// +build linux package libcontainer import ( "encoding/json" "fmt" "io" "net" "os" "strings" "syscall" // only for Errno "unsafe" "github.com/Sirupsen/logrus" "github.com/opencontainers/runc/libcontainer/cgroups" "github.com/opencontainers/runc/libcontainer/configs" "github.com/opencontainers/runc/libcontainer/system" "github.com/opencontainers/runc/libcontainer/user" "github.com/opencontainers/runc/libcontainer/utils" "github.com/vishvananda/netlink" "golang.org/x/sys/unix" ) type initType string const ( initSetns initType = "setns" initStandard initType = "standard" ) type pid struct { Pid int `json:"pid"` } // network is an internal struct used to setup container networks. type network struct { configs.Network // TempVethPeerName is a unique temporary veth peer name that was placed into // the container's namespace. TempVethPeerName string `json:"temp_veth_peer_name"` } // initConfig is used for transferring parameters from Exec() to Init() type initConfig struct { Args []string `json:"args"` Env []string `json:"env"` Cwd string `json:"cwd"` Capabilities *configs.Capabilities `json:"capabilities"` ProcessLabel string `json:"process_label"` AppArmorProfile string `json:"apparmor_profile"` NoNewPrivileges bool `json:"no_new_privileges"` User string `json:"user"` AdditionalGroups []string `json:"additional_groups"` Config *configs.Config `json:"config"` Networks []*network `json:"network"` PassedFilesCount int `json:"passed_files_count"` ContainerId string `json:"containerid"` Rlimits []configs.Rlimit `json:"rlimits"` CreateConsole bool `json:"create_console"` Rootless bool `json:"rootless"` } type initer interface { Init() error } func newContainerInit(t initType, pipe *os.File, consoleSocket *os.File, stateDirFD int) (initer, error) { var config *initConfig if err := json.NewDecoder(pipe).Decode(&config); err != nil { return nil, err } if err := populateProcessEnvironment(config.Env); err != nil { return nil, err } switch t { case initSetns: return &linuxSetnsInit{ pipe: pipe, consoleSocket: consoleSocket, config: config, }, nil case initStandard: return &linuxStandardInit{ pipe: pipe, consoleSocket: consoleSocket, parentPid: unix.Getppid(), config: config, stateDirFD: stateDirFD, }, nil } return nil, fmt.Errorf("unknown init type %q", t) } // populateProcessEnvironment loads the provided environment variables into the // current processes's environment. func populateProcessEnvironment(env []string) error { for _, pair := range env { p := strings.SplitN(pair, "=", 2) if len(p) < 2 { return fmt.Errorf("invalid environment '%v'", pair) } if err := os.Setenv(p[0], p[1]); err != nil { return err } } return nil } // finalizeNamespace drops the caps, sets the correct user // and working dir, and closes any leaked file descriptors // before executing the command inside the namespace func finalizeNamespace(config *initConfig) error { // Ensure that all unwanted fds we may have accidentally // inherited are marked close-on-exec so they stay out of the // container if err := utils.CloseExecFrom(config.PassedFilesCount + 3); err != nil { return err } capabilities := &configs.Capabilities{} if config.Capabilities != nil { capabilities = config.Capabilities } else if config.Config.Capabilities != nil { capabilities = config.Config.Capabilities } w, err := newContainerCapList(capabilities) if err != nil { return err } // drop capabilities in bounding set before changing user if err := w.ApplyBoundingSet(); err != nil { return err } // preserve existing capabilities while we change users if err := system.SetKeepCaps(); err != nil { return err } if err := setupUser(config); err != nil { return err } if err := system.ClearKeepCaps(); err != nil { return err } if err := w.ApplyCaps(); err != nil { return err } if config.Cwd != "" { if err := unix.Chdir(config.Cwd); err != nil { return fmt.Errorf("chdir to cwd (%q) set in config.json failed: %v", config.Cwd, err) } } return nil } // setupConsole sets up the console from inside the container, and sends the // master pty fd to the config.Pipe (using cmsg). This is done to ensure that // consoles are scoped to a container properly (see runc#814 and the many // issues related to that). This has to be run *after* we've pivoted to the new // rootfs (and the users' configuration is entirely set up). func setupConsole(socket *os.File, config *initConfig, mount bool) error { defer socket.Close() // At this point, /dev/ptmx points to something that we would expect. We // used to change the owner of the slave path, but since the /dev/pts mount // can have gid=X set (at the users' option). So touching the owner of the // slave PTY is not necessary, as the kernel will handle that for us. Note // however, that setupUser (specifically fixStdioPermissions) *will* change // the UID owner of the console to be the user the process will run as (so // they can actually control their console). console, err := newConsole() if err != nil { return err } // After we return from here, we don't need the console anymore. defer console.Close() linuxConsole, ok := console.