cri-o/oci/oci.go
Samuel Ortiz 0e51bbb778 oci: Support mixing trusted and untrusted workloads
Container runtimes provide different levels of isolation, from kernel
namespaces to hardware virtualization. When starting a specific
container, one may want to decide which level of isolation to use
depending on how much we trust the container workload. Fully verified
and signed containers may not need the hardware isolation layer but e.g.
CI jobs pulling packages from many untrusted sources should probably not
run only on a kernel namespace isolation layer.

Here we allow CRI-O users to define a container runtime for trusted
containers and another one for untrusted containers, and also to define
a general, default trust level. This anticipates future kubelet
implementations that would be able to tag containers as trusted or
untrusted. When missing a kubelet hint, containers are trusted by
default.

A container becomes untrusted if we get a hint in that direction from
kubelet or if the default trust level is set to "untrusted" and the
container is not privileged. In both cases CRI-O will try to use the
untrusted container runtime. For any other cases, it will switch to the
trusted one.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2017-06-15 10:04:36 +02:00

662 lines
17 KiB
Go

package oci
import (
"bytes"
"encoding/json"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"strconv"
"strings"
"syscall"
"time"
"github.com/Sirupsen/logrus"
"github.com/kubernetes-incubator/cri-o/utils"
rspec "github.com/opencontainers/runtime-spec/specs-go"
"golang.org/x/sys/unix"
)
const (
// ContainerStateCreated represents the created state of a container
ContainerStateCreated = "created"
// ContainerStateRunning represents the running state of a container
ContainerStateRunning = "running"
// ContainerStateStopped represents the stopped state of a container
ContainerStateStopped = "stopped"
// ContainerCreateTimeout represents the value of container creating timeout
ContainerCreateTimeout = 10 * time.Second
)
// New creates a new Runtime with options provided
func New(runtimeTrustedPath string, runtimeUntrustedPath string, trustLevel string, conmonPath string, conmonEnv []string, cgroupManager string) (*Runtime, error) {
r := &Runtime{
name: filepath.Base(runtimeTrustedPath),
trustedPath: runtimeTrustedPath,
untrustedPath: runtimeUntrustedPath,
trustLevel: trustLevel,
conmonPath: conmonPath,
conmonEnv: conmonEnv,
cgroupManager: cgroupManager,
}
return r, nil
}
// Runtime stores the information about a oci runtime
type Runtime struct {
name string
trustedPath string
untrustedPath string
trustLevel string
conmonPath string
conmonEnv []string
cgroupManager string
}
// syncInfo is used to return data from monitor process to daemon
type syncInfo struct {
Pid int `json:"pid"`
Message string `json:"message,omitempty"`
}
// exitCodeInfo is used to return the monitored process exit code to the daemon
type exitCodeInfo struct {
ExitCode int32 `json:"exit_code"`
}
// Name returns the name of the OCI Runtime
func (r *Runtime) Name() string {
return r.name
}
// Path returns the full path the OCI Runtime executable.
// Depending if the container is privileged and/or trusted,
// this will return either the trusted or untrusted runtime path.
func (r *Runtime) Path(c *Container) string {
if !c.trusted {
// We have an explicitly untrusted container.
if c.privileged {
logrus.Warnf("Running an untrusted but privileged container")
return r.trustedPath
}
if r.untrustedPath != "" {
return r.untrustedPath
}
return r.trustedPath
}
// Our container is trusted. Let's look at the configured trust level.
if r.trustLevel == "trusted" {
return r.trustedPath
}
// Our container is trusted, but we are running untrusted.
// We will use the untrusted container runtime if it's set
// and if it's not a privileged container.
if c.privileged || r.untrustedPath == "" {
return r.trustedPath
}
return r.untrustedPath
}
// Version returns the version of the OCI Runtime
func (r *Runtime) Version() (string, error) {
runtimeVersion, err := getOCIVersion(r.trustedPath, "-v")
if err != nil {
return "", err
}
return runtimeVersion, nil
}
func getOCIVersion(name string, args ...string) (string, error) {
out, err := utils.ExecCmd(name, args...)
if err != nil {
return "", err
}
firstLine := out[:strings.Index(out, "\n")]
v := firstLine[strings.LastIndex(firstLine, " ")+1:]
return v, nil
}
// CreateContainer creates a container.
