// Package inf (type inf.Dec) implements "infinite-precision" decimal // arithmetic. // "Infinite precision" describes two characteristics: practically unlimited // precision for decimal number representation and no support for calculating // with any specific fixed precision. // (Although there is no practical limit on precision, inf.Dec can only // represent finite decimals.) // // This package is currently in experimental stage and the API may change. // // This package does NOT support: // - rounding to specific precisions (as opposed to specific decimal positions) // - the notion of context (each rounding must be explicit) // - NaN and Inf values, and distinguishing between positive and negative zero // - conversions to and from float32/64 types // // Features considered for possible addition: // + formatting options // + Exp method // + combined operations such as AddRound/MulAdd etc // + exchanging data in decimal32/64/128 formats // package inf // import "gopkg.in/inf.v0" // TODO: // - avoid excessive deep copying (quo and rounders) import ( "fmt" "io" "math/big" "strings" ) // A Dec represents a signed arbitrary-precision decimal. // It is a combination of a sign, an arbitrary-precision integer coefficient // value, and a signed fixed-precision exponent value. // The sign and the coefficient value are handled together as a signed value // and referred to as the unscaled value. // (Positive and negative zero values are not distinguished.) // Since the exponent is most commonly non-positive, it is handled in negated // form and referred to as scale. // // The mathematical value of a Dec equals: // // unscaled * 10**(-scale) // // Note that different Dec representations may have equal mathematical values. // // unscaled scale String() // ------------------------- // 0 0 "0" // 0 2 "0.00" // 0 -2 "0" // 1 0 "1" // 100 2 "1.00" // 10 0 "10" // 1 -1 "10" // // The zero value for a Dec represents the value 0 with scale 0. // // Operations are typically performed through the *Dec type. // The semantics of the assignment operation "=" for "bare" Dec values is // undefined and should not be relied on. // // Methods are typically of the form: // // func (z *Dec) Op(x, y *Dec) *Dec // // and implement operations z = x Op y with the result as receiver; if it // is one of the operands it may be overwritten (and its memory reused). // To enable chaining of operations, the result is also returned. Methods // returning a result other than *Dec take one of the operands as the receiver. // // A "bare" Quo method (quotient / division operation) is not provided, as the // result is not always a finite decimal and thus in general cannot be // represented as a Dec. // Instead, in the common case when rounding is (potentially) necessary, // QuoRound should be used with a Scale and a Rounder. // QuoExact or QuoRound with RoundExact can be used in the special cases when it // is known that the result is always a finite decimal. // type Dec struct { unscaled big.Int scale Scale } // Scale represents the type used for the scale of a Dec. type Scale int32 const scaleSize = 4 // bytes in a Scale value // Scaler represents a method for obtaining the scale to use for the result of // an operation on x and y. type scaler interface { Scale(x *Dec, y *Dec) Scale } var bigInt = [...]*big.Int{ big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4), big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9), big.NewInt(10), } var exp10cache [64]big.Int = func() [64]big.Int { e10, e10i := [64]big.Int{}, bigInt[1] for i, _ := range e10 { e10[i].Set(e10i) e10i = new(big.Int).Mul(e10i, bigInt[10]) } return e10 }() // NewDec allocates and returns a new Dec set to the given int64 unscaled value // and scale. func NewDec(unscaled int64, scale Scale) *Dec { return new(Dec).SetUnscaled(unscaled).SetScale(scale) } // NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled // value and scale. func NewDecBig(unscaled *big.Int, scale Scale) *Dec { return new(Dec).SetUnscaledBig(unscaled).SetScale(scale) } // Scale returns the scale of x. func (x *Dec) Scale() Scale { return x.scale } // Unscaled returns the unscaled value of x for u and true for ok when the // unscaled value can be represented as int64; otherwise it returns an undefined // int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid // checking the validity of the value when the check is known to be redundant. func (x *Dec) Unscaled() (u int64, ok bool) { u = x.unscaled.Int64() var i big.Int ok = i.SetInt64(u).Cmp(&x.unscaled) == 0 return } // UnscaledBig returns the unscaled value of x as *big.Int. func (x *Dec) UnscaledBig() *big.Int { return &x.unscaled } // SetScale sets the scale of z, with the unscaled value unchanged, and returns // z. // The mathematical value of the Dec changes as if it was multiplied by // 10**(oldscale-scale). func (z *Dec) SetScale(scale Scale) *Dec { z.scale = scale return z } // SetUnscaled sets the unscaled value of z, with the scale unchanged, and // returns z. func (z *Dec) SetUnscaled(unscaled int64) *Dec { z.unscaled.SetInt64(unscaled) return z } // SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and // returns z. func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec { z.unscaled.Set(unscaled) return z } // Set sets z to the value of x and returns z. // It does nothing if z == x. func (z *Dec) Set(x *Dec) *Dec { if z != x { z.SetUnscaledBig(x.UnscaledBig()) z.SetScale(x.Scale()) } return z } // Sign returns: // // -1 if x < 0 // 0 if x == 0 // +1 if x > 0 // func (x *Dec) Sign() int { return x.UnscaledBig().Sign() } // Neg sets z to -x and returns z. func (z *Dec) Neg(x *Dec) *Dec { z.SetScale(x.Scale()) z.UnscaledBig().Neg(x.UnscaledBig()) return z } // Cmp compares x and y and returns: // // -1 if x < y // 0 if x == y // +1 if x > y // func (x *Dec) Cmp(y *Dec) int { xx, yy := upscale(x, y) return xx.UnscaledBig().Cmp(yy.UnscaledBig()) } // Abs sets z to |x| (the absolute value of x) and returns z. func (z *Dec) Abs(x *Dec) *Dec { z.SetScale(x.Scale()) z.UnscaledBig().Abs(x.UnscaledBig()) return z } // Add sets z to the sum x+y and returns z. // The scale of z is the greater of the scales of x and y. func (z *Dec) Add(x, y *Dec) *Dec { xx, yy := upscale(x, y) z.SetScale(xx.Scale()) z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig()) return z } // Sub sets z to the difference x-y and returns z. // The scale of z is the greater of the scales of x and y. func (z *Dec) Sub(x, y *Dec) *Dec { xx, yy := upscale(x, y) z.SetScale(xx.Scale()) z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig()) return z } // Mul sets z to the product x*y and returns z. // The scale of z is the sum of the scales of x and y. func (z *Dec) Mul(x, y *Dec) *Dec { z.SetScale(x.Scale() + y.Scale()) z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig()) return z } // Round sets z to the value of x rounded to Scale s using Rounder r, and // returns z. func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec { return z.QuoRound(x, NewDec(1, 0), s, r) } // QuoRound sets z to the quotient x/y, rounded using the given Rounder to the // specified scale. // // If the rounder is RoundExact but the result can not be expressed exactly at // the specified scale, QuoRound returns nil, and the value of z is undefined. // // There is no corresponding Div method; the equivalent can be achieved through // the choice of Rounder used. // func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec { return z.quo(x, y, sclr{s}, r) } func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec { scl := s.Scale(x, y) var zzz *Dec if r.UseRemainder() { zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int)) zzz = r.Round(new(Dec), zz, rA, rB) } else { zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil) zzz = r.Round(new(Dec), zz, nil, nil) } if zzz == nil { return nil } return z.Set(zzz) } // QuoExact sets z to the quotient x/y and returns z when x/y is