/* Copyright 2015 Google Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Package bttest contains test helpers for working with the bigtable package. To use a Server, create it, and then connect to it with no security: (The project/instance values are ignored.) srv, err := bttest.NewServer("127.0.0.1:0") ... conn, err := grpc.Dial(srv.Addr, grpc.WithInsecure()) ... client, err := bigtable.NewClient(ctx, proj, instance, option.WithGRPCConn(conn)) ... */ package bttest // import "cloud.google.com/go/bigtable/bttest" import ( "encoding/binary" "fmt" "log" "math/rand" "net" "regexp" "sort" "strings" "sync" "time" "bytes" emptypb "github.com/golang/protobuf/ptypes/empty" "github.com/golang/protobuf/ptypes/wrappers" "golang.org/x/net/context" btapb "google.golang.org/genproto/googleapis/bigtable/admin/v2" btpb "google.golang.org/genproto/googleapis/bigtable/v2" statpb "google.golang.org/genproto/googleapis/rpc/status" "google.golang.org/grpc" "google.golang.org/grpc/codes" ) // Server is an in-memory Cloud Bigtable fake. // It is unauthenticated, and only a rough approximation. type Server struct { Addr string l net.Listener srv *grpc.Server s *server } // server is the real implementation of the fake. // It is a separate and unexported type so the API won't be cluttered with // methods that are only relevant to the fake's implementation. type server struct { mu sync.Mutex tables map[string]*table // keyed by fully qualified name gcc chan int // set when gcloop starts, closed when server shuts down // Any unimplemented methods will cause a panic. btapb.BigtableTableAdminServer btpb.BigtableServer } // NewServer creates a new Server. // The Server will be listening for gRPC connections, without TLS, // on the provided address. The resolved address is named by the Addr field. func NewServer(laddr string, opt ...grpc.ServerOption) (*Server, error) { l, err := net.Listen("tcp", laddr) if err != nil { return nil, err } s := &Server{ Addr: l.Addr().String(), l: l, srv: grpc.NewServer(opt...), s: &server{ tables: make(map[string]*table), }, } btapb.RegisterBigtableTableAdminServer(s.srv, s.s) btpb.RegisterBigtableServer(s.srv, s.s) go s.srv.Serve(s.l) return s, nil } // Close shuts down the server. func (s *Server) Close() { s.s.mu.Lock() if s.s.gcc != nil { close(s.s.gcc) } s.s.mu.Unlock() s.srv.Stop() s.l.Close() } func (s *server) CreateTable(ctx context.Context, req *btapb.CreateTableRequest) (*btapb.Table, error) { tbl := req.Parent + "/tables/" + req.TableId s.mu.Lock() if _, ok := s.tables[tbl]; ok { s.mu.Unlock() return nil, fmt.Errorf("table %q already exists", tbl) } s.tables[tbl] = newTable(req) s.mu.Unlock() return &btapb.Table{Name: tbl}, nil } func (s *server) ListTables(ctx context.Context, req *btapb.ListTablesRequest) (*btapb.ListTablesResponse, error) { res := &btapb.ListTablesResponse{} prefix := req.Parent + "/tables/" s.mu.Lock() for tbl := range s.tables { if strings.HasPrefix(tbl, prefix) { res.Tables = append(res.Tables, &btapb.Table{Name: tbl}) } } s.mu.Unlock() return res, nil } func (s *server) GetTable(ctx context.Context, req *btapb.GetTableRequest) (*btapb.Table, error) { tbl := req.Name s.mu.Lock() tblIns, ok := s.tables[tbl] s.mu.Unlock() if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", tbl) } return &btapb.Table{ Name: tbl, ColumnFamilies: toColumnFamilies(tblIns.columnFamilies()), }, nil } func (s *server) DeleteTable(ctx context.Context, req *btapb.DeleteTableRequest) (*emptypb.Empty, error) { s.mu.Lock() defer s.mu.Unlock() if _, ok := s.tables[req.Name]; !