write
// a field that creates a new table, then all keys under it will be in that
// table (not the one we're writing here).
rt := rv.Type()
var fieldsDirect, fieldsSub [][]int
var addFields func(rt reflect.Type, rv reflect.Value, start []int)
addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
for i := 0; i < rt.NumField(); i++ {
f := rt.Field(i)
// skip unexported fields
if f.PkgPath != "" && !f.Anonymous {
continue
}
frv := rv.Field(i)
if f.Anonymous {
t := f.Type
switch t.Kind() {
case reflect.Struct:
addFields(t, frv, f.Index)
continue
case reflect.Ptr:
if t.Elem().Kind() == reflect.Struct {
if !frv.IsNil() {
addFields(t.Elem(), frv.Elem(), f.Index)
}
continue
}
// Fall through to the normal field encoding logic below
// for non-struct anonymous fields.
}
}
if typeIsHash(tomlTypeOfGo(frv)) {
fieldsSub = append(fieldsSub, append(start, f.Index...))
} else {
fieldsDirect = append(fieldsDirect, append(start, f.Index...))
}
}
}
addFields(rt, rv, nil)
var writeFields = func(fields [][]int) {
for _, fieldIndex := range fields {
sft := rt.FieldByIndex(fieldIndex)
sf := rv.FieldByIndex(fieldIndex)
if isNil(sf) {
// Don't write anything for nil fields.
continue
}
tag := sft.Tag.Get("toml")
if tag == "-" {
continue
}
keyName, opts := getOptions(tag)
if keyName == "" {
keyName = sft.Name
}
if _, ok := opts["omitempty"]; ok && isEmpty(sf) {
continue
} else if _, ok := opts["omitzero"]; ok && isZero(sf) {
continue
}
enc.encode(key.add(keyName), sf)
}
}
writeFields(fieldsDirect)
writeFields(fieldsSub)
}
// tomlTypeName returns the TOML type name of the Go value's type. It is
// used to determine whether the types of array elements are mixed (which is
// forbidden). If the Go value is nil, then it is illegal for it to be an array
// element, and valueIsNil is returned as true.
// Returns the TOML type of a Go value. The type may be `nil`, which means
// no concrete TOML type could be found.
func tomlTypeOfGo(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() {
return nil
}
switch rv.Kind() {
case reflect.Bool:
return tomlBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64:
return tomlInteger
case reflect.Float32, reflect.Float64:
return tomlFloat
case reflect.Array, reflect.Slice:
if typeEqual(tomlHash, tomlArrayType(rv)) {
return tomlArrayHash
} else {
return tomlArray
}
case reflect.Ptr, reflect.Interface:
return tomlTypeOfGo(rv.Elem())
case reflect.String:
return tomlString
case reflect.Map:
return tomlHash
case reflect.Struct:
switch rv.Interface().(type) {
case time.Time:
return tomlDatetime
case TextMarshaler:
return tomlString
default:
return tomlHash
}
default:
panic("unexpected reflect.Kind: " + rv.Kind().String())
}
}
// tomlArrayType returns the element type of a TOML array. The type returned
// may be nil if it cannot be determined (e.g., a nil slice or a zero length
// slize). This function may also panic if it finds a type that cannot be
// expressed in TOML (such as nil elements, heterogeneous arrays or directly
// nested arrays of tables).
func tomlArrayType(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
return nil
}
firstType := tomlTypeOfGo(rv.Index(0))
if firstType == nil {
encPanic(errArrayNilElement)
}
rvlen := rv.Len()
for i := 1; i < rvlen; i++ {
elem := rv.Index(i)
switch elemType := tomlTypeOfGo(elem); {
case elemType == nil:
encPanic(errArrayNilElement)
case !typeEqual(firstType, elemType):
encPanic(errArrayMixedElementTypes)
}
}
// If we have a nested array, then we must make sure that the nested
// array contains ONLY primitives.
// This checks arbitrarily nested arrays.