a finite // decimal. Otherwise it returns nil and the value of z is undefined. // // The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is // calculated so that the remainder will be zero whenever x/y is a finite // decimal. func (z *Dec) QuoExact(x, y *Dec) *Dec { return z.quo(x, y, scaleQuoExact{}, RoundExact) } // quoRem sets z to the quotient x/y with the scale s, and if useRem is true, // it sets remNum and remDen to the numerator and denominator of the remainder. // It returns z, remNum and remDen. // // The remainder is normalized to the range -1 < r < 1 to simplify rounding; // that is, the results satisfy the following equation: // // x / y = z + (remNum/remDen) * 10**(-z.Scale()) // // See Rounder for more details about rounding. // func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool, remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) { // difference (required adjustment) compared to "canonical" result scale shift := s - (x.Scale() - y.Scale()) // pointers to adjusted unscaled dividend and divisor var ix, iy *big.Int switch { case shift > 0: // increased scale: decimal-shift dividend left ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift)) iy = y.UnscaledBig() case shift < 0: // decreased scale: decimal-shift divisor left ix = x.UnscaledBig() iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift)) default: ix = x.UnscaledBig() iy = y.UnscaledBig() } // save a copy of iy in case it to be overwritten with the result iy2 := iy if iy == z.UnscaledBig() { iy2 = new(big.Int).Set(iy) } // set scale z.SetScale(s) // set unscaled if useRem { // Int division _, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int)) // set remainder remNum.Set(intr) remDen.Set(iy2) } else { z.UnscaledBig().Quo(ix, iy) } return z, remNum, remDen } type sclr struct{ s Scale } func (s sclr) Scale(x, y *Dec) Scale { return s.s } type scaleQuoExact struct{} func (sqe scaleQuoExact) Scale(x, y *Dec) Scale { rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig()) f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5]) var f10 Scale if f2 > f5 { f10 = Scale(f2) } else { f10 = Scale(f5) } return x.Scale() - y.Scale() + f10 } func factor(n *big.Int, p *big.Int) int { // could be improved for large factors d, f := n, 0 for { dd, dm := new(big.Int).DivMod(d, p, new(big.Int)) if dm.Sign() == 0 { f++ d = dd } else { break } } return f } func factor2(n *big.Int) int { // could be improved for large factors f := 0 for ; n.Bit(f) == 0; f++ { } return f } func upscale(a, b *Dec) (*Dec, *Dec) { if a.Scale() == b.Scale() { return a, b } if a.Scale() > b.Scale() { bb := b.rescale(a.Scale()) return a, bb } aa := a.rescale(b.Scale()) return aa, b } func exp10(x Scale) *big.Int { if int(x) < len(exp10cache) { return &exp10cache[int(x)] } return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil) } func (x *Dec) rescale(newScale Scale) *Dec { shift := newScale - x.Scale() switch { case shift < 0: e := exp10(-shift) return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale) case shift > 0: e := exp10(shift) return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale) } return x } var zeros = []byte("00000000000000000000000000000000" + "00000000000000000000000000000000") var lzeros = Scale(len(zeros)) func appendZeros(s []byte, n Scale) []byte { for i := Scale(0); i < n; i += lzeros { if n > i+lzeros { s = append(s, zeros...) } else { s = append(s, zeros[0:n-i]...) } } return s } func (x *Dec) String() string { if x == nil { return "<nil>" } scale := x.Scale() s := []byte(x.UnscaledBig().String()) if scale <= 0 { if scale != 0 && x.unscaled.Sign() != 0 { s = appendZeros(s, -scale) } return string(s) } negbit := Scale(-((x.Sign() - 1) / 2)) // scale > 0 lens := Scale(len(s)) if lens-negbit <= scale { ss := make([]byte, 0, scale+2) if negbit == 1 { ss = append(ss, '-') } ss = append(ss, '0', '.') ss = appendZeros(ss, scale-lens+negbit) ss = append(ss, s[negbit:]...) return string(ss) } // lens > scale