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.Name) } delete(s.tables, req.Name) return &emptypb.Empty{}, nil } func (s *server) ModifyColumnFamilies(ctx context.Context, req *btapb.ModifyColumnFamiliesRequest) (*btapb.Table, error) { tblName := req.Name[strings.LastIndex(req.Name, "/")+1:] s.mu.Lock() tbl, ok := s.tables[req.Name] s.mu.Unlock() if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.Name) } tbl.mu.Lock() defer tbl.mu.Unlock() for _, mod := range req.Modifications { if create := mod.GetCreate(); create != nil { if _, ok := tbl.families[mod.Id]; ok { return nil, fmt.Errorf("family %q already exists", mod.Id) } newcf := &columnFamily{ name: req.Name + "/columnFamilies/" + mod.Id, order: tbl.counter, gcRule: create.GcRule, } tbl.counter++ tbl.families[mod.Id] = newcf } else if mod.GetDrop() { if _, ok := tbl.families[mod.Id]; !ok { return nil, fmt.Errorf("can't delete unknown family %q", mod.Id) } delete(tbl.families, mod.Id) } else if modify := mod.GetUpdate(); modify != nil { if _, ok := tbl.families[mod.Id]; !ok { return nil, fmt.Errorf("no such family %q", mod.Id) } newcf := &columnFamily{ name: req.Name + "/columnFamilies/" + mod.Id, gcRule: modify.GcRule, } // assume that we ALWAYS want to replace by the new setting // we may need partial update through tbl.families[mod.Id] = newcf } } s.needGC() return &btapb.Table{ Name: tblName, ColumnFamilies: toColumnFamilies(tbl.families), }, nil } func (s *server) DropRowRange(ctx context.Context, req *btapb.DropRowRangeRequest) (*emptypb.Empty, error) { s.mu.Lock() defer s.mu.Unlock() tbl, ok := s.tables[req.Name] if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.Name) } if req.GetDeleteAllDataFromTable() { tbl.rows = nil tbl.rowIndex = make(map[string]*row) } else { // Delete rows by prefix prefixBytes := req.GetRowKeyPrefix() if prefixBytes == nil { return nil, fmt.Errorf("missing row key prefix") } prefix := string(prefixBytes) start := -1 end := 0 for i, row := range tbl.rows { match := strings.HasPrefix(row.key, prefix) if match { // Delete the mapping. Row will be deleted from sorted range below. delete(tbl.rowIndex, row.key) } if match && start == -1 { start = i } else if !match && start != -1 { break } end++ } if start != -1 { // Delete the range, using method from https://github.com/golang/go/wiki/SliceTricks copy(tbl.rows[start:], tbl.rows[end:]) for k, n := len(tbl.rows)-end+start, len(tbl.rows); k < n; k++ { tbl.rows[k] = nil } tbl.rows = tbl.rows[:len(tbl.rows)-end+start] } } return &emptypb.Empty{}, nil } func (s *server) ReadRows(req *btpb.ReadRowsRequest, stream btpb.Bigtable_ReadRowsServer) error { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } // Rows to read can be specified by a set of row keys and/or a set of row ranges. // Output is a stream of sorted, de-duped rows. tbl.mu.RLock() rowSet := make(map[string]*row) if req.Rows != nil { // Add the explicitly given keys for _, key := range req.Rows.RowKeys { start := string(key) addRows(start, start+"\x00", tbl, rowSet) } // Add keys from row ranges for _, rr := range req.Rows.RowRanges { var start, end string switch sk := rr.StartKey.(type) { case *btpb.RowRange_StartKeyClosed: start = string(sk.StartKeyClosed) case *btpb.RowRange_StartKeyOpen: start = string(sk.StartKeyOpen) + "\x00" } switch ek := rr.EndKey.(type) { case *btpb.RowRange_EndKeyClosed: end = string(ek.EndKeyClosed) + "\x00" case *btpb.RowRange_EndKeyOpen: end = string(ek.EndKeyOpen) } addRows(start, end, tbl, rowSet) } } else { // Read all rows addRows("", "", tbl, rowSet) } tbl.mu.RUnlock() rows := make([]*row, 0, len(rowSet)) for _, r := range rowSet { rows = append(rows, r) } sort.Sort(byRowKey(rows)) limit := int(req.RowsLimit) count := 0 for _, r := range rows { if limit > 0 && count >= limit { return nil } streamed, err := streamRow(stream, r, req.Filter) if err != nil { return err } if streamed { count++ } } return nil } func