func (r *Runtime) CreateContainer(c *Container, cgroupParent string) error {
var stderrBuf bytes.Buffer
parentPipe, childPipe, err := newPipe()
if err != nil {
return fmt.Errorf("error creating socket pair: %v", err)
}
defer parentPipe.Close()
var args []string
if r.cgroupManager == "systemd" {
args = append(args, "-s")
}
args = append(args, "-c", c.name)
args = append(args, "-u", c.id)
args = append(args, "-r", r.Path(c))
args = append(args, "-b", c.bundlePath)
args = append(args, "-p", filepath.Join(c.bundlePath, "pidfile"))
args = append(args, "-l", c.logPath)
if c.terminal {
args = append(args, "-t")
} else if c.stdin {
args = append(args, "-i")
}
logrus.WithFields(logrus.Fields{
"args": args,
}).Debugf("running conmon: %s", r.conmonPath)
cmd := exec.Command(r.conmonPath, args...)
cmd.Dir = c.bundlePath
cmd.SysProcAttr = &syscall.SysProcAttr{
Setpgid: true,
}
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if c.terminal {
cmd.Stderr = &stderrBuf
}
cmd.ExtraFiles = append(cmd.ExtraFiles, childPipe)
// 0, 1 and 2 are stdin, stdout and stderr
cmd.Env = append(r.conmonEnv, fmt.Sprintf("_OCI_SYNCPIPE=%d", 3))
err = cmd.Start()
if err != nil {
childPipe.Close()
return err
}
// We don't need childPipe on the parent side
childPipe.Close()
// Move conmon to specified cgroup
if cgroupParent != "" {
if r.cgroupManager == "systemd" {
logrus.Infof("Running conmon under slice %s and unitName %s", cgroupParent, createUnitName("crio", c.name))
if err = utils.RunUnderSystemdScope(cmd.Process.Pid, cgroupParent, createUnitName("crio", c.name)); err != nil {
logrus.Warnf("Failed to add conmon to sandbox cgroup: %v", err)
}
}
}
// Wait to get container pid from conmon
type syncStruct struct {
si *syncInfo
err error
}
ch := make(chan syncStruct)
go func() {
var si *syncInfo
if err = json.NewDecoder(parentPipe).Decode(&si); err != nil {
ch <- syncStruct{err: err}
return
}
ch <- syncStruct{si: si}
}()
select {
case ss := <-ch:
if ss.err != nil {
return fmt.Errorf("error reading container (probably exited) json message: %v", ss.err)
}
logrus.Debugf("Received container pid: %d", ss.si.Pid)
errorMessage := ""
if c.terminal {
errorMessage = stderrBuf.String()
fmt.Fprintf(os.Stderr, errorMessage)
errorMessage = sanitizeConmonErrorMessage(errorMessage)
} else {
if ss.si.Message != "" {
errorMessage = ss.si.Message
}
}
if ss.si.Pid == -1 {
if errorMessage != "" {
logrus.Debugf("Container creation error: %s", errorMessage)
return fmt.Errorf("container create failed: %s", errorMessage)
}
logrus.Debugf("Container creation failed")
return fmt.Errorf("container create failed")
}
case <-time.After(ContainerCreateTimeout):
return fmt.Errorf("create container timeout")
}
return nil
}
// sanitizeConmonErrorMessage removes conmon debug messages from error string
func sanitizeConmonErrorMessage(errString string) string {
var sanitizedLines []string
lines := strings.Split(errString, "\n")
for _, line := range lines {
if !strings.HasPrefix(line, "[conmon") {
sanitizedLines = append(sanitizedLines, line)
}
}
return strings.Join(sanitizedLines, "\n")
}
func createUnitName(prefix string, name string) string {
return fmt.Sprintf("%s-%s.scope", prefix, name)
}
// StartContainer starts a container.
func (r *Runtime) StartContainer(c *Container) error {
c.opLock.Lock()
defer c.opLock.Unlock()
if err := utils.ExecCmdWithStdStreams(os.Stdin, os.Stdout, os.Stderr, r.Path(c), "start", c.name); err != nil {
return err
}
c.state.Started = time.Now()
return nil
}
// ExecSyncResponse is returned from ExecSync.
type ExecSyncResponse struct {
Stdout []byte
Stderr []byte
ExitCode int32
}
// ExecSyncError wraps command's streams, exit code and error on ExecSync error.
type ExecSyncError struct {
Stdout bytes.Buffer
Stderr bytes.Buffer
ExitCode int32
Err error
}
func (e ExecSyncError) Error() string {
return fmt.Sprintf("command error: %+v, stdout: %s, stderr: %s, exit code %d", e.Err, e.Stdout.Bytes(), e.Stderr.Bytes(), e.ExitCode)
}
func prepareExec() (pidFile, parentPipe, childPipe *os.File, err error) {
parentPipe, childPipe, err = os.Pipe()
if err != nil {
return nil, nil, nil, err
}
pidFile, err = ioutil.TempFile("", "pidfile")
if err != nil {
parentPipe.Close()
childPipe.Close()
return nil, nil, nil, err
}
return
}
func parseLog(log []byte) (stdout, stderr []byte) {
// Split the log on newlines, which is what separates entries.