if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
nest := tomlArrayType(eindirect(rv.Index(0)))
if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
encPanic(errArrayNoTable)
}
}
return firstType
}
func getOptions(keyName string) (string, map[string]struct{}) {
opts := make(map[string]struct{})
ss := strings.Split(keyName, ",")
name := ss[0]
if len(ss) > 1 {
for _, opt := range ss {
opts[opt] = struct{}{}
}
}
return name, opts
}
func isZero(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return rv.Uint() == 0
case reflect.Float32, reflect.Float64:
return rv.Float() == 0.0
}
return false
}
func isEmpty(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
return rv.Len() == 0
case reflect.Bool:
return !rv.Bool()
}
return false
}
func (enc *Encoder) newline() {
if enc.hasWritten {
enc.wf("\n")
}
}
func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
panicIfInvalidKey(key)
enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
enc.eElement(val)
enc.newline()
}
func (enc *Encoder) wf(format string, v ...interface{}) {
if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
encPanic(err)
}
enc.hasWritten = true
}
func (enc *Encoder) indentStr(key Key) string {
return strings.Repeat(enc.Indent, len(key)-1)
}
func encPanic(err error) {
panic(tomlEncodeError{err})
}
func eindirect(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr, reflect.Interface:
return eindirect(v.Elem())
default:
return v
}
}
func isNil(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return rv.IsNil()
default:
return false
}
}
func panicIfInvalidKey(key Key) {
for _, k := range key {
if len(k) == 0 {
encPanic(e("Key '%s' is not a valid table name. Key names "+
"cannot be empty.", key.maybeQuotedAll()))
}
}
}
func isValidKeyName(s string) bool {
return len(s) != 0
}

View file

@ -0,0 +1,19 @@
// +build go1.2
package toml
// In order to support Go 1.1, we define our own TextMarshaler and
// TextUnmarshaler types. For Go 1.2+, we just alias them with the
// standard library interfaces.
import (
"encoding"
)
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler encoding.TextMarshaler
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler encoding.TextUnmarshaler

View file

@ -0,0 +1,18 @@
// +build !go1.2
package toml
// These interfaces were introduced in Go 1.2, so we add them manually when
// compiling for Go 1.1.
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler interface {
MarshalText() (text []byte, err error)
}
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

View file

@ -0,0 +1,871 @@
package toml
import (
"fmt"
"strings"
"unicode/utf8"
)
type itemType int
const (
itemError itemType = iota
itemNIL // used in the parser to indicate no type
itemEOF
itemText
itemString
itemRawString
itemMultilineString
itemRawMultilineString
itemBool
itemInteger
itemFloat
itemDatetime
itemArray // the start of an array
itemArrayEnd
itemTableStart
itemTableEnd
itemArrayTableStart
itemArrayTableEnd
itemKeyStart
itemCommentStart
)
const (
eof = 0
tableStart = '['
tableEnd = ']'
arrayTableStart = '['
arrayTableEnd = ']'
tableSep = '.'
keySep = '='
arrayStart = '['
arrayEnd = ']'
arrayValTerm = ','
commentStart = '#'
stringStart = '"'
stringEnd = '"'
rawStringStart = '\''
rawStringEnd = '\''
)
type stateFn func(lx *lexer) stateFn
type lexer struct {
input string
start int
pos int
width int
line int
state stateFn
items chan item
// A stack of state functions used to maintain context.
// The idea is to reuse parts of the state machine in various places.
// For example, values can appear at the top level or within arbitrarily
// nested arrays. The last state on the stack is used after a value has
// been lexed. Similarly for comments.
stack []stateFn
}
type item struct {
typ itemType
val string
line int
}
func (lx *lexer) nextItem() item {
for {
select {
case item := <-lx.items:
return item
default:
lx.state = lx.state(lx)
}
}
}
func lex(input string) *lexer {
lx := &lexer{
input: input + "\n",
state: lexTop,
line: 1,
items: make(chan item, 10),
stack: make([]stateFn, 0, 10),
}
return lx
}
func (lx *lexer) push(state stateFn) {
lx.stack = append(lx.stack, state)
}
func (lx *lexer) pop() stateFn {
if len(lx.stack) == 0 {
return lx.errorf("BUG in lexer: no states to pop.")
}
last := lx.stack[len(lx.stack)-1]
lx.stack = lx.stack[0 : len(lx.stack)-1]
return last
}
func (lx *lexer) current() string {
return lx.input[lx.start:lx.pos]
}
func (lx *lexer) emit(typ itemType) {
lx.items <- item{typ, lx.current(), lx.line}
lx.start = lx.pos
}
func (lx *lexer) emitTrim(typ itemType) {
lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
lx.start = lx.pos
}
func (lx *lexer) next() (r rune) {
if lx.pos >= len(lx.input) {
lx.width = 0
return eof
}
if lx.input[lx.pos] == '\n' {
lx.line++
}
r, lx.width = utf8.DecodeRuneInString(lx.input[lx.pos:])
lx.pos += lx.width
return r
}
// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
lx.start = lx.pos
}
// backup steps back one rune. Can be called only once per call of next.
func (lx *lexer) backup() {
lx.pos -= lx.width
if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
lx.line--
}
}
// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
if lx.next() == valid {
return true
}
lx.backup()
return false
}
// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
r := lx.next()
lx.backup()
return r
}
// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (new lines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
lx.items <- item{
itemError,
fmt.Sprintf(format, values...),
lx.line,
}
return nil
}
// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
r := lx.next()
if isWhitespace(r) || isNL(r) {
return lexSkip(lx, lexTop)
}
switch r {
case commentStart:
lx.push(lexTop)
return lexCommentStart
case tableStart:
return lexTableStart
case eof:
if lx.pos > lx.start {
return lx.errorf("Unexpected EOF.")