addRows(start, end string, tbl *table, rowSet map[string]*row) { si, ei := 0, len(tbl.rows) // half-open interval if start != "" { si = sort.Search(len(tbl.rows), func(i int) bool { return tbl.rows[i].key >= start }) } if end != "" { ei = sort.Search(len(tbl.rows), func(i int) bool { return tbl.rows[i].key >= end }) } if si < ei { for _, row := range tbl.rows[si:ei] { rowSet[row.key] = row } } } // streamRow filters the given row and sends it via the given stream. // Returns true if at least one cell matched the filter and was streamed, false otherwise. func streamRow(stream btpb.Bigtable_ReadRowsServer, r *row, f *btpb.RowFilter) (bool, error) { r.mu.Lock() nr := r.copy() r.mu.Unlock() r = nr if !filterRow(f, r) { return false, nil } rrr := &btpb.ReadRowsResponse{} families := r.sortedFamilies() for _, fam := range families { for _, colName := range fam.colNames { cells := fam.cells[colName] if len(cells) == 0 { continue } // TODO(dsymonds): Apply transformers. for _, cell := range cells { rrr.Chunks = append(rrr.Chunks, &btpb.ReadRowsResponse_CellChunk{ RowKey: []byte(r.key), FamilyName: &wrappers.StringValue{Value: fam.name}, Qualifier: &wrappers.BytesValue{Value: []byte(colName)}, TimestampMicros: cell.ts, Value: cell.value, }) } } } // We can't have a cell with just COMMIT set, which would imply a new empty cell. // So modify the last cell to have the COMMIT flag set. if len(rrr.Chunks) > 0 { rrr.Chunks[len(rrr.Chunks)-1].RowStatus = &btpb.ReadRowsResponse_CellChunk_CommitRow{true} } return true, stream.Send(rrr) } // filterRow modifies a row with the given filter. Returns true if at least one cell from the row matches, // false otherwise. func filterRow(f *btpb.RowFilter, r *row) bool { if f == nil { return true } // Handle filters that apply beyond just including/excluding cells. switch f := f.Filter.(type) { case *btpb.RowFilter_Chain_: for _, sub := range f.Chain.Filters { filterRow(sub, r) } return true case *btpb.RowFilter_Interleave_: srs := make([]*row, 0, len(f.Interleave.Filters)) for _, sub := range f.Interleave.Filters { sr := r.copy() filterRow(sub, sr) srs = append(srs, sr) } // merge // TODO(dsymonds): is this correct? r.families = make(map[string]*family) for _, sr := range srs { for _, fam := range sr.families { f := r.getOrCreateFamily(fam.name, fam.order) for colName, cs := range fam.cells { f.cells[colName] = append(f.cellsByColumn(colName), cs...) } } } for _, fam := range r.families { for _, cs := range fam.cells { sort.Sort(byDescTS(cs)) } } return true case *btpb.RowFilter_CellsPerColumnLimitFilter: lim := int(f.CellsPerColumnLimitFilter) for _, fam := range r.families { for col, cs := range fam.cells { if len(cs) > lim { fam.cells[col] = cs[:lim] } } } return true case *btpb.RowFilter_Condition_: if filterRow(f.Condition.PredicateFilter, r.copy()) { if f.Condition.TrueFilter == nil { return false } return filterRow(f.Condition.TrueFilter, r) } if f.Condition.FalseFilter == nil { return false } return filterRow(f.Condition.FalseFilter, r) case *btpb.RowFilter_RowKeyRegexFilter: pat := string(f.RowKeyRegexFilter) rx, err := regexp.Compile(pat) if err != nil { log.Printf("Bad rowkey_regex_filter pattern %q: %v", pat, err) return false } if !rx.MatchString(r.key) { return false } } // Any other case, operate on a per-cell basis. cellCount := 0 for _, fam := range r.families { for colName, cs := range fam.cells { fam.cells[colName] = filterCells(f, fam.name, colName, cs) cellCount += len(fam.cells[colName]) } } return cellCount > 0 } func filterCells(f *btpb.RowFilter, fam, col string, cs []cell) []cell { var ret []cell for _, cell := range cs { if includeCell(f, fam, col, cell) { cell = modifyCell(f, cell) ret = append(ret, cell) } } return ret } func modifyCell(f *btpb.RowFilter, c cell) cell { if f == nil { return c } // Consider filters that may modify the cell contents switch f.Filter.