cri-o/vendor/k8s.io/kubernetes/test/e2e/density.go
Michał Żyłowski 52baf68d50 Vendor: Update k8s version
Signed-off-by: Michał Żyłowski <michal.zylowski@intel.com>
2017-02-03 16:04:59 +01:00

825 lines
29 KiB
Go

/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package e2e
import (
"fmt"
"math"
"os"
"sort"
"strconv"
"sync"
"time"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/runtime/schema"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/apimachinery/pkg/watch"
"k8s.io/kubernetes/pkg/api"
"k8s.io/kubernetes/pkg/api/resource"
"k8s.io/kubernetes/pkg/api/v1"
"k8s.io/kubernetes/pkg/apis/batch"
"k8s.io/kubernetes/pkg/apis/extensions"
"k8s.io/kubernetes/pkg/client/cache"
"k8s.io/kubernetes/pkg/client/clientset_generated/clientset"
"k8s.io/kubernetes/pkg/client/clientset_generated/internalclientset"
utiluuid "k8s.io/kubernetes/pkg/util/uuid"
"k8s.io/kubernetes/pkg/util/workqueue"
"k8s.io/kubernetes/test/e2e/framework"
testutils "k8s.io/kubernetes/test/utils"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const (
MinSaturationThreshold = 2 * time.Minute
MinPodsPerSecondThroughput = 8
DensityPollInterval = 10 * time.Second
)
// Maximum container failures this test tolerates before failing.
var MaxContainerFailures = 0
type DensityTestConfig struct {
Configs []testutils.RunObjectConfig
ClientSet clientset.Interface
InternalClientset internalclientset.Interface
PollInterval time.Duration
PodCount int
// What kind of resource we want to create
kind schema.GroupKind
SecretConfigs []*testutils.SecretConfig
DaemonConfigs []*testutils.DaemonConfig
}
func density30AddonResourceVerifier(numNodes int) map[string]framework.ResourceConstraint {
var apiserverMem uint64
var controllerMem uint64
var schedulerMem uint64
apiserverCPU := math.MaxFloat32
apiserverMem = math.MaxUint64
controllerCPU := math.MaxFloat32
controllerMem = math.MaxUint64
schedulerCPU := math.MaxFloat32
schedulerMem = math.MaxUint64
framework.Logf("Setting resource constraings for provider: %s", framework.TestContext.Provider)
if framework.ProviderIs("kubemark") {
if numNodes <= 5 {
apiserverCPU = 0.35
apiserverMem = 150 * (1024 * 1024)
controllerCPU = 0.15
controllerMem = 100 * (1024 * 1024)
schedulerCPU = 0.05
schedulerMem = 50 * (1024 * 1024)
} else if numNodes <= 100 {
apiserverCPU = 1.5
apiserverMem = 1500 * (1024 * 1024)
controllerCPU = 0.75
controllerMem = 750 * (1024 * 1024)
schedulerCPU = 0.75
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 500 {
apiserverCPU = 3.5
apiserverMem = 3400 * (1024 * 1024)
controllerCPU = 1.3
controllerMem = 1100 * (1024 * 1024)
schedulerCPU = 1.5
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 1000 {
apiserverCPU = 5.5
apiserverMem = 4000 * (1024 * 1024)
controllerCPU = 3
controllerMem = 2000 * (1024 * 1024)
schedulerCPU = 1.5
schedulerMem = 750 * (1024 * 1024)
}
} else {
if numNodes <= 100 {
// TODO: Investigate higher apiserver consumption and
// potentially revert to 1.5cpu and 1.3GB - see #30871
apiserverCPU = 1.8
apiserverMem = 2200 * (1024 * 1024)
controllerCPU = 0.5
controllerMem = 300 * (1024 * 1024)
schedulerCPU = 0.4
schedulerMem = 150 * (1024 * 1024)
}
}
constraints := make(map[string]framework.ResourceConstraint)
constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 250 * (1024 * 1024),
}
constraints["elasticsearch-logging"] = framework.ResourceConstraint{
CPUConstraint: 2,
// TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164
MemoryConstraint: 5000 * (1024 * 1024),
}
constraints["heapster"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 1800 * (1024 * 1024),
}