lines := bytes.SplitAfter(log, []byte{'\n'})
for _, line := range lines {
// Ignore empty lines.
if len(line) == 0 {
continue
}
// The format of log lines is "DATE pipe REST".
parts := bytes.SplitN(line, []byte{' '}, 3)
if len(parts) < 3 {
// Ignore the line if it's formatted incorrectly, but complain
// about it so it can be debugged.
logrus.Warnf("hit invalid log format: %q", string(line))
continue
}
pipe := string(parts[1])
content := parts[2]
switch pipe {
case "stdout":
stdout = append(stdout, content...)
case "stderr":
stderr = append(stderr, content...)
default:
// Complain about unknown pipes.
logrus.Warnf("hit invalid log format [unknown pipe %s]: %q", pipe, string(line))
continue
}
}
return stdout, stderr
}
// ExecSync execs a command in a container and returns it's stdout, stderr and return code.
func (r *Runtime) ExecSync(c *Container, command []string, timeout int64) (resp *ExecSyncResponse, err error) {
pidFile, parentPipe, childPipe, err := prepareExec()
if err != nil {
return nil, ExecSyncError{
ExitCode: -1,
Err: err,
}
}
defer parentPipe.Close()
defer func() {
if e := os.Remove(pidFile.Name()); e != nil {
logrus.Warnf("could not remove temporary PID file %s", pidFile.Name())
}
}()
logFile, err := ioutil.TempFile("", "crio-log-"+c.name)
if err != nil {
return nil, ExecSyncError{
ExitCode: -1,
Err: err,
}
}
logPath := logFile.Name()
defer func() {
logFile.Close()
os.RemoveAll(logPath)
}()
f, err := ioutil.TempFile("", "exec-process")
if err != nil {
return nil, ExecSyncError{
ExitCode: -1,
Err: err,
}
}
defer os.RemoveAll(f.Name())
var args []string
args = append(args, "-c", c.name)
args = append(args, "-r", r.Path(c))
args = append(args, "-p", pidFile.Name())
args = append(args, "-e")
if c.terminal {
args = append(args, "-t")
}
args = append(args, "-l", logPath)
pspec := rspec.Process{
Env: r.conmonEnv,
Args: command,
Cwd: "/",
}
processJSON, err := json.Marshal(pspec)
if err != nil {
return nil, ExecSyncError{
ExitCode: -1,
Err: err,
}
}
if err := ioutil.WriteFile(f.Name(), processJSON, 0644); err != nil {
return nil, ExecSyncError{
ExitCode: -1,
Err: err,
}
}
args = append(args, "--exec-process-spec", f.Name())
cmd := exec.Command(r.conmonPath, args...)
var stdoutBuf, stderrBuf bytes.Buffer
cmd.Stdout = &stdoutBuf
cmd.Stderr = &stderrBuf
cmd.ExtraFiles = append(cmd.ExtraFiles, childPipe)
// 0, 1 and 2 are stdin, stdout and stderr
cmd.Env = append(r.conmonEnv, fmt.Sprintf("_OCI_SYNCPIPE=%d", 3))
err = cmd.Start()
if err != nil {
childPipe.Close()
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: err,
}
}
// We don't need childPipe on the parent side
childPipe.Close()
if timeout > 0 {
done := make(chan error, 1)
go func() {
done <- cmd.Wait()
}()
select {
case <-time.After(time.Duration(timeout) * time.Second):
err = unix.Kill(cmd.Process.Pid, syscall.SIGKILL)
if err != nil && err != syscall.ESRCH {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: fmt.Errorf("failed to kill process on timeout: %+v", err),
}
}
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: fmt.Errorf("command timed out"),
}
case err = <-done:
if err != nil {
if exitErr, ok := err.(*exec.ExitError); ok {
if status, ok := exitErr.Sys().(syscall.WaitStatus); ok {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: int32(status.ExitStatus()),
Err: err,
}
}
} else {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: err,
}
}
}
}
} else {
err = cmd.Wait()
if err != nil {
if exitErr, ok := err.(*exec.ExitError); ok {
if status, ok := exitErr.Sys().(syscall.WaitStatus); ok {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: int32(status.ExitStatus()),
Err: err,
}
}
} else {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: err,
}
}
}
}
var ec *exitCodeInfo
if err := json.NewDecoder(parentPipe).Decode(&ec); err != nil {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: err,
}
}
logrus.Infof("Received container exit code: %v", ec.ExitCode)
// The actual logged output is not the same as stdoutBuf and stderrBuf,
// which are used for getting error information. For the actual
// ExecSyncResponse we have to read the logfile.
