/* Copyright 2015 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package e2e import ( "fmt" "math" "os" "sort" "strconv" "sync" "time" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/labels" "k8s.io/apimachinery/pkg/runtime" "k8s.io/apimachinery/pkg/runtime/schema" "k8s.io/apimachinery/pkg/util/sets" "k8s.io/apimachinery/pkg/watch" "k8s.io/kubernetes/pkg/api" "k8s.io/kubernetes/pkg/api/resource" "k8s.io/kubernetes/pkg/api/v1" "k8s.io/kubernetes/pkg/apis/batch" "k8s.io/kubernetes/pkg/apis/extensions" "k8s.io/kubernetes/pkg/client/cache" "k8s.io/kubernetes/pkg/client/clientset_generated/clientset" "k8s.io/kubernetes/pkg/client/clientset_generated/internalclientset" "k8s.io/kubernetes/pkg/fields" utiluuid "k8s.io/kubernetes/pkg/util/uuid" "k8s.io/kubernetes/pkg/util/workqueue" "k8s.io/kubernetes/test/e2e/framework" testutils "k8s.io/kubernetes/test/utils" . "github.com/onsi/ginkgo" . "github.com/onsi/gomega" ) const ( MinSaturationThreshold = 2 * time.Minute MinPodsPerSecondThroughput = 8 DensityPollInterval = 10 * time.Second ) // Maximum container failures this test tolerates before failing. var MaxContainerFailures = 0 type DensityTestConfig struct { Configs []testutils.RunObjectConfig ClientSet clientset.Interface InternalClientset internalclientset.Interface PollInterval time.Duration PodCount int // What kind of resource we want to create kind schema.GroupKind SecretConfigs []*testutils.SecretConfig DaemonConfigs []*testutils.DaemonConfig } func density30AddonResourceVerifier(numNodes int) map[string]framework.ResourceConstraint { var apiserverMem uint64 var controllerMem uint64 var schedulerMem uint64 apiserverCPU := math.MaxFloat32 apiserverMem = math.MaxUint64 controllerCPU := math.MaxFloat32 controllerMem = math.MaxUint64 schedulerCPU := math.MaxFloat32 schedulerMem = math.MaxUint64 framework.Logf("Setting resource constraings for provider: %s", framework.TestContext.Provider) if framework.ProviderIs("kubemark") { if numNodes <= 5 { apiserverCPU = 0.35 apiserverMem = 150 * (1024 * 1024) controllerCPU = 0.15 controllerMem = 100 * (1024 * 1024) schedulerCPU = 0.05 schedulerMem = 50 * (1024 * 1024) } else if numNodes <= 100 { apiserverCPU = 1.5 apiserverMem = 1500 * (1024 * 1024) controllerCPU = 0.75 controllerMem = 750 * (1024 * 1024) schedulerCPU = 0.75 schedulerMem = 500 * (1024 * 1024) } else if numNodes <= 500 { apiserverCPU = 3.5 apiserverMem = 3400 * (1024 * 1024) controllerCPU = 1.3 controllerMem = 1100 * (1024 * 1024) schedulerCPU = 1.5 schedulerMem = 500 * (1024 * 1024) } else if numNodes <= 1000 { apiserverCPU = 5.5 apiserverMem = 4000 * (1024 * 1024) controllerCPU = 3 controllerMem = 2000 * (1024 * 1024) schedulerCPU = 1.5 schedulerMem = 750 * (1024 * 1024) } } else { if numNodes <= 100 { // TODO: Investigate higher apiserver consumption and // potentially revert to 1.5cpu and 1.3GB - see #30871 apiserverCPU = 1.8 apiserverMem = 2200 * (1024 * 1024) controllerCPU = 0.5 controllerMem = 300 * (1024 * 1024) schedulerCPU = 0.4 schedulerMem = 150 * (1024 * 1024) } } constraints := make(map[string]framework.ResourceConstraint) constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{ CPUConstraint: 0.2, MemoryConstraint: 250 * (1024 * 1024), } constraints["elasticsearch-logging"] = framework.ResourceConstraint{ CPUConstraint: 2, // TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164 MemoryConstraint: 5000 * (1024 * 1024), } constraints["heapster"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 1800 * (1024 * 1024), } constraints["kibana-logging"] = framework.ResourceConstraint{ CPUConstraint: 0.2, MemoryConstraint: 100 * (1024 * 1024), } constraints["kube-proxy"] = framework.ResourceConstraint{ CPUConstraint: 0.15, MemoryConstraint: 30 * (1024 * 1024), } constraints["l7-lb-controller"] = framework.ResourceConstraint{ CPUConstraint: 0.15, MemoryConstraint: 60 * (1024 * 1024), } constraints["influxdb"] = framework.ResourceConstraint{ CPUConstraint: 2, MemoryConstraint: 500 * (1024 * 1024), } constraints["kube-apiserver"] = framework.ResourceConstraint{ CPUConstraint: apiserverCPU, MemoryConstraint: apiserverMem, } constraints["kube-controller-manager"] = framework.ResourceConstraint{ CPUConstraint: controllerCPU, MemoryConstraint: controllerMem, } constraints["kube-scheduler"] = framework.ResourceConstraint{ CPUConstraint: schedulerCPU, MemoryConstraint: schedulerMem, } return constraints } func logPodStartupStatus(c clientset.Interface, expectedPods int, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) { label := labels.SelectorFromSet(labels.Set(observedLabels)) podStore := testutils.NewPodStore(c, v1.NamespaceAll, label, fields.Everything()) defer podStore.Stop() ticker := time.NewTicker(period) defer ticker.Stop() for { select { case <-ticker.C: pods := podStore.List() startupStatus := testutils.ComputeRCStartupStatus(pods, expectedPods) framework.Logf(startupStatus.String("Density")) case <-stopCh: pods := podStore.List() startupStatus := testutils.ComputeRCStartupStatus(pods, expectedPods) framework.Logf(startupStatus.String("Density")) return } } } // runDensityTest will perform a density test and return the time it took for // all pods to start func runDensityTest(dtc DensityTestConfig) time.Duration { defer GinkgoRecover() // Create all secrets for i := range dtc.SecretConfigs { dtc.SecretConfigs[i].Run() } for i := range dtc.DaemonConfigs { dtc.DaemonConfigs[i].Run() } // Start all replication controllers. startTime := time.Now() wg := sync.WaitGroup{} wg.Add(len(dtc.Configs)) for i := range dtc.Configs { config := dtc.Configs[i] go func() { defer GinkgoRecover() // Call wg.Done() in defer to avoid blocking whole test // in case of error from RunRC. defer wg.Done() framework.ExpectNoError(config.Run()) }() } logStopCh := make(chan struct{}) go logPodStartupStatus(dtc.ClientSet, dtc.PodCount, map[string]string{"type": "densityPod"}, dtc.PollInterval, logStopCh) wg.Wait() startupTime := time.Now().Sub(startTime) close(logStopCh) framework.Logf("E2E startup time for %d pods: %v", dtc.PodCount, startupTime) framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(dtc.PodCount)/float32(startupTime/time.Second)) // Print some data about Pod to Node allocation By("Printing Pod to Node allocation data") podList, err := dtc.ClientSet.Core().Pods(v1.NamespaceAll).List(v1.ListOptions{}) framework.ExpectNoError(err) pausePodAllocation := make(map[string]int) systemPodAllocation := make(map[string][]string) for _, pod := range podList.Items { if pod.Namespace == api.NamespaceSystem { systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name) } else { pausePodAllocation[pod.Spec.NodeName]++ } } nodeNames := make([]string, 0) for k := range pausePodAllocation { nodeNames = append(nodeNames, k) } sort.Strings(nodeNames) for _, node := range nodeNames { framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node]) } return startupTime } func cleanupDensityTest(dtc DensityTestConfig) { defer GinkgoRecover() By("Deleting created Collections") // We explicitly delete all pods to have API calls necessary for deletion accounted in metrics. for i := range dtc.Configs { name := dtc.Configs[i].GetName() namespace := dtc.Configs[i].GetNamespace() kind := dtc.Configs[i].GetKind() if framework.TestContext.GarbageCollectorEnabled && kindSupportsGarbageCollector(kind) { By(fmt.Sprintf("Cleaning up only the %v, garbage collector will clean up the pods", kind)) err := framework.DeleteResourceAndWaitForGC(dtc.ClientSet, kind, namespace, name) framework.ExpectNoError(err) } else { By(fmt.Sprintf("Cleaning up the %v and pods", kind)) err := framework.DeleteResourceAndPods(dtc.ClientSet, dtc.InternalClientset, kind, namespace, name) framework.ExpectNoError(err) } } // Delete all secrets for i := range dtc.SecretConfigs { dtc.SecretConfigs[i].Stop() } for i := range dtc.DaemonConfigs { framework.ExpectNoError(framework.DeleteResourceAndPods( dtc.ClientSet, dtc.InternalClientset, extensions.Kind("DaemonSet"), dtc.DaemonConfigs[i].Namespace, dtc.DaemonConfigs[i].Name, )) } } // This test suite can take a long time to run, and can affect or be affected by other tests. // So by default it is added to the ginkgo.skip list (see driver.go). // To run this suite you must explicitly ask for it by setting the // -t/--test flag or ginkgo.focus flag. // IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones // results will not be representative for