constraints["kibana-logging"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 100 * (1024 * 1024),
}
constraints["kube-proxy"] = framework.ResourceConstraint{
CPUConstraint: 0.15,
MemoryConstraint: 30 * (1024 * 1024),
}
constraints["l7-lb-controller"] = framework.ResourceConstraint{
CPUConstraint: 0.15,
MemoryConstraint: 60 * (1024 * 1024),
}
constraints["influxdb"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 500 * (1024 * 1024),
}
constraints["kube-apiserver"] = framework.ResourceConstraint{
CPUConstraint: apiserverCPU,
MemoryConstraint: apiserverMem,
}
constraints["kube-controller-manager"] = framework.ResourceConstraint{
CPUConstraint: controllerCPU,
MemoryConstraint: controllerMem,
}
constraints["kube-scheduler"] = framework.ResourceConstraint{
CPUConstraint: schedulerCPU,
MemoryConstraint: schedulerMem,
}
return constraints
}
func logPodStartupStatus(c clientset.Interface, expectedPods int, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) {
label := labels.SelectorFromSet(labels.Set(observedLabels))
podStore := testutils.NewPodStore(c, metav1.NamespaceAll, label, fields.Everything())
defer podStore.Stop()
ticker := time.NewTicker(period)
defer ticker.Stop()
for {
select {
case <-ticker.C:
pods := podStore.List()
startupStatus := testutils.ComputeRCStartupStatus(pods, expectedPods)
framework.Logf(startupStatus.String("Density"))
case <-stopCh:
pods := podStore.List()
startupStatus := testutils.ComputeRCStartupStatus(pods, expectedPods)
framework.Logf(startupStatus.String("Density"))
return
}
}
}
// runDensityTest will perform a density test and return the time it took for
// all pods to start
func runDensityTest(dtc DensityTestConfig) time.Duration {
defer GinkgoRecover()
// Create all secrets
for i := range dtc.SecretConfigs {
dtc.SecretConfigs[i].Run()
}
for i := range dtc.DaemonConfigs {
dtc.DaemonConfigs[i].Run()
}
// Start all replication controllers.
startTime := time.Now()
wg := sync.WaitGroup{}
wg.Add(len(dtc.Configs))
for i := range dtc.Configs {
config := dtc.Configs[i]
go func() {
defer GinkgoRecover()
// Call wg.Done() in defer to avoid blocking whole test
// in case of error from RunRC.
defer wg.Done()
framework.ExpectNoError(config.Run())
}()
}
logStopCh := make(chan struct{})
go logPodStartupStatus(dtc.ClientSet, dtc.PodCount, map[string]string{"type": "densityPod"}, dtc.PollInterval, logStopCh)
wg.Wait()
startupTime := time.Now().Sub(startTime)
close(logStopCh)
framework.Logf("E2E startup time for %d pods: %v", dtc.PodCount, startupTime)
framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(dtc.PodCount)/float32(startupTime/time.Second))
// Print some data about Pod to Node allocation
By("Printing Pod to Node allocation data")
podList, err := dtc.ClientSet.Core().Pods(metav1.NamespaceAll).List(metav1.ListOptions{})
framework.ExpectNoError(err)
pausePodAllocation := make(map[string]int)
systemPodAllocation := make(map[string][]string)
for _, pod := range podList.Items {
if pod.Namespace == metav1.NamespaceSystem {
systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name)
} else {
pausePodAllocation[pod.Spec.NodeName]++
}
}
nodeNames := make([]string, 0)
for k := range pausePodAllocation {
nodeNames = append(nodeNames, k)
}
sort.Strings(nodeNames)
for _, node := range nodeNames {
framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node])
}
return startupTime
}
func cleanupDensityTest(dtc DensityTestConfig) {
defer GinkgoRecover()
By("Deleting created Collections")
// We explicitly delete all pods to have API calls necessary for deletion accounted in metrics.