}
lx.emit(itemEOF)
return nil
}
// At this point, the only valid item can be a key, so we back up
// and let the key lexer do the rest.
lx.backup()
lx.push(lexTopEnd)
return lexKeyStart
}
// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a new line. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case r == commentStart:
// a comment will read to a new line for us.
lx.push(lexTop)
return lexCommentStart
case isWhitespace(r):
return lexTopEnd
case isNL(r):
lx.ignore()
return lexTop
case r == eof:
lx.ignore()
return lexTop
}
return lx.errorf("Expected a top-level item to end with a new line, "+
"comment or EOF, but got %q instead.", r)
}
// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
if lx.peek() == arrayTableStart {
lx.next()
lx.emit(itemArrayTableStart)
lx.push(lexArrayTableEnd)
} else {
lx.emit(itemTableStart)
lx.push(lexTableEnd)
}
return lexTableNameStart
}
func lexTableEnd(lx *lexer) stateFn {
lx.emit(itemTableEnd)
return lexTopEnd
}
func lexArrayTableEnd(lx *lexer) stateFn {
if r := lx.next(); r != arrayTableEnd {
return lx.errorf("Expected end of table array name delimiter %q, "+
"but got %q instead.", arrayTableEnd, r)
}
lx.emit(itemArrayTableEnd)
return lexTopEnd
}
func lexTableNameStart(lx *lexer) stateFn {
switch r := lx.peek(); {
case r == tableEnd || r == eof:
return lx.errorf("Unexpected end of table name. (Table names cannot " +
"be empty.)")
case r == tableSep:
return lx.errorf("Unexpected table separator. (Table names cannot " +
"be empty.)")
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.push(lexTableNameEnd)
return lexValue // reuse string lexing
default:
return lexBareTableName
}
}
// lexTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareTableName
case r == tableSep || r == tableEnd:
lx.backup()
lx.emitTrim(itemText)
return lexTableNameEnd
default:
return lx.errorf("Bare keys cannot contain %q.", r)
}
}
// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case isWhitespace(r):
return lexTableNameEnd
case r == tableSep:
lx.ignore()
return lexTableNameStart
case r == tableEnd:
return lx.pop()
default:
return lx.errorf("Expected '.' or ']' to end table name, but got %q "+
"instead.", r)
}
}
// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
r := lx.peek()
switch {
case r == keySep:
return lx.errorf("Unexpected key separator %q.", keySep)
case isWhitespace(r) || isNL(r):
lx.next()
return lexSkip(lx, lexKeyStart)
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.emit(itemKeyStart)
lx.push(lexKeyEnd)
return lexValue // reuse string lexing
default:
lx.ignore()
lx.emit(itemKeyStart)
return lexBareKey
}
}
// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareKey
case isWhitespace(r):
lx.emitTrim(itemText)
return lexKeyEnd
case r == keySep:
lx.backup()
lx.emitTrim(itemText)
return lexKeyEnd
default:
return lx.errorf("Bare keys cannot contain %q.", r)
}
}
// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case r == keySep:
return lexSkip(lx, lexValue)
case isWhitespace(r):
return lexSkip(lx, lexKeyEnd)
default:
return lx.errorf("Expected key separator %q, but got %q instead.",
keySep, r)
}
}
// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
// We allow whitespace to precede a value, but NOT new lines.
// In array syntax, the array states are responsible for ignoring new
// lines.
r := lx.next()
if isWhitespace(r) {
return lexSkip(lx, lexValue)
}
switch {
case r == arrayStart:
lx.ignore()
lx.emit(itemArray)
return lexArrayValue
case r == stringStart:
if lx.accept(stringStart) {
if lx.accept(stringStart) {
lx.ignore() // Ignore """
return lexMultilineString
}
lx.backup()
}
lx.ignore() // ignore the '"'
return lexString
case r == rawStringStart:
if lx.accept(rawStringStart) {
if lx.accept(rawStringStart) {
lx.ignore() // Ignore """
return lexMultilineRawString
}
lx.backup()
}
lx.ignore() // ignore the "'"
return lexRawString
case r == 't':
return lexTrue
case r == 'f':
return lexFalse
case r == '-':
return lexNumberStart
case isDigit(r):
lx.backup() // avoid an extra state and use the same as above
return lexNumberOrDateStart
case r == '.': // special error case, be kind to users
return lx.errorf("Floats must start with a digit, not '.'.")