control-plane performance as we'll start hitting // limits on Docker's concurrent container startup. var _ = framework.KubeDescribe("Density", func() { var c clientset.Interface var nodeCount int var name string var additionalPodsPrefix string var ns string var uuid string var e2eStartupTime time.Duration var totalPods int var nodeCpuCapacity int64 var nodeMemCapacity int64 var nodes *v1.NodeList var masters sets.String // Gathers data prior to framework namespace teardown AfterEach(func() { saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second if saturationThreshold < MinSaturationThreshold { saturationThreshold = MinSaturationThreshold } Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold)) saturationData := framework.SaturationTime{ TimeToSaturate: e2eStartupTime, NumberOfNodes: nodeCount, NumberOfPods: totalPods, Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second), } framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData)) // Verify latency metrics. highLatencyRequests, err := framework.HighLatencyRequests(c) framework.ExpectNoError(err) Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests") // Verify scheduler metrics. // TODO: Reset metrics at the beginning of the test. // We should do something similar to how we do it for APIserver. if err = framework.VerifySchedulerLatency(c); err != nil { framework.Logf("Warning: Scheduler latency not calculated, %v", err) } }) // Explicitly put here, to delete namespace at the end of the test // (after measuring latency metrics, etc.). f := framework.NewDefaultFramework("density") f.NamespaceDeletionTimeout = time.Hour BeforeEach(func() { c = f.ClientSet ns = f.Namespace.Name masters, nodes = framework.GetMasterAndWorkerNodesOrDie(c) nodeCount = len(nodes.Items) Expect(nodeCount).NotTo(BeZero()) nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue() nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value() // Terminating a namespace (deleting the remaining objects from it - which // generally means events) can affect the current run. Thus we wait for all // terminating namespace to be finally deleted before starting this test. err := framework.CheckTestingNSDeletedExcept(c, ns) framework.ExpectNoError(err) uuid = string(utiluuid.NewUUID()) framework.ExpectNoError(framework.ResetMetrics(c)) framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777)) framework.Logf("Listing nodes for easy debugging:\n") for _, node := range nodes.Items { var internalIP, externalIP string for _, address := range node.Status.Addresses { if address.Type == v1.NodeInternalIP { internalIP = address.Address } if address.Type == v1.NodeExternalIP { externalIP = address.Address } } framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP) } }) type Density struct { // Controls if e2e latency tests should be run (they are slow) runLatencyTest bool podsPerNode int // Controls how often the apiserver is polled for pods interval time.Duration // What kind of resource we should be creating. Default: ReplicationController kind schema.GroupKind secretsPerPod int daemonsPerNode int } densityTests := []Density{ // TODO: Expose runLatencyTest as ginkgo flag. {podsPerNode: 3, runLatencyTest: false, kind: api.Kind("ReplicationController")}, {podsPerNode: 30, runLatencyTest: true, kind: api.Kind("ReplicationController")}, {podsPerNode: 50, runLatencyTest: false, kind: api.Kind("ReplicationController")}, {podsPerNode: 95, runLatencyTest: true, kind: api.Kind("ReplicationController")}, {podsPerNode: 100, runLatencyTest: false, kind: api.Kind("ReplicationController")}, // Tests for other resource types: {podsPerNode: 30, runLatencyTest: true, kind: extensions.Kind("Deployment")}, {podsPerNode: 30, runLatencyTest: true, kind: batch.Kind("Job")}, // Test scheduling when daemons are preset {podsPerNode: 30, runLatencyTest: true, kind: api.Kind("ReplicationController"), daemonsPerNode: 2}, // Test with secrets {podsPerNode: 30, runLatencyTest: true, kind: extensions.Kind("Deployment"), secretsPerPod: 2}, } for _, testArg := range densityTests { feature := "ManualPerformance" switch testArg.podsPerNode { case 30: if testArg.kind == api.Kind("ReplicationController") && testArg.daemonsPerNode == 0 && testArg.secretsPerPod == 0 { feature = "Performance" } case 95: feature = "HighDensityPerformance" } name := fmt.Sprintf("[Feature:%s] should allow starting %d pods per node using %v with %v secrets and %v daemons", feature, testArg.podsPerNode, testArg.kind, testArg.secretsPerPod, testArg.daemonsPerNode, ) itArg := testArg It(name, func() { nodePreparer := framework.NewE2ETestNodePreparer( f.ClientSet, []testutils.CountToStrategy{{Count: nodeCount, Strategy: &testutils.TrivialNodePrepareStrategy{}}}, ) framework.ExpectNoError(nodePreparer.PrepareNodes()) defer nodePreparer.CleanupNodes() podsPerNode := itArg.podsPerNode if podsPerNode == 30 { f.AddonResourceConstraints = func() map[string]framework.ResourceConstraint { return density30AddonResourceVerifier(nodeCount) }() } totalPods = (podsPerNode - itArg.daemonsPerNode) * nodeCount fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid)) framework.ExpectNoError(err) defer fileHndl.Close() // nodeCountPerNamespace and CreateNamespaces are defined in load.go numberOfCollections := (nodeCount + nodeCountPerNamespace - 1) / nodeCountPerNamespace namespaces, err := CreateNamespaces(f, numberOfCollections, fmt.Sprintf("density-%v", testArg.podsPerNode)) framework.ExpectNoError(err) configs := make([]testutils.RunObjectConfig, numberOfCollections) secretConfigs := make([]*testutils.SecretConfig, 0, numberOfCollections*itArg.secretsPerPod) // Since all RCs are created at the same time, timeout for each config // has to assume that it will be run at the very end. podThroughput := 20 timeout := time.Duration(totalPods/podThroughput)*time.Second + 3*time.Minute // createClients is defined in load.go clients, internalClients, err := createClients(numberOfCollections) for i := 0; i < numberOfCollections; i++ { nsName := namespaces[i].Name secretNames := []string{} for j := 0; j < itArg.secretsPerPod; j++ { secretName := fmt.Sprintf("density-secret-%v-%v", i, j) secretConfigs = append(secretConfigs, &testutils.SecretConfig{ Content: map[string]string{"foo": "bar"}, Client: clients[i], Name: secretName, Namespace: nsName, LogFunc: framework.Logf, }) secretNames = append(secretNames, secretName) } name := fmt.Sprintf("density%v-%v-%v", totalPods, i, uuid) baseConfig := &testutils.RCConfig{ Client: clients[i], InternalClient: internalClients[i], Image: framework.GetPauseImageName(f.ClientSet), Name: name, Namespace: nsName, Labels: map[string]string{"type": "densityPod"}, PollInterval: DensityPollInterval, Timeout: timeout, PodStatusFile: fileHndl, Replicas: (totalPods + numberOfCollections - 1) / numberOfCollections, CpuRequest: nodeCpuCapacity / 100, MemRequest: nodeMemCapacity / 100, MaxContainerFailures: &MaxContainerFailures, Silent: true, LogFunc: framework.Logf, SecretNames: secretNames, } switch itArg.kind { case api.Kind("ReplicationController"): configs[i] = baseConfig case extensions.Kind("ReplicaSet"): configs[i] = &testutils.ReplicaSetConfig{RCConfig: *baseConfig} case extensions.Kind("Deployment"): configs[i] = &testutils.DeploymentConfig{RCConfig: *baseConfig} case batch.Kind("Job"): configs[i] = &testutils.JobConfig{RCConfig: *baseConfig} default: framework.Failf("Unsupported kind: %v", itArg.kind) } } dConfig := DensityTestConfig{ ClientSet: f.ClientSet, InternalClientset: f.InternalClientset, Configs: configs, PodCount: totalPods, PollInterval: DensityPollInterval, kind: itArg.kind, SecretConfigs: secretConfigs, } for i := 0; i < itArg.daemonsPerNode; i++ { dConfig.DaemonConfigs = append(dConfig.DaemonConfigs, &testutils.DaemonConfig{ Client: f.ClientSet, Name: fmt.Sprintf("density-daemon-%v", i), Namespace: f.Namespace.Name, LogFunc: framework.Logf, }) } e2eStartupTime = runDensityTest(dConfig) if itArg.runLatencyTest { By("Scheduling additional Pods to measure startup latencies") createTimes := make(map[string]metav1.Time, 0) nodeNames := make(map[string]string, 0) scheduleTimes := make(map[string]metav1.Time, 0) runTimes := make(map[string]metav1.Time, 0) watchTimes := make(map[string]metav1.Time, 0) var mutex sync.Mutex checkPod := func(p *v1.Pod) { mutex.Lock() defer mutex.Unlock() defer GinkgoRecover() if p.Status.Phase == v1.PodRunning { if _, found := watchTimes[p.Name]; !found { watchTimes[p.Name] = metav1.Now() createTimes[p.Name] = p.CreationTimestamp nodeNames[p.Name] = p.Spec.NodeName var startTime metav1.Time for _, cs := range p.Status.ContainerStatuses { if cs.State.Running != nil { if startTime.Before(cs.State.Running.StartedAt) { startTime = cs.State.Running.StartedAt } } } if startTime != metav1.NewTime(time.Time{}) { runTimes[p.Name] = startTime } else { framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name) } } } } additionalPodsPrefix = "density-latency-pod" stopCh := make(chan struct{}) latencyPodStores := make([]cache.Store, len(namespaces)) for i := 0; i < len(namespaces); i++ { nsName := namespaces[i].Name latencyPodsStore, controller := cache.NewInformer( &cache.ListWatch{ ListFunc: func(options v1.ListOptions) (runtime.Object, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}).String() obj, err := c.Core().Pods(nsName).List(options) return runtime.Object(obj), err }, WatchFunc: func(options v1.ListOptions) (watch.Interface, error) { options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}).String() return c.Core().Pods(nsName).Watch(options) }, }, &v1.Pod{}, 0, cache.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { p, ok := obj.(*v1.Pod) if !ok { framework.Logf("Failed to cast observed object to *v1.Pod.") } Expect(ok).To(Equal(true)) go checkPod(p) }, UpdateFunc: func(oldObj, newObj interface{}) { p, ok := newObj.(*v1.Pod) if !ok { framework.Logf("Failed to cast observed object to *v1.Pod.") } Expect(ok).To(Equal(true)) go checkPod(p) }, }, ) latencyPodStores[i] = latencyPodsStore go controller.Run(stopCh) } // Create some additional pods with throughput ~5 pods/sec. var wg sync.WaitGroup wg.Add(nodeCount) // Explicitly set requests here. // Thanks to it we trigger increasing priority function by scheduling // a pod to a node, which in turn will result in spreading latency pods // more evenly between nodes. cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI) memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI) if podsPerNode > 30 { // This is to make them schedulable on high-density tests // (e.g. 100 pods/node kubemark). cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI) memRequest = *resource.NewQuantity(0, resource.DecimalSI) } rcNameToNsMap := map[string]string{} for i := 1; i <= nodeCount; i++ { name := additionalPodsPrefix + "-" + strconv.Itoa(i) nsName := namespaces[i%len(namespaces)].Name rcNameToNsMap[name] = nsName go createRunningPodFromRC(&wg, c, name, nsName, framework.GetPauseImageName(f.ClientSet), additionalPodsPrefix, cpuRequest, memRequest) time.Sleep(200 * time.Millisecond) } wg.Wait() By("Waiting for all Pods begin observed by the watch...") waitTimeout := 10 * time.Minute for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) { if time.Since(start) < waitTimeout { framework.Failf("Timeout reached waiting for all Pods being observed by the watch.") } } close(stopCh) nodeToLatencyPods := make(map[string]int) for i := range latencyPodStores { for _, item := range latencyPodStores[i].List() { pod := item.(*v1.Pod) nodeToLatencyPods[pod.Spec.NodeName]++ } for node, count := range nodeToLatencyPods { if count > 1 { framework.Logf("%d latency pods scheduled on %s", count, node) } } } for i := 0; i < len(namespaces); i++ { nsName := namespaces[i].Name selector := fields.Set{ "involvedObject.kind": "Pod", "involvedObject.namespace": nsName, "source": v1.DefaultSchedulerName, }.AsSelector().String() options := v1.ListOptions{FieldSelector: selector} schedEvents, err := c.Core().Events(nsName).List(options) framework.ExpectNoError(err) for k := range createTimes { for _, event := range schedEvents.Items { if event.InvolvedObject.Name == k { scheduleTimes[k] = event.FirstTimestamp break } } } } scheduleLag := make([]framework.PodLatencyData, 0) startupLag := make([]framework.PodLatencyData, 0) watchLag := make([]framework.PodLatencyData, 0) schedToWatchLag := make([]framework.PodLatencyData, 0) e2eLag := make([]framework.PodLatencyData, 0) for name, create := range createTimes { sched, ok := scheduleTimes[name] if !ok { framework.Logf("Failed to find schedule time for %v", name) } Expect(ok).To(Equal(true)) run, ok := runTimes[name] if !ok { framework.Logf("Failed to find run time for %v", name) } Expect(ok).To(Equal(true)) watch, ok := watchTimes[name] if !ok { framework.Logf("Failed to find watch time for %v", name) } Expect(ok).To(Equal(true)) node, ok := nodeNames[name] if !ok { framework.Logf("Failed to find node for %v", name) } Expect(ok).To(Equal(true)) scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)}) startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)}) watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)}) schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)}) e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)}) } sort.Sort(framework.LatencySlice(scheduleLag)) sort.Sort(framework.LatencySlice(startupLag)) sort.Sort(framework.LatencySlice(watchLag)) sort.Sort(framework.LatencySlice(schedToWatchLag)) sort.Sort(framework.LatencySlice(e2eLag)) framework.PrintLatencies(scheduleLag, "worst schedule latencies") framework.PrintLatencies(startupLag, "worst run-after-schedule latencies") framework.PrintLatencies(watchLag, "worst watch latencies") framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies") framework.PrintLatencies(e2eLag, "worst e2e total latencies") // Test whether e2e pod startup time is acceptable. podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)} framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency)) framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c) By("Removing additional replication controllers") deleteRC := func(i int) { defer GinkgoRecover() name := additionalPodsPrefix + "-" + strconv.Itoa(i+1) framework.ExpectNoError(framework.DeleteRCAndWaitForGC(c, rcNameToNsMap[name], name)) } workqueue.Parallelize(16, nodeCount, deleteRC) } cleanupDensityTest(dConfig) }) } // Calculate total number of pods from each node's max-pod It("[Feature:ManualPerformance] should allow running maximum capacity pods on nodes", func() { totalPods = 0 for _, n := range nodes.Items { totalPods += int(n.Status.Capacity.Pods().Value()) } totalPods -= framework.WaitForStableCluster(c, masters) fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid)) framework.ExpectNoError(err) defer fileHndl.Close() collectionCount := 1 configs := make([]testutils.RunObjectConfig, collectionCount) podsPerCollection := int(totalPods / collectionCount) for i := 0; i < collectionCount; i++ { if i == collectionCount-1 { podsPerCollection += int(math.Mod(float64(totalPods), float64(collectionCount))) } name = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid configs[i] = &testutils.RCConfig{Client: c, Image: framework.GetPauseImageName(f.ClientSet), Name: name, Namespace: ns, Labels: map[string]string{"type": "densityPod"}, PollInterval: DensityPollInterval, PodStatusFile: fileHndl, Replicas: podsPerCollection, MaxContainerFailures: &MaxContainerFailures, Silent: true, LogFunc: framework.Logf, } } dConfig := DensityTestConfig{ ClientSet: f.ClientSet, Configs: configs, PodCount: totalPods, PollInterval: DensityPollInterval, } e2eStartupTime = runDensityTest(dConfig) cleanupDensityTest(dConfig) }) }) func createRunningPodFromRC(wg *sync.WaitGroup, c clientset.Interface, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) { defer GinkgoRecover() defer wg.Done() labels := map[string]string{ "type": podType, "name": name, } rc := &v1.ReplicationController{ ObjectMeta: v1.ObjectMeta{ Name: name, Labels: labels, }, Spec: v1.ReplicationControllerSpec{ Replicas: func(i int) *int32 { x := int32(i); return &x }(1), Selector: labels, Template: &v1.PodTemplateSpec{ ObjectMeta: v1.ObjectMeta{ Labels: labels, }, Spec: v1.PodSpec{ Containers: []v1.Container{ { Name: name, Image: image, Resources: v1.ResourceRequirements{ Requests: v1.ResourceList{ v1.ResourceCPU: cpuRequest, v1.ResourceMemory: memRequest, }, }, }, }, DNSPolicy: v1.DNSDefault, }, }, }, } _, err := c.Core().ReplicationControllers(ns).Create(rc) framework.ExpectNoError(err) framework.ExpectNoError(framework.WaitForControlledPodsRunning(c, ns, name, api.Kind("ReplicationController"))) framework.Logf("Found pod '%s' running", name) } func kindSupportsGarbageCollector(kind schema.GroupKind) bool { return kind != extensions.Kind("Deployment") && kind != batch.Kind("Job") }