(type) { case *btpb.RowFilter_StripValueTransformer: return cell{ts: c.ts} default: return c } } func includeCell(f *btpb.RowFilter, fam, col string, cell cell) bool { if f == nil { return true } // TODO(dsymonds): Implement many more filters. switch f := f.Filter.(type) { case *btpb.RowFilter_CellsPerColumnLimitFilter: // Don't log, row-level filter return true case *btpb.RowFilter_RowKeyRegexFilter: // Don't log, row-level filter return true case *btpb.RowFilter_StripValueTransformer: // Don't log, cell-modifying filter return true default: log.Printf("WARNING: don't know how to handle filter of type %T (ignoring it)", f) return true case *btpb.RowFilter_FamilyNameRegexFilter: pat := string(f.FamilyNameRegexFilter) rx, err := regexp.Compile(pat) if err != nil { log.Printf("Bad family_name_regex_filter pattern %q: %v", pat, err) return false } return rx.MatchString(fam) case *btpb.RowFilter_ColumnQualifierRegexFilter: pat := string(f.ColumnQualifierRegexFilter) rx, err := regexp.Compile(pat) if err != nil { log.Printf("Bad column_qualifier_regex_filter pattern %q: %v", pat, err) return false } return rx.MatchString(col) case *btpb.RowFilter_ValueRegexFilter: pat := string(f.ValueRegexFilter) rx, err := regexp.Compile(pat) if err != nil { log.Printf("Bad value_regex_filter pattern %q: %v", pat, err) return false } return rx.Match(cell.value) case *btpb.RowFilter_ColumnRangeFilter: if fam != f.ColumnRangeFilter.FamilyName { return false } // Start qualifier defaults to empty string closed inRangeStart := func() bool { return col >= "" } switch sq := f.ColumnRangeFilter.StartQualifier.(type) { case *btpb.ColumnRange_StartQualifierOpen: inRangeStart = func() bool { return col > string(sq.StartQualifierOpen) } case *btpb.ColumnRange_StartQualifierClosed: inRangeStart = func() bool { return col >= string(sq.StartQualifierClosed) } } // End qualifier defaults to no upper boundary inRangeEnd := func() bool { return true } switch eq := f.ColumnRangeFilter.EndQualifier.(type) { case *btpb.ColumnRange_EndQualifierClosed: inRangeEnd = func() bool { return col <= string(eq.EndQualifierClosed) } case *btpb.ColumnRange_EndQualifierOpen: inRangeEnd = func() bool { return col < string(eq.EndQualifierOpen) } } return inRangeStart() && inRangeEnd() case *btpb.RowFilter_TimestampRangeFilter: // Lower bound is inclusive and defaults to 0, upper bound is exclusive and defaults to infinity. return cell.ts >= f.TimestampRangeFilter.StartTimestampMicros && (f.TimestampRangeFilter.EndTimestampMicros == 0 || cell.ts < f.TimestampRangeFilter.EndTimestampMicros) case *btpb.RowFilter_ValueRangeFilter: v := cell.value // Start value defaults to empty string closed inRangeStart := func() bool { return bytes.Compare(v, []byte{}) >= 0 } switch sv := f.ValueRangeFilter.StartValue.(type) { case *btpb.ValueRange_StartValueOpen: inRangeStart = func() bool { return bytes.Compare(v, sv.StartValueOpen) > 0 } case *btpb.ValueRange_StartValueClosed: inRangeStart = func() bool { return bytes.Compare(v, sv.StartValueClosed) >= 0 } } // End value defaults to no upper boundary inRangeEnd := func() bool { return true } switch ev := f.ValueRangeFilter.EndValue.