}
return lx.errorf("Expected value but found %q instead.", r)
}
// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and new lines are ignored.
func lexArrayValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValue)
case r == commentStart:
lx.push(lexArrayValue)
return lexCommentStart
case r == arrayValTerm:
return lx.errorf("Unexpected array value terminator %q.",
arrayValTerm)
case r == arrayEnd:
return lexArrayEnd
}
lx.backup()
lx.push(lexArrayValueEnd)
return lexValue
}
// lexArrayValueEnd consumes the cruft between values of an array. Namely,
// it ignores whitespace and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValueEnd)
case r == commentStart:
lx.push(lexArrayValueEnd)
return lexCommentStart
case r == arrayValTerm:
lx.ignore()
return lexArrayValue // move on to the next value
case r == arrayEnd:
return lexArrayEnd
}
return lx.errorf("Expected an array value terminator %q or an array "+
"terminator %q, but got %q instead.", arrayValTerm, arrayEnd, r)
}
// lexArrayEnd finishes the lexing of an array. It assumes that a ']' has
// just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemArrayEnd)
return lx.pop()
}
// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
r := lx.next()
switch {
case isNL(r):
return lx.errorf("Strings cannot contain new lines.")
case r == '\\':
lx.push(lexString)
return lexStringEscape
case r == stringEnd:
lx.backup()
lx.emit(itemString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexString
}
// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == '\\':
return lexMultilineStringEscape
case r == stringEnd:
if lx.accept(stringEnd) {
if lx.accept(stringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineString
}
// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case isNL(r):
return lx.errorf("Strings cannot contain new lines.")
case r == rawStringEnd:
lx.backup()
lx.emit(itemRawString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexRawString
}
// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == rawStringEnd:
if lx.accept(rawStringEnd) {
if lx.accept(rawStringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemRawMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineRawString
}
// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
// Handle the special case first:
if isNL(lx.next()) {
return lexMultilineString
} else {
lx.backup()
lx.push(lexMultilineString)
return lexStringEscape(lx)
}
}
func lexStringEscape(lx *lexer) stateFn {
r := lx.next()
switch r {
case 'b':
fallthrough
case 't':
fallthrough
case 'n':
fallthrough
case 'f':
fallthrough
case 'r':
fallthrough
case '"':
fallthrough
case '\\':
return lx.pop()
case 'u':
return lexShortUnicodeEscape
case 'U':
return lexLongUnicodeEscape
}
return lx.errorf("Invalid escape character %q. Only the following "+
"escape characters are allowed: "+
"\\b, \\t, \\n, \\f, \\r, \\\", \\/, \\\\, "+
"\\uXXXX and \\UXXXXXXXX.", r)
}
func lexShortUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 4; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf("Expected four hexadecimal digits after '\\u', "+
"but got '%s' instead.", lx.current())
}
}
return lx.pop()
}
func lexLongUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 8; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf("Expected eight hexadecimal digits after '\\U', "+
"but got '%s' instead.", lx.current())
}
}
return lx.pop()
}
// lexNumberOrDateStart consumes either a (positive) integer, float or
// datetime. It assumes that NO negative sign has been consumed.
func lexNumberOrDateStart(lx *lexer) stateFn {
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("Floats must start with a digit, not '.'.")
} else {
return lx.errorf("Expected a digit but got %q.", r)
}
}
return lexNumberOrDate
}
// lexNumberOrDate consumes either a (positive) integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
r := lx.next()
switch {
case r == '-':
if lx.pos-lx.start != 5 {
return lx.errorf("All ISO8601 dates must be in full Zulu form.")
}
return lexDateAfterYear
case isDigit(r):
return lexNumberOrDate
case r == '.':
return lexFloatStart
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexDateAfterYear consumes a full Zulu Datetime in ISO8601 format.
// It assumes that "YYYY-" has already been consumed.
func lexDateAfterYear(lx *lexer) stateFn {
formats := []rune{
// digits are '0'.
// everything else is direct equality.
'0', '0', '-', '0', '0',
'T',
'0', '0', ':', '0', '0', ':', '0', '0',
'Z',
}
for _, f := range formats {
r := lx.next()
if f == '0' {
if !isDigit(r) {
return lx.errorf("Expected digit in ISO8601 datetime, "+
"but found %q instead.", r)
}
} else if f != r {
return lx.errorf("Expected %q in ISO8601 datetime, "+
"but found %q instead.", f, r)
}
}
lx.emit(itemDatetime)
return lx.pop()
}
// lexNumberStart consumes either an integer or a float. It assumes that
// a negative sign has already been read, but that *no* digits have been
// consumed. lexNumberStart will move to the appropriate integer or float
// states.
func lexNumberStart(lx *lexer) stateFn {
// we MUST see a digit. Even floats have to start with a digit.