// XXX: Currently runC dups the same console over both stdout and stderr,
// so we can't differentiate between the two.
logBytes, err := ioutil.ReadFile(logPath)
if err != nil {
return nil, ExecSyncError{
Stdout: stdoutBuf,
Stderr: stderrBuf,
ExitCode: -1,
Err: err,
}
}
// We have to parse the log output into {stdout, stderr} buffers.
stdoutBytes, stderrBytes := parseLog(logBytes)
return &ExecSyncResponse{
Stdout: stdoutBytes,
Stderr: stderrBytes,
ExitCode: ec.ExitCode,
}, nil
}
// StopContainer stops a container. Timeout is given in seconds.
func (r *Runtime) StopContainer(c *Container, timeout int64) error {
c.opLock.Lock()
defer c.opLock.Unlock()
if err := utils.ExecCmdWithStdStreams(os.Stdin, os.Stdout, os.Stderr, r.Path(c), "kill", c.name, c.GetStopSignal()); err != nil {
return err
}
if timeout == -1 {
// default 10 seconds delay
timeout = 10
}
done := make(chan struct{})
go func() {
for {
// Check if the process is still around
err := unix.Kill(c.state.Pid, 0)
if err == syscall.ESRCH {
close(done)
break
}
}
}()
select {
case <-done:
return nil
case <-time.After(time.Duration(timeout) * time.Second):
err := unix.Kill(c.state.Pid, syscall.SIGKILL)
if err != nil && err != syscall.ESRCH {
return fmt.Errorf("failed to kill process: %v", err)
}
}
c.state.Finished = time.Now()
return nil
}
// DeleteContainer deletes a container.
func (r *Runtime) DeleteContainer(c *Container) error {
c.opLock.Lock()
defer c.opLock.Unlock()
_, err := utils.ExecCmd(r.Path(c), "delete", "--force", c.name)
return err
}
// SetStartFailed sets the container state appropriately after a start failure
func (r *Runtime) SetStartFailed(c *Container, err error) {
c.opLock.Lock()
defer c.opLock.Unlock()
// adjust finished and started times
c.state.Finished, c.state.Started = c.state.Created, c.state.Created
c.state.Error = err.Error()
}
// UpdateStatus refreshes the status of the container.
func (r *Runtime) UpdateStatus(c *Container) error {
c.opLock.Lock()
defer c.opLock.Unlock()
out, err := exec.Command(r.Path(c), "state", c.name).CombinedOutput()
if err != nil {
// there are many code paths that could lead to have a bad state in the
// underlying runtime.
// On any error like a container went away or we rebooted and containers
// went away we do not error out stopping kubernetes to recover.
// We always populate the fields below so kube can restart/reschedule
// containers failing.
c.state.Status = ContainerStateStopped
c.state.Finished = time.Now()
c.state.ExitCode = 255
return nil
}
if err := json.NewDecoder(bytes.NewBuffer(out)).Decode(&c.state); err != nil {
return fmt.Errorf("failed to decode container status for %s: %s", c.name, err)
}
if c.state.Status == ContainerStateStopped {
exitFilePath := filepath.Join(c.bundlePath, "exit")
fi, err := os.Stat(exitFilePath)
if err != nil {
logrus.Warnf("failed to find container exit file: %v", err)
c.state.ExitCode = -1
} else {
st := fi.Sys().(*syscall.Stat_t)
c.state.Finished = time.Unix(st.Ctim.Sec, st.Ctim.Nsec)
statusCodeStr, err := ioutil.ReadFile(exitFilePath)
if err != nil {
return fmt.Errorf("failed to read exit file: %v", err)
}
statusCode, err := strconv.Atoi(string(statusCodeStr))
if err != nil {
return fmt.Errorf("status code conversion failed: %v", err)
}
c.state.ExitCode = int32(statusCode)
}
oomFilePath := filepath.Join(c.bundlePath, "oom")
if _, err = os.Stat(oomFilePath); err == nil {
c.state.OOMKilled = true
}
}
return nil
}
// ContainerStatus returns the state of a container.
func (r *Runtime) ContainerStatus(c *Container) *ContainerState {
c.opLock.Lock()
defer c.opLock.Unlock()
return c.state
}
// newPipe creates a unix socket pair for communication
func newPipe() (parent *os.File, child *os.File, err error) {
fds, err := syscall.Socketpair(syscall.AF_LOCAL, syscall.SOCK_STREAM|syscall.SOCK_CLOEXEC, 0)
if err != nil {
return nil, nil, err
}
return os.NewFile(uintptr(fds[1]), "parent"), os.NewFile(uintptr(fds[0]), "child"), nil
}
// RuntimeReady checks if the runtime is up and ready to accept
// basic containers e.g. container only needs host network.
func (r *Runtime) RuntimeReady() (bool, error) {
return true, nil
}
// NetworkReady checks if the runtime network is up and ready to
// accept containers which require container network.
func (r *Runtime) NetworkReady() (bool, error) {
return true, nil
}