ss := make([]byte, 0, lens+1) ss = append(ss, s[:lens-scale]...) ss = append(ss, '.') ss = append(ss, s[lens-scale:]...) return string(ss) } // Format is a support routine for fmt.Formatter. It accepts the decimal // formats 'd' and 'f', and handles both equivalently. // Width, precision, flags and bases 2, 8, 16 are not supported. func (x *Dec) Format(s fmt.State, ch rune) { if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' { fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String()) return } fmt.Fprintf(s, x.String()) } func (z *Dec) scan(r io.RuneScanner) (*Dec, error) { unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes dp, dg := -1, -1 // indexes of decimal point, first digit loop: for { ch, _, err := r.ReadRune() if err == io.EOF { break loop } if err != nil { return nil, err } switch { case ch == '+' || ch == '-': if len(unscaled) > 0 || dp >= 0 { // must be first character r.UnreadRune() break loop } case ch == '.': if dp >= 0 { r.UnreadRune() break loop } dp = len(unscaled) continue // don't add to unscaled case ch >= '0' && ch <= '9': if dg == -1 { dg = len(unscaled) } default: r.UnreadRune() break loop } unscaled = append(unscaled, byte(ch)) } if dg == -1 { return nil, fmt.Errorf("no digits read") } if dp >= 0 { z.SetScale(Scale(len(unscaled) - dp)) } else { z.SetScale(0) } _, ok := z.UnscaledBig().SetString(string(unscaled), 10) if !ok { return nil, fmt.Errorf("invalid decimal: %s", string(unscaled)) } return z, nil } // SetString sets z to the value of s, interpreted as a decimal (base 10), // and returns z and a boolean indicating success. The scale of z is the // number of digits after the decimal point (including any trailing 0s), // or 0 if there is no decimal point. If SetString fails, the value of z // is undefined but the returned value is nil. func (z *Dec) SetString(s string) (*Dec, bool) { r := strings.NewReader(s) _, err := z.scan(r) if err != nil { return nil, false } _, _, err = r.ReadRune() if err != io.EOF { return nil, false } // err == io.EOF => scan consumed all of s return z, true } // Scan is a support routine for fmt.Scanner; it sets z to the value of // the scanned number. It accepts the decimal formats 'd' and 'f', and // handles both equivalently. Bases 2, 8, 16 are not supported. // The scale of z is the number of digits after the decimal point // (including any trailing 0s), or 0 if there is no decimal point. func (z *Dec) Scan(s fmt.ScanState, ch rune) error { if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' { return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch) } s.SkipSpace() _, err := z.scan(s) return err } // Gob encoding version const decGobVersion byte = 1 func scaleBytes(s Scale) []byte { buf := make([]byte, scaleSize) i := scaleSize for j := 0; j < scaleSize; j++ { i-- buf[i] = byte(s) s >>= 8 } return buf } func scale(b []byte) (s Scale) { for j := 0; j < scaleSize; j++ { s <<= 8 s |= Scale(b[j]) } return } // GobEncode implements the gob.GobEncoder interface. func (x *Dec) GobEncode() ([]byte, error) { buf, err := x.UnscaledBig().GobEncode() if err != nil { return nil, err } buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion) return buf, nil } // GobDecode implements the gob.GobDecoder interface. func (z *Dec) GobDecode(buf []byte) error { if len(buf) == 0 { return fmt.Errorf("Dec.GobDecode: no data") } b := buf[len(buf)-1] if b != decGobVersion { return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b) } l := len(buf) - scaleSize - 1 err := z.UnscaledBig().GobDecode(buf[:l]) if err != nil { return err } z.SetScale(scale(buf[l : l+scaleSize])) return nil } // MarshalText implements the encoding.TextMarshaler interface. func (x *Dec) MarshalText() ([]byte, error) { return []byte(x.String()), nil } // UnmarshalText implements the encoding.TextUnmarshaler interface. func (z *Dec) UnmarshalText(data []byte) error { _, ok := z.SetString(string(data)) if !ok { return fmt.Errorf("invalid inf.Dec") } return nil }