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("Floats must start with a digit, not '.'.")
} else {
return lx.errorf("Expected a digit but got %q.", r)
}
}
return lexNumber
}
// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
r := lx.next()
switch {
case isDigit(r):
return lexNumber
case r == '.':
return lexFloatStart
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexFloatStart starts the consumption of digits of a float after a '.'.
// Namely, at least one digit is required.
func lexFloatStart(lx *lexer) stateFn {
r := lx.next()
if !isDigit(r) {
return lx.errorf("Floats must have a digit after the '.', but got "+
"%q instead.", r)
}
return lexFloat
}
// lexFloat consumes the digits of a float after a '.'.
// Assumes that one digit has been consumed after a '.' already.
func lexFloat(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexFloat
}
lx.backup()
lx.emit(itemFloat)
return lx.pop()
}
// lexConst consumes the s[1:] in s. It assumes that s[0] has already been
// consumed.
func lexConst(lx *lexer, s string) stateFn {
for i := range s[1:] {
if r := lx.next(); r != rune(s[i+1]) {
return lx.errorf("Expected %q, but found %q instead.", s[:i+1],
s[:i]+string(r))
}
}
return nil
}
// lexTrue consumes the "rue" in "true". It assumes that 't' has already
// been consumed.
func lexTrue(lx *lexer) stateFn {
if fn := lexConst(lx, "true"); fn != nil {
return fn
}
lx.emit(itemBool)
return lx.pop()
}
// lexFalse consumes the "alse" in "false". It assumes that 'f' has already
// been consumed.
func lexFalse(lx *lexer) stateFn {
if fn := lexConst(lx, "false"); fn != nil {
return fn
}
lx.emit(itemBool)
return lx.pop()
}
// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemCommentStart)
return lexComment
}
// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first new line character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
r := lx.peek()
if isNL(r) || r == eof {
lx.emit(itemText)
return lx.pop()
}
lx.next()
return lexComment
}
// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
return func(lx *lexer) stateFn {
lx.ignore()
return nextState
}
}
// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
return r == '\t' || r == ' '
}
func isNL(r rune) bool {
return r == '\n' || r == '\r'
}
func isDigit(r rune) bool {
return r >= '0' && r <= '9'
}
func isHexadecimal(r rune) bool {
return (r >= '0' && r <= '9') ||
(r >= 'a' && r <= 'f') ||
(r >= 'A' && r <= 'F')
}
func isBareKeyChar(r rune) bool {
return (r >= 'A' && r <= 'Z') ||
(r >= 'a' && r <= 'z') ||
(r >= '0' && r <= '9') ||
r == '_' ||
r == '-'
}
func (itype itemType) String() string {
switch itype {
case itemError:
return "Error"
case itemNIL:
return "NIL"
case itemEOF:
return "EOF"
case itemText:
return "Text"
case itemString:
return "String"
case itemRawString:
return "String"
case itemMultilineString:
return "String"
case itemRawMultilineString:
return "String"
case itemBool:
return "Bool"
case itemInteger:
return "Integer"
case itemFloat:
return "Float"
case itemDatetime:
return "DateTime"
case itemTableStart:
return "TableStart"
case itemTableEnd:
return "TableEnd"
case itemKeyStart:
return "KeyStart"
case itemArray:
return "Array"
case itemArrayEnd:
return "ArrayEnd"
case itemCommentStart:
return "CommentStart"
}
panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}
func (item item) String() string {
return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}

View file

@ -0,0 +1,493 @@
package toml
import (
"fmt"
"log"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
)
type parser struct {
mapping map[string]interface{}
types map[string]tomlType
lx *lexer
// A list of keys in the order that they appear in the TOML data.
ordered []Key
// the full key for the current hash in scope
context Key
// the base key name for everything except hashes
currentKey string
// rough approximation of line number
approxLine int
// A map of 'key.group.names' to whether they were created implicitly.
implicits map[string]bool
}
type parseError string
func (pe parseError) Error() string {
return string(pe)
}
func parse(data string) (p *parser, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
if err, ok = r.(parseError); ok {
return
}
panic(r)
}
}()
p = &parser{
mapping: make(map[string]interface{}),
types: make(map[string]tomlType),
lx: lex(data),
ordered: make([]Key, 0),
implicits: make(map[string]bool),
}
for {
item := p.next()
if item.typ == itemEOF {
break
}
p.topLevel(item)
}
return p, nil
}
func (p *parser) panicf(format string, v ...interface{}) {
msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
p.approxLine, p.current(), fmt.Sprintf(format, v...))
panic(parseError(msg))
}
func (p *parser) next() item {
it := p.lx.nextItem()
if it.typ == itemError {
p.panicf("%s", it.val)
}
return it
}
func (p *parser) bug(format string, v ...interface{}) {
log.Panicf("BUG: %s\n\n", fmt.Sprintf(format, v...))