(type) { case *btpb.ValueRange_EndValueClosed: inRangeEnd = func() bool { return bytes.Compare(v, ev.EndValueClosed) <= 0 } case *btpb.ValueRange_EndValueOpen: inRangeEnd = func() bool { return bytes.Compare(v, ev.EndValueOpen) < 0 } } return inRangeStart() && inRangeEnd() } } func (s *server) MutateRow(ctx context.Context, req *btpb.MutateRowRequest) (*btpb.MutateRowResponse, error) { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } fs := tbl.columnFamilies() r := tbl.mutableRow(string(req.RowKey)) r.mu.Lock() defer r.mu.Unlock() if err := applyMutations(tbl, r, req.Mutations, fs); err != nil { return nil, err } return &btpb.MutateRowResponse{}, nil } func (s *server) MutateRows(req *btpb.MutateRowsRequest, stream btpb.Bigtable_MutateRowsServer) error { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } res := &btpb.MutateRowsResponse{Entries: make([]*btpb.MutateRowsResponse_Entry, len(req.Entries))} fs := tbl.columnFamilies() for i, entry := range req.Entries { r := tbl.mutableRow(string(entry.RowKey)) r.mu.Lock() code, msg := int32(codes.OK), "" if err := applyMutations(tbl, r, entry.Mutations, fs); err != nil { code = int32(codes.Internal) msg = err.Error() } res.Entries[i] = &btpb.MutateRowsResponse_Entry{ Index: int64(i), Status: &statpb.Status{Code: code, Message: msg}, } r.mu.Unlock() } stream.Send(res) return nil } func (s *server) CheckAndMutateRow(ctx context.Context, req *btpb.CheckAndMutateRowRequest) (*btpb.CheckAndMutateRowResponse, error) { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } res := &btpb.CheckAndMutateRowResponse{} fs := tbl.columnFamilies() r := tbl.mutableRow(string(req.RowKey)) r.mu.Lock() defer r.mu.Unlock() // Figure out which mutation to apply. whichMut := false if req.PredicateFilter == nil { // Use true_mutations iff row contains any cells. whichMut = !r.isEmpty() } else { // Use true_mutations iff any cells in the row match the filter. // TODO(dsymonds): This could be cheaper. nr := r.copy() filterRow(req.PredicateFilter, nr) whichMut = !nr.isEmpty() // TODO(dsymonds): Figure out if this is supposed to be set // even when there's no predicate filter. res.PredicateMatched = whichMut } muts := req.FalseMutations if whichMut { muts = req.TrueMutations } if err := applyMutations(tbl, r, muts, fs); err != nil { return nil, err } return res, nil } // applyMutations applies a sequence of mutations to a row. // fam should be a snapshot of the keys of tbl.families. // It assumes r.mu is locked. func applyMutations(tbl *table, r *row, muts []*btpb.Mutation, fs map[string]*columnFamily) error { for _, mut := range muts { switch mut := mut.Mutation.(type) { default: return fmt.Errorf("can't handle mutation type %T", mut) case *btpb.Mutation_SetCell_: set := mut.SetCell if _, ok := fs[set.FamilyName]; !ok { return fmt.Errorf("unknown family %q", set.FamilyName) } ts := set.TimestampMicros if ts == -1 { // bigtable.ServerTime ts = newTimestamp() } if !tbl.validTimestamp(ts) { return fmt.Errorf("invalid timestamp %d", ts) } fam := set.FamilyName col := string(set.ColumnQualifier) newCell := cell{ts: ts, value: set.Value} f := r.getOrCreateFamily(fam, fs[fam].order) f.cells[col] = appendOrReplaceCell(f.cellsByColumn(col), newCell) case *btpb.Mutation_DeleteFromColumn_: del := mut.DeleteFromColumn if _, ok := fs[del.FamilyName]; !ok { return fmt.Errorf("unknown family %q", del.FamilyName) } fam := del.FamilyName col := string(del.ColumnQualifier) if _, ok := r.families[fam]; ok { cs := r.families[fam].cells[col] if del.TimeRange != nil { tsr := del.TimeRange if !tbl.validTimestamp(tsr.StartTimestampMicros) { return fmt.Errorf("invalid timestamp %d", tsr.StartTimestampMicros) } if !tbl.validTimestamp(tsr.EndTimestampMicros) { return fmt.Errorf("invalid timestamp %d", tsr.EndTimestampMicros) } // Find half-open interval to remove. // Cells are in descending timestamp order, // so the predicates to sort.Search are inverted. si, ei := 0, len(cs) if tsr.StartTimestampMicros > 0 { ei = sort.Search(len(cs), func(i int) bool { return cs[i].ts < tsr.StartTimestampMicros }) } if tsr.EndTimestampMicros > 0 { si = sort.Search(len(cs), func(i int) bool { return cs[i].ts < tsr.EndTimestampMicros }) } if si < ei { copy(cs[si:], cs[ei:]) cs = cs[:len(cs)-(ei-si)] } } else { cs = nil } if len(cs) == 0 { delete(r.families[fam].cells, col) colNames := r.families[fam].colNames i := sort.Search(len(colNames), func(i int) bool { return colNames[i] >= col }) if i < len(colNames) && colNames[i] == col { r.families[fam].colNames = append(colNames[:i], colNames[i+1:]...) } if len(r.families[fam].cells) == 0 { delete(r.families, fam) } } else { r.families[fam].cells[col] = cs } } case *btpb.Mutation_DeleteFromRow_: r.families = make(map[string]*family) case *btpb.Mutation_DeleteFromFamily_: fampre := mut.DeleteFromFamily.FamilyName delete(r.families, fampre) } } return nil } func maxTimestamp(x, y int64) int64 { if x > y { return x } return y } func newTimestamp() int64 { ts := time.Now().UnixNano() / 1e3 ts -= ts % 1000 // round to millisecond granularity return ts } func appendOrReplaceCell(cs []cell, newCell cell) []cell { replaced := false for i, cell := range cs { if cell.ts == newCell.ts { cs[i] = newCell replaced = true break } } if !replaced { cs = append(cs, newCell) } sort.Sort(byDescTS(cs)) return cs } func (s *server) ReadModifyWriteRow(ctx context.Context, req *btpb.ReadModifyWriteRowRequest) (*btpb.ReadModifyWriteRowResponse, error) { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return nil, grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } updates := make(map[string]cell) // copy of updated cells; keyed by full column name fs := tbl.columnFamilies() r := tbl.mutableRow(string(req.RowKey)) r.mu.Lock() defer r.mu.Unlock() // Assume all mutations apply to the most recent version of the cell. // TODO(dsymonds): Verify this assumption and document it in the proto. for _, rule := range req.Rules { if _, ok := fs[rule.FamilyName]; !ok { return nil, fmt.Errorf("unknown family %q", rule.FamilyName) } fam := rule.FamilyName col := string(rule.ColumnQualifier) isEmpty := false f := r.getOrCreateFamily(fam, fs[fam].order) cs := f.cells[col] isEmpty = len(cs) == 0 ts := newTimestamp() var newCell, prevCell cell if !isEmpty { cells := r.families[fam].cells[col] prevCell = cells[0] // ts is the max of now or the prev cell's timestamp in case the // prev cell is in the future ts = maxTimestamp(ts, prevCell.ts) } switch rule := rule.Rule.(type) { default: return nil, fmt.Errorf("unknown RMW rule oneof %T", rule) case *btpb.ReadModifyWriteRule_AppendValue: newCell = cell{ts: ts, value: append(prevCell.value, rule.AppendValue...)} case *btpb.ReadModifyWriteRule_IncrementAmount: var v int64 if !isEmpty { prevVal := prevCell.value if len(prevVal) != 8 { return nil, fmt.Errorf("increment on non-64-bit value") } v = int64(binary.BigEndian.Uint64(prevVal)) } v += rule.IncrementAmount var val [8]byte binary.BigEndian.PutUint64(val[:], uint64(v)) newCell = cell{ts: ts, value: val[:]} } key := strings.Join([]string{fam, col}, ":") updates[key] = newCell f.cells[col] = appendOrReplaceCell(f.cellsByColumn(col), newCell) } res := &btpb.Row{ Key: req.RowKey, } for col, cell := range updates { i := strings.Index(col, ":") fam, qual := col[:i], col[i+1:] var f *btpb.Family for _, ff := range res.Families { if ff.Name == fam { f = ff break } } if f == nil { f = &btpb.Family{Name: fam} res.Families = append(res.Families, f) } f.Columns = append(f.Columns, &btpb.Column{ Qualifier: []byte(qual), Cells: []*btpb.Cell{{ Value: cell.value, }}, }) } return &btpb.ReadModifyWriteRowResponse{Row: res}, nil } func (s *server) SampleRowKeys(req *btpb.SampleRowKeysRequest, stream btpb.Bigtable_SampleRowKeysServer) error { s.mu.Lock() tbl, ok := s.tables[req.TableName] s.mu.Unlock() if !ok { return grpc.Errorf(codes.NotFound, "table %q not found", req.TableName) } tbl.mu.RLock() defer