(*linuxConsole) if !ok { return fmt.Errorf("failed to cast console to *linuxConsole") } // Mount the console inside our rootfs. if mount { if err := linuxConsole.mount(); err != nil { return err } } // While we can access console.master, using the API is a good idea. if err := utils.SendFd(socket, linuxConsole.File()); err != nil { return err } // Now, dup over all the things. return linuxConsole.dupStdio() } // syncParentReady sends to the given pipe a JSON payload which indicates that // the init is ready to Exec the child process. It then waits for the parent to // indicate that it is cleared to Exec. func syncParentReady(pipe io.ReadWriter) error { // Tell parent. if err := writeSync(pipe, procReady); err != nil { return err } // Wait for parent to give the all-clear. if err := readSync(pipe, procRun); err != nil { return err } return nil } // syncParentHooks sends to the given pipe a JSON payload which indicates that // the parent should execute pre-start hooks. It then waits for the parent to // indicate that it is cleared to resume. func syncParentHooks(pipe io.ReadWriter) error { // Tell parent. if err := writeSync(pipe, procHooks); err != nil { return err } // Wait for parent to give the all-clear. if err := readSync(pipe, procResume); err != nil { return err } return nil } // setupUser changes the groups, gid, and uid for the user inside the container func setupUser(config *initConfig) error { // Set up defaults. defaultExecUser := user.ExecUser{ Uid: 0, Gid: 0, Home: "/", } passwdPath, err := user.GetPasswdPath() if err != nil { return err } groupPath, err := user.GetGroupPath() if err != nil { return err } execUser, err := user.GetExecUserPath(config.User, &defaultExecUser, passwdPath, groupPath) if err != nil { return err } var addGroups []int if len(config.AdditionalGroups) > 0 { addGroups, err = user.GetAdditionalGroupsPath(config.AdditionalGroups, groupPath) if err != nil { return err } } if config.Rootless { if execUser.Uid != 0 { return fmt.Errorf("cannot run as a non-root user in a rootless container") } if execUser.Gid != 0 { return fmt.Errorf("cannot run as a non-root group in a rootless container") } // We cannot set any additional groups in a rootless container and thus we // bail if the user asked us to do so. TODO: We currently can't do this // earlier, but if libcontainer.Process.User was typesafe this might work. if len(addGroups) > 0 { return fmt.Errorf("cannot set any additional groups in a rootless container") } } // before we change to the container's user make sure that the processes STDIO // is correctly owned by the user that we are switching to. if err := fixStdioPermissions(config, execUser); err != nil { return err } // This isn't allowed in an unprivileged user namespace since Linux 3.19. // There's nothing we can do about /etc/group entries, so we silently // ignore setting groups here (since the user didn't explicitly ask us to // set the group). if !config.Rootless { suppGroups := append(execUser.Sgids, addGroups...) if err := unix.Setgroups(suppGroups); err != nil { return err } } if err := system.Setgid(execUser.Gid); err != nil { return err } if err := system.Setuid(execUser.Uid); err != nil { return err } // if we didn't get HOME already, set it based on the user's HOME if envHome := os.Getenv("HOME"); envHome == "" { if err := os.Setenv("HOME", execUser.Home); err != nil { return err } } return nil } // fixStdioPermissions fixes the permissions of PID 1's STDIO within the container to the specified user. // The ownership needs to match because it is created outside of the container and needs to be // localized. func fixStdioPermissions(config *initConfig, u *user.ExecUser) error { var null unix.Stat_t if err := unix.Stat("/dev/null", &null); err != nil { return err } for _, fd := range []uintptr{ os.Stdin.Fd(), os.Stderr.Fd(), os.Stdout.Fd(), } { var s unix.Stat_t if err := unix.Fstat(int(fd), &s); err != nil { return err } // Skip chown of /dev/null if it was used as one of the STDIO fds. if s.Rdev == null.Rdev { continue } // Skip chown if s.Gid is actually an unmapped gid in the host. While // this is a bit dodgy if it just so happens that the console _is_ // owned by overflow_gid, there's no way for us to disambiguate this as // a userspace program. if _, err := config.Config.HostGID(int(s.Gid)); err != nil { continue } // We only change the uid owner (as it is possible for the mount to // prefer a different gid, and there's no reason for us to change it). // The reason why we don't just leave the default uid=X mount setup is // that users expect to be able to actually use their console. Without // this code, you couldn't effectively run as a non-root user inside a // container and also have a console set up. if err := unix.Fchown(int(fd), u.Uid, int(s.Gid)); err != nil { return err } } return nil } // setupNetwork sets up and initializes any network interface inside the container. func setupNetwork(config *initConfig) error { for _, config := range config.Networks { strategy, err := getStrategy(config.Type) if err != nil { return err } if err := strategy.initialize(config); err != nil { return err } } return nil } func setupRoute(config *configs.Config) error { for _, config := range config.Routes { _, dst, err := net.ParseCIDR(config.Destination) if err != nil { return err } src := net.ParseIP(config.Source) if src == nil { return fmt.Errorf("Invalid source for route: %s", config.Source) } gw := net.ParseIP(config.Gateway) if gw == nil { return fmt.Errorf("Invalid gateway for route: %s", config.Gateway) } l, err := netlink.LinkByName(config.InterfaceName) if err != nil { return err } route := &netlink.Route{ Scope: netlink.SCOPE_UNIVERSE, Dst: dst, Src: src, Gw: gw, LinkIndex: l.Attrs().Index, } if err := netlink.RouteAdd(route); err != nil { return err } } return nil } func setupRlimits(limits []configs.Rlimit, pid int) error { for _, rlimit := range limits { if err := system.Prlimit(pid, rlimit.Type, unix.Rlimit{Max: rlimit.Hard, Cur: rlimit.Soft}); err != nil { return fmt.Errorf("error setting rlimit type %v: %v", rlimit.Type, err) } } return nil } const _P_PID = 1 type siginfo struct { si_signo int32 si_errno int32 si_code int32 // below here is a union; si_pid is the only field we use si_pid int32 // Pad to 128 bytes as detailed in blockUntilWaitable pad [96]byte } // isWaitable returns true if the process has exited false otherwise. // Its based off blockUntilWaitable in src/os/wait_waitid.go func isWaitable(pid int) (bool, error) { si := &siginfo{} _, _, e := unix.Syscall6(unix.SYS_WAITID, _P_PID, uintptr(pid), uintptr(unsafe.Pointer(si)), unix.WEXITED|unix.WNOWAIT|unix.WNOHANG, 0, 0) if e != 0 { return false, os.NewSyscallError("waitid", e) } return si.si_pid != 0, nil } // isNoChildren returns true if err represents a unix.ECHILD (formerly syscall.ECHILD) false otherwise func isNoChildren(err error) bool { switch err := err.(type) { case syscall.Errno: if err == unix.ECHILD { return true } case *os.SyscallError: if err.Err == unix.ECHILD { return true } } return false } // signalAllProcesses freezes then iterates over all the processes inside the // manager's cgroups sending the signal s to them. // If s is SIGKILL then it will wait for each process to exit. // For all other signals it will check if the process is ready to report its // exit status and only if it is will a wait be performed. func signalAllProcesses(m cgroups.Manager, s os.Signal) error { var procs []*os.Process if err := m.Freeze(configs.Frozen); err != nil { logrus.Warn(err) } pids, err := m.GetAllPids() if err != nil { m.Freeze(configs.Thawed) return err } for _, pid := range pids { p, err := os.FindProcess(pid) if err != nil { logrus.Warn(err) continue } procs = append(procs, p) if err := p.Signal(s); err != nil { logrus.Warn(err) } } if err := m.Freeze(configs.Thawed); err != nil { logrus.Warn(err) } for _, p := range procs { if s != unix.SIGKILL { if ok, err := isWaitable(p.Pid); err != nil { if !isNoChildren(err) { logrus.Warn("signalAllProcesses: ", p.Pid, err) } continue } else if !ok { // Not ready to report so don't wait continue } } if _, err := p.Wait(); err != nil { if !isNoChildren(err) { logrus.Warn("wait: ", err) } } } return nil }