}
func (p *parser) expect(typ itemType) item {
it := p.next()
p.assertEqual(typ, it.typ)
return it
}
func (p *parser) assertEqual(expected, got itemType) {
if expected != got {
p.bug("Expected '%s' but got '%s'.", expected, got)
}
}
func (p *parser) topLevel(item item) {
switch item.typ {
case itemCommentStart:
p.approxLine = item.line
p.expect(itemText)
case itemTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemTableEnd, kg.typ)
p.establishContext(key, false)
p.setType("", tomlHash)
p.ordered = append(p.ordered, key)
case itemArrayTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemArrayTableEnd, kg.typ)
p.establishContext(key, true)
p.setType("", tomlArrayHash)
p.ordered = append(p.ordered, key)
case itemKeyStart:
kname := p.next()
p.approxLine = kname.line
p.currentKey = p.keyString(kname)
val, typ := p.value(p.next())
p.setValue(p.currentKey, val)
p.setType(p.currentKey, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
p.currentKey = ""
default:
p.bug("Unexpected type at top level: %s", item.typ)
}
}
// Gets a string for a key (or part of a key in a table name).
func (p *parser) keyString(it item) string {
switch it.typ {
case itemText:
return it.val
case itemString, itemMultilineString,
itemRawString, itemRawMultilineString:
s, _ := p.value(it)
return s.(string)
default:
p.bug("Unexpected key type: %s", it.typ)
panic("unreachable")
}
}
// value translates an expected value from the lexer into a Go value wrapped
// as an empty interface.
func (p *parser) value(it item) (interface{}, tomlType) {
switch it.typ {
case itemString:
return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
case itemMultilineString:
trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
case itemRawString:
return it.val, p.typeOfPrimitive(it)
case itemRawMultilineString:
return stripFirstNewline(it.val), p.typeOfPrimitive(it)
case itemBool:
switch it.val {
case "true":
return true, p.typeOfPrimitive(it)
case "false":
return false, p.typeOfPrimitive(it)
}
p.bug("Expected boolean value, but got '%s'.", it.val)
case itemInteger:
num, err := strconv.ParseInt(it.val, 10, 64)
if err != nil {
// See comment below for floats describing why we make a
// distinction between a bug and a user error.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Integer '%s' is out of the range of 64-bit "+
"signed integers.", it.val)
} else {
p.bug("Expected integer value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemFloat:
num, err := strconv.ParseFloat(it.val, 64)
if err != nil {
// Distinguish float values. Normally, it'd be a bug if the lexer
// provides an invalid float, but it's possible that the float is
// out of range of valid values (which the lexer cannot determine).
// So mark the former as a bug but the latter as a legitimate user
// error.
//
// This is also true for integers.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Float '%s' is out of the range of 64-bit "+
"IEEE-754 floating-point numbers.", it.val)
} else {
p.bug("Expected float value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemDatetime:
t, err := time.Parse("2006-01-02T15:04:05Z", it.val)
if err != nil {
p.panicf("Invalid RFC3339 Zulu DateTime: '%s'.", it.val)
}
return t, p.typeOfPrimitive(it)
case itemArray:
array := make([]interface{}, 0)
types := make([]tomlType, 0)
for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
val, typ := p.value(it)
array = append(array, val)
types = append(types, typ)
}
return array, p.typeOfArray(types)
}
p.bug("Unexpected value type: %s", it.typ)
panic("unreachable")
}
// establishContext sets the current context of the parser,
// where the context is either a hash or an array of hashes. Which one is
// set depends on the value of the `array` parameter.
//
// Establishing the context also makes sure that the key isn't a duplicate, and
// will create implicit hashes automatically.
func (p *parser) establishContext(key Key, array bool) {
var ok bool
// Always start at the top level and drill down for our context.
hashContext := p.mapping
keyContext := make(Key, 0)
// We only need implicit hashes for key[0:-1]
for _, k := range key[0 : len(key)-1] {
_, ok = hashContext[k]
keyContext = append(keyContext, k)
// No key? Make an implicit hash and move on.
if !ok {
p.addImplicit(keyContext)
hashContext[k] = make(map[string]interface{})
}
// If the hash context is actually an array of tables, then set
// the hash context to the last element in that array.
