// Copyright 2014 Canonical Ltd. // Licensed under the LGPLv3 with static-linking exception. // See LICENCE file for details. // Package ratelimit provides an efficient token bucket implementation // that can be used to limit the rate of arbitrary things. // See http://en.wikipedia.org/wiki/Token_bucket. package ratelimit import ( "math" "strconv" "sync" "time" ) // Bucket represents a token bucket that fills at a predetermined rate. // Methods on Bucket may be called concurrently. type Bucket struct { startTime time.Time capacity int64 quantum int64 fillInterval time.Duration // The mutex guards the fields following it. mu sync.Mutex // avail holds the number of available tokens // in the bucket, as of availTick ticks from startTime. // It will be negative when there are consumers // waiting for tokens. avail int64 availTick int64 } // NewBucket returns a new token bucket that fills at the // rate of one token every fillInterval, up to the given // maximum capacity. Both arguments must be // positive. The bucket is initially full. func NewBucket(fillInterval time.Duration, capacity int64) *Bucket { return NewBucketWithQuantum(fillInterval, capacity, 1) } // rateMargin specifes the allowed variance of actual // rate from specified rate. 1% seems reasonable. const rateMargin = 0.01 // NewBucketWithRate returns a token bucket that fills the bucket // at the rate of rate tokens per second up to the given // maximum capacity. Because of limited clock resolution, // at high rates, the actual rate may be up to 1% different from the // specified rate. func NewBucketWithRate(rate float64, capacity int64) *Bucket { for quantum := int64(1); quantum < 1<<50; quantum = nextQuantum(quantum) { fillInterval := time.Duration(1e9 * float64(quantum) / rate) if fillInterval <= 0 { continue } tb := NewBucketWithQuantum(fillInterval, capacity, quantum) if diff := math.Abs(tb.Rate() - rate); diff/rate <= rateMargin { return tb } } panic("cannot find suitable quantum for " + strconv.FormatFloat(rate, 'g', -1, 64)) } // nextQuantum returns the next quantum to try after q. // We grow the quantum exponentially, but slowly, so we // get a good fit in the lower numbers. func nextQuantum(q int64) int64 { q1 := q * 11 / 10 if q1 == q { q1++ } return q1 } // NewBucketWithQuantum is similar to NewBucket, but allows // the specification of the quantum size - quantum tokens // are added every fillInterval. func NewBucketWithQuantum(fillInterval time.Duration, capacity, quantum int64) *Bucket { if fillInterval <= 0 { panic("token bucket fill interval is not > 0") } if capacity <= 0 { panic("token bucket capacity is not > 0") } if quantum <= 0 { panic("token bucket quantum is not > 0") } return &Bucket{ startTime: time.Now(), capacity: capacity, quantum: quantum, avail: capacity, fillInterval: fillInterval, } } // Wait takes count tokens from the bucket, waiting until they are // available. func (tb *Bucket) Wait(count int64) { if d := tb.Take(count); d > 0 { time.Sleep(d) } } // WaitMaxDuration is like Wait except that it will // only take tokens from the bucket if it needs to wait // for no greater than maxWait. It reports whether // any tokens have been removed from the bucket // If no tokens have been removed, it returns immediately. func (tb *Bucket) WaitMaxDuration(count int64, maxWait time.Duration) bool { d, ok := tb.TakeMaxDuration(count, maxWait) if d > 0 { time.Sleep(d) } return ok } const infinityDuration time.Duration = 0x7fffffffffffffff // Take takes count tokens from the bucket without blocking. It returns // the time that the caller should wait until the tokens are actually // available. // // Note that if the request is irrevocable - there is no way to return // tokens to the bucket once this method commits us to taking them. func (tb *Bucket) Take(count int64) time.Duration { d, _ := tb.take(time.Now(), count, infinityDuration) return d } // TakeMaxDuration is like Take, except that // it will only take tokens from the bucket if the wait // time for the tokens is no greater than maxWait. // // If it would take longer than maxWait for the tokens // to become available, it does nothing and reports false, // otherwise it returns the time that the caller should // wait until the tokens are actually available, and reports // true. func (tb *Bucket) TakeMaxDuration(count int64, maxWait time.Duration) (time.Duration, bool) { return tb.take(time.Now(), count, maxWait) } // TakeAvailable takes up to count immediately available tokens from the // bucket. It returns the number of tokens removed, or zero if there are // no available tokens. It does not block. func (tb *Bucket) TakeAvailable(count int64) int64 { return tb.takeAvailable(time.Now(), count) } // takeAvailable is the internal version of TakeAvailable - it takes the // current time as an argument to enable easy testing. func (tb *Bucket) takeAvailable(now time.Time, count int64) int64 { if count <= 0 { return 0 } tb.mu.Lock() defer tb.mu.Unlock() tb.adjust(now) if tb.avail <= 0 { return 0 } if count > tb.avail { count = tb.avail } tb.avail -= count return count } // Available returns the number of available tokens. It will be negative // when there are consumers waiting for tokens. Note that if this // returns greater than zero, it does not guarantee that calls that take // tokens from the buffer will succeed, as the number of available // tokens could have changed in the meantime. This method is intended // primarily for metrics reporting and debugging. func (tb *Bucket) Available() int64 { return tb.available(time.Now()) } // available is the internal version of available - it takes the current time as // an argument to enable easy testing. func (tb *Bucket) available(now time.Time) int64 { tb.mu.Lock() defer tb.mu.Unlock() tb.adjust(now) return tb.avail } // Capacity returns the capacity that the bucket was created with. func (tb *Bucket) Capacity() int64 { return tb.capacity } // Rate returns the fill rate of the bucket, in tokens per second. func (tb *Bucket) Rate() float64 { return 1e9 * float64(tb.quantum) / float64(tb.fillInterval) } // take is the internal version of Take - it takes the current time as // an argument to enable easy testing. func (tb *Bucket) take(now time.Time, count int64, maxWait time.Duration) (time.Duration, bool) { if count <= 0 { return 0, true } tb.mu.Lock() defer tb.mu.Unlock() currentTick := tb.adjust(now) avail := tb.avail - count if avail >= 0 { tb.avail = avail return 0, true } // Round up the missing tokens to the nearest multiple // of quantum - the tokens won't be available until // that tick. endTick := currentTick + (-avail+tb.quantum-1)/tb.quantum endTime := tb.startTime.Add(time.Duration(endTick) * tb.fillInterval) waitTime := endTime.Sub(now) if waitTime > maxWait { return 0, false } tb.avail = avail return waitTime, true } // adjust adjusts the current bucket capacity based on the current time. // It returns the current tick. func (tb *Bucket) adjust(now time.Time) (currentTick int64) { currentTick = int64(now.Sub(tb.startTime) / tb.fillInterval) if tb.avail >= tb.capacity { return } tb.avail += (currentTick - tb.availTick) * tb.quantum if tb.avail > tb.capacity { tb.avail = tb.capacity } tb.availTick = currentTick return }