tbl.mu.RUnlock() // The return value of SampleRowKeys is very loosely defined. Return at least the // final row key in the table and choose other row keys randomly. var offset int64 for i, row := range tbl.rows { if i == len(tbl.rows)-1 || rand.Int31n(100) == 0 { resp := &btpb.SampleRowKeysResponse{ RowKey: []byte(row.key), OffsetBytes: offset, } err := stream.Send(resp) if err != nil { return err } } offset += int64(row.size()) } return nil } // needGC is invoked whenever the server needs gcloop running. func (s *server) needGC() { s.mu.Lock() if s.gcc == nil { s.gcc = make(chan int) go s.gcloop(s.gcc) } s.mu.Unlock() } func (s *server) gcloop(done <-chan int) { const ( minWait = 500 // ms maxWait = 1500 // ms ) for { // Wait for a random time interval. d := time.Duration(minWait+rand.Intn(maxWait-minWait)) * time.Millisecond select { case <-time.After(d): case <-done: return // server has been closed } // Do a GC pass over all tables. var tables []*table s.mu.Lock() for _, tbl := range s.tables { tables = append(tables, tbl) } s.mu.Unlock() for _, tbl := range tables { tbl.gc() } } } type table struct { mu sync.RWMutex counter uint64 // increment by 1 when a new family is created families map[string]*columnFamily // keyed by plain family name rows []*row // sorted by row key rowIndex map[string]*row // indexed by row key } func newTable(ctr *btapb.CreateTableRequest) *table { fams := make(map[string]*columnFamily) c := uint64(0) if ctr.Table != nil { for id, cf := range ctr.Table.ColumnFamilies { fams[id] = &columnFamily{ name: ctr.Parent + "/columnFamilies/" + id, order: c, gcRule: cf.GcRule, } c++ } } return &table{ families: fams, counter: c, rowIndex: make(map[string]*row), } } func (t *table) validTimestamp(ts int64) bool { // Assume millisecond granularity is required. return ts%1000 == 0 } func (t *table) columnFamilies() map[string]*columnFamily { cp := make(map[string]*columnFamily) t.mu.RLock() for fam, cf := range t.families { cp[fam] = cf } t.mu.RUnlock() return cp } func (t *table) mutableRow(row string) *row { // Try fast path first. t.mu.RLock() r := t.rowIndex[row] t.mu.RUnlock() if r != nil { return r } // We probably need to create the row. t.mu.Lock() r = t.rowIndex[row] if r == nil { r = newRow(row) t.rowIndex[row] = r t.rows = append(t.rows, r) sort.Sort(byRowKey(t.rows)) // yay, inefficient! } t.mu.Unlock() return r } func (t *table) gc() { // This method doesn't add or remove rows, so we only need a read lock for the table. t.mu.RLock() defer t.mu.RUnlock() // Gather GC rules we'll apply. rules := make(map[string]*btapb.GcRule) // keyed by "fam" for fam, cf := range t.families { if cf.gcRule != nil { rules[fam] = cf.gcRule } } if len(rules) == 0 { return } for _, r := range t.rows { r.mu.Lock() r.gc(rules) r.mu.Unlock() } } type byRowKey []*row func (b byRowKey) Len() int { return len(b) } func (b byRowKey) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b byRowKey) Less(i, j int) bool { return b[i].key < b[j].key } type row struct { key string mu sync.Mutex families map[string]*family // keyed by family name } func newRow(key string) *row { return &row{ key: key, families: make(map[string]*family), } } // copy returns a copy of the row. // Cell values are aliased. // r.mu should be held. func (r *row) copy() *row { nr := newRow(r.key) for _, fam := range r.families { nr.families[fam.name] = &family{ name: fam.name, order: fam.order, colNames: fam.colNames, cells: make(map[string][]cell), } for col, cs := range fam.cells { // Copy the []cell slice, but not the []byte inside each cell. nr.families[fam.name].cells[col] = append([]cell(nil), cs...) } } return nr } // isEmpty returns true if a row doesn't contain any cell func (r *row) isEmpty() bool { for _, fam := range r.families { for _, cs := range fam.cells { if len(cs) > 0 { return false } } } return true } // sortedFamilies returns a column family set // sorted in ascending creation order in a row. func (r *row) sortedFamilies() []*family { var families []*family for _, fam := range r.families { families = append(families, fam) } sort.Sort(byCreationOrder(families)) return families } func (r *row) getOrCreateFamily(name string, order uint64) *family { if _, ok := r.families[name]; !ok { r.families[name] = &family{ name: name, order: order, cells: make(map[string][]cell), } } return r.families[name] } // gc applies the given GC rules to the row. // r.mu should be held. func (r *row) gc(rules map[string]*btapb.GcRule) { for _, fam := range r.families { rule, ok := rules[fam.name] if !ok { continue } for col, cs := range fam.cells { r.families[fam.name].cells[col] = applyGC(cs, rule) } } } // size returns the total size of all cell values in the row. func (r *row) size() int { size := 0 for _, fam := range r.families { for _, cells := range fam.cells { for _, cell := range cells { size += len(cell.value) } } } return size } func (r *row) String() string { return r.key } var gcTypeWarn sync.Once // applyGC applies the given GC rule to the cells. func applyGC(cells []cell, rule *btapb.GcRule) []cell { switch rule := rule.Rule.(type) { default: // TODO(dsymonds): Support GcRule_Intersection_ gcTypeWarn.Do(func() { log.Printf("Unsupported GC rule type %T", rule) }) case *btapb.GcRule_Union_: for _, sub := range rule.Union.Rules { cells = applyGC(cells, sub) } return cells case *btapb.GcRule_MaxAge: // Timestamps are in microseconds. cutoff := time.Now().UnixNano() / 1e3 cutoff -= rule.MaxAge.Seconds * 1e6 cutoff -= int64(rule.MaxAge.Nanos) / 1e3 // The slice of cells in in descending timestamp order. // This sort.Search will return the index of the first cell whose timestamp is chronologically before the cutoff. si := sort.Search(len(cells), func(i int) bool { return cells[i].ts < cutoff }) if si < len(cells) { log.Printf("bttest: GC MaxAge(%v) deleted %d cells.", rule.MaxAge, len(cells)-si) } return cells[:si] case *btapb.GcRule_MaxNumVersions: n := int(rule.MaxNumVersions) if len(cells) > n { cells = cells[:n] } return cells } return cells } type family struct { name string // Column family name order uint64 // Creation order of column family colNames []string // Collumn names are sorted in lexicographical ascending order cells map[string][]cell // Keyed by collumn name; cells are in descending timestamp order } type byCreationOrder []*family func (b byCreationOrder) Len() int { return len(b) } func (b byCreationOrder) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b byCreationOrder) Less(i, j int) bool { return b[i].order < b[j].order } // cellsByColumn adds the column name to colNames set if it does not exist // and returns all cells within a column func (f *family) cellsByColumn(name string) []cell { if _, ok := f.cells[name]; !ok { f.colNames = append(f.colNames, name) sort.Strings(f.colNames) } return f.cells[name] } type cell struct { ts int64 value []byte } type byDescTS []cell func (b byDescTS) Len() int { return len(b) } func (b byDescTS) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b byDescTS) Less(i, j int) bool { return b[i].ts > b[j].ts } type columnFamily struct { name string order uint64 // Creation order of column family gcRule *btapb.GcRule } func (c *columnFamily) proto() *btapb.ColumnFamily { return &btapb.ColumnFamily{ GcRule: c.gcRule, } } func toColumnFamilies(families map[string]*columnFamily) map[string]*btapb.ColumnFamily { fs := make(map[string]*btapb.ColumnFamily) for k, v := range families { fs[k] = v.proto() } return fs }