//
// Otherwise, it better be a table, since this MUST be a key group (by
// virtue of it not being the last element in a key).
switch t := hashContext[k].(type) {
case []map[string]interface{}:
hashContext = t[len(t)-1]
case map[string]interface{}:
hashContext = t
default:
p.panicf("Key '%s' was already created as a hash.", keyContext)
}
}
p.context = keyContext
if array {
// If this is the first element for this array, then allocate a new
// list of tables for it.
k := key[len(key)-1]
if _, ok := hashContext[k]; !ok {
hashContext[k] = make([]map[string]interface{}, 0, 5)
}
// Add a new table. But make sure the key hasn't already been used
// for something else.
if hash, ok := hashContext[k].([]map[string]interface{}); ok {
hashContext[k] = append(hash, make(map[string]interface{}))
} else {
p.panicf("Key '%s' was already created and cannot be used as "+
"an array.", keyContext)
}
} else {
p.setValue(key[len(key)-1], make(map[string]interface{}))
}
p.context = append(p.context, key[len(key)-1])
}
// setValue sets the given key to the given value in the current context.
// It will make sure that the key hasn't already been defined, account for
// implicit key groups.
func (p *parser) setValue(key string, value interface{}) {
var tmpHash interface{}
var ok bool
hash := p.mapping
keyContext := make(Key, 0)
for _, k := range p.context {
keyContext = append(keyContext, k)
if tmpHash, ok = hash[k]; !ok {
p.bug("Context for key '%s' has not been established.", keyContext)
}
switch t := tmpHash.(type) {
case []map[string]interface{}:
// The context is a table of hashes. Pick the most recent table
// defined as the current hash.
hash = t[len(t)-1]
case map[string]interface{}:
hash = t
default:
p.bug("Expected hash to have type 'map[string]interface{}', but "+
"it has '%T' instead.", tmpHash)
}
}
keyContext = append(keyContext, key)
if _, ok := hash[key]; ok {
// Typically, if the given key has already been set, then we have
// to raise an error since duplicate keys are disallowed. However,
// it's possible that a key was previously defined implicitly. In this
// case, it is allowed to be redefined concretely. (See the
// `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
//
// But we have to make sure to stop marking it as an implicit. (So that
// another redefinition provokes an error.)
//
// Note that since it has already been defined (as a hash), we don't
// want to overwrite it. So our business is done.
if p.isImplicit(keyContext) {
p.removeImplicit(keyContext)
return
}
// Otherwise, we have a concrete key trying to override a previous
// key, which is *always* wrong.
p.panicf("Key '%s' has already been defined.", keyContext)
}
hash[key] = value
}
// setType sets the type of a particular value at a given key.
// It should be called immediately AFTER setValue.
//
// Note that if `key` is empty, then the type given will be applied to the
// current context (which is either a table or an array of tables).
func (p *parser) setType(key string, typ tomlType) {
keyContext := make(Key, 0, len(p.context)+1)
for _, k := range p.context {
keyContext = append(keyContext, k)
}
if len(key) > 0 { // allow type setting for hashes
keyContext = append(keyContext, key)
}
p.types[keyContext.String()] = typ
}
// addImplicit sets the given Key as having been created implicitly.
func (p *parser) addImplicit(key Key) {
p.implicits[key.String()] = true
}
// removeImplicit stops tagging the given key as having been implicitly
// created.
func (p *parser) removeImplicit(key Key) {
p.implicits[key.String()] = false
}
// isImplicit returns true if the key group pointed to by the key was created
// implicitly.
func (p *parser) isImplicit(key Key) bool {
return p.implicits[key.String()]
}
// current returns the full key name of the current context.
func (p *parser) current() string {
if len(p.currentKey) == 0 {
return p.context.String()
}
if len(p.context) == 0 {
return p.currentKey
}
return fmt.Sprintf("%s.%s", p.context, p.currentKey)
}
func stripFirstNewline(s string) string {
if len(s) == 0 || s[0] != '\n' {
return s
}
return s[1:]
}
func stripEscapedWhitespace(s string) string {
esc := strings.Split(s, "\\\n")
if len(esc) > 1 {
for i := 1; i < len(esc); i++ {
esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
}
}
return strings.Join(esc, "")
}
func (p *parser) replaceEscapes(str string) string {
var replaced []rune
s := []byte(str)
r := 0
for r < len(s) {
if s[r] != '\\' {
c, size := utf8.DecodeRune(s[r:])
r += size
replaced = append(replaced, c)
continue
}
r += 1
if r >= len(s) {
p.bug("Escape sequence at end of string.")
return ""
}
switch s[r] {
default:
p.bug("Expected valid escape code after \\, but got %q.", s[r])
return ""
case 'b':
replaced = append(replaced, rune(0x0008))
r += 1
case 't':
replaced = append(replaced, rune(0x0009))
r += 1
case 'n':
replaced = append(replaced, rune(0x000A))
r += 1
case 'f':
replaced = append(replaced, rune(0x000C))
r += 1
case 'r':
replaced = append(replaced, rune(0x000D))
r += 1
case '"':
replaced = append(replaced, rune(0x0022))
r += 1
case '\\':
replaced = append(replaced, rune(0x005C))
r += 1
case 'u':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+5). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
replaced = append(replaced, escaped)
r += 5
case 'U':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+9). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
replaced = append(replaced, escaped)
r += 9
}
}
return string(replaced)
}
func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
s := string(bs)
hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
if err != nil {
p.bug("Could not parse '%s' as a hexadecimal number, but the "+
"lexer claims it's OK: %s", s, err)
}
if !utf8.ValidRune(rune(hex)) {
p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
}
return rune(hex)
}
func isStringType(ty itemType) bool {
return ty == itemString || ty == itemMultilineString ||
ty == itemRawString || ty == itemRawMultilineString
}

View file

@ -0,0 +1 @@
au BufWritePost *.go silent!make tags > /dev/null 2>&1

View file

@ -0,0 +1,91 @@
package toml
// tomlType represents any Go type that corresponds to a TOML type.
// While the first draft of the TOML spec has a simplistic type system that
// probably doesn't need this level of sophistication, we seem to be militating
// toward adding real composite types.
type tomlType interface {
typeString() string
}
// typeEqual accepts any two types and returns true if they are equal.
func typeEqual(t1, t2 tomlType) bool {
if t1 == nil || t2 == nil {
return false
}
return t1.typeString() == t2.typeString()
}
func typeIsHash(t tomlType) bool {
return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
}
type tomlBaseType string
func (btype tomlBaseType) typeString() string {
return string(btype)
}
func (btype tomlBaseType) String() string {
return btype.typeString()
}
var (
tomlInteger tomlBaseType = "Integer"
tomlFloat tomlBaseType = "Float"
tomlDatetime tomlBaseType = "Datetime"
tomlString tomlBaseType = "String"
tomlBool tomlBaseType = "Bool"
tomlArray tomlBaseType = "Array"
tomlHash tomlBaseType = "Hash"
tomlArrayHash tomlBaseType = "ArrayHash"
)
// typeOfPrimitive returns a tomlType of any primitive value in TOML.
// Primitive values are: Integer, Float, Datetime, String and Bool.
//
// Passing a lexer item other than the following will cause a BUG message
// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
func (p *parser) typeOfPrimitive(lexItem item) tomlType {
switch lexItem.typ {
case itemInteger:
return tomlInteger
case itemFloat:
return tomlFloat
case itemDatetime:
return tomlDatetime
case itemString:
return tomlString
case itemMultilineString:
return tomlString
case itemRawString:
return tomlString
case itemRawMultilineString:
return tomlString
case itemBool:
return tomlBool
}
p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
panic("unreachable")
}
// typeOfArray returns a tomlType for an array given a list of types of its
// values.
//
// In the current spec, if an array is homogeneous, then its type is always
// "Array". If the array is not homogeneous, an error is generated.
func (p *parser) typeOfArray(types []tomlType) tomlType {
// Empty arrays are cool.
if len(types) == 0 {
return tomlArray
}
theType := types[0]
for _, t := range types[1:] {
if !typeEqual(theType, t) {
p.panicf("Array contains values of type '%s' and '%s', but "+
"arrays must be homogeneous.", theType, t)
}
}
return tomlArray
}

View file

@ -0,0 +1,241 @@
package toml
// Struct field handling is adapted from code in encoding/json:
//
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the Go distribution.
import (
"reflect"
"sort"
"sync"
)
// A field represents a single field found in a struct.
type field struct {
name string // the name of the field (`toml` tag included)
tag bool // whether field has a `toml` tag
index []int // represents the depth of an anonymous field
typ reflect.Type // the type of the field
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from toml tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that TOML should recognize for the given
// type. The algorithm is breadth-first search over the set of structs to
// include - the top struct and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
name, _ := getOptions(sf.Tag.Get("toml"))
if name == "-" {
continue
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
fields = append(fields, field{name, tagged, index, ft})
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
f := field{name: ft.Name(), index: index, typ: ft}
next = append(next, f)
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with TOML tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// TOML tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}