for i := range dtc.Configs {
name := dtc.Configs[i].GetName()
namespace := dtc.Configs[i].GetNamespace()
kind := dtc.Configs[i].GetKind()
if framework.TestContext.GarbageCollectorEnabled && kindSupportsGarbageCollector(kind) {
By(fmt.Sprintf("Cleaning up only the %v, garbage collector will clean up the pods", kind))
err := framework.DeleteResourceAndWaitForGC(dtc.ClientSet, kind, namespace, name)
framework.ExpectNoError(err)
} else {
By(fmt.Sprintf("Cleaning up the %v and pods", kind))
err := framework.DeleteResourceAndPods(dtc.ClientSet, dtc.InternalClientset, kind, namespace, name)
framework.ExpectNoError(err)
}
}
// Delete all secrets
for i := range dtc.SecretConfigs {
dtc.SecretConfigs[i].Stop()
}
for i := range dtc.DaemonConfigs {
framework.ExpectNoError(framework.DeleteResourceAndPods(
dtc.ClientSet,
dtc.InternalClientset,
extensions.Kind("DaemonSet"),
dtc.DaemonConfigs[i].Namespace,
dtc.DaemonConfigs[i].Name,
))
}
}
// This test suite can take a long time to run, and can affect or be affected by other tests.
// So by default it is added to the ginkgo.skip list (see driver.go).
// To run this suite you must explicitly ask for it by setting the
// -t/--test flag or ginkgo.focus flag.
// IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones
// results will not be representative for control-plane performance as we'll start hitting
// limits on Docker's concurrent container startup.
var _ = framework.KubeDescribe("Density", func() {
var c clientset.Interface
var nodeCount int
var name string
var additionalPodsPrefix string
var ns string
var uuid string
var e2eStartupTime time.Duration
var totalPods int
var nodeCpuCapacity int64
var nodeMemCapacity int64
var nodes *v1.NodeList
var masters sets.String
// Gathers data prior to framework namespace teardown
AfterEach(func() {
saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second
if saturationThreshold < MinSaturationThreshold {
saturationThreshold = MinSaturationThreshold
}
Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold))
saturationData := framework.SaturationTime{
TimeToSaturate: e2eStartupTime,
NumberOfNodes: nodeCount,
NumberOfPods: totalPods,
Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second),
}
framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData))
// Verify latency metrics.
highLatencyRequests, err := framework.HighLatencyRequests(c)
framework.ExpectNoError(err)
Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests")
// Verify scheduler metrics.
// TODO: Reset metrics at the beginning of the test.
// We should do something similar to how we do it for APIserver.
if err = framework.VerifySchedulerLatency(c); err != nil {
framework.Logf("Warning: Scheduler latency not calculated, %v", err)
}
})
// Explicitly put here, to delete namespace at the end of the test
// (after measuring latency metrics, etc.).
f := framework.NewDefaultFramework("density")
f.NamespaceDeletionTimeout = time.Hour
BeforeEach(func() {
c = f.ClientSet
ns = f.Namespace.Name
masters, nodes = framework.GetMasterAndWorkerNodesOrDie(c)
nodeCount = len(nodes.Items)
Expect(nodeCount).NotTo(BeZero())
nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue()
nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value()
// Terminating a namespace (deleting the remaining objects from it - which
// generally means events) can affect the current run. Thus we wait for all
// terminating namespace to be finally deleted before starting this test.
err := framework.CheckTestingNSDeletedExcept(c, ns)
framework.ExpectNoError(err)
uuid = string(utiluuid.NewUUID())
framework.ExpectNoError(framework.ResetMetrics(c))
framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777))
framework.Logf("Listing nodes for easy debugging:\n")
for _, node := range nodes.Items {
var internalIP, externalIP string
for _, address := range node.Status.Addresses {
if address.Type == v1.NodeInternalIP {
internalIP = address.Address
}
if address.Type == v1.NodeExternalIP {
externalIP = address.Address
}
}
framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP)
}
})
type Density struct {
// Controls if e2e latency tests should be run (they are slow)
runLatencyTest bool
podsPerNode int
// Controls how often the apiserver is polled for pods
interval time.Duration
// What kind of resource we should be creating. Default: ReplicationController
kind schema.GroupKind
secretsPerPod int
daemonsPerNode int
}
densityTests := []Density{
// TODO: Expose runLatencyTest as ginkgo flag.
{podsPerNode: 3, runLatencyTest: false, kind: api.Kind("ReplicationController")},
{podsPerNode: 30, runLatencyTest: true, kind: api.Kind("ReplicationController")},
{podsPerNode: 50, runLatencyTest: false, kind: api.Kind("ReplicationController")},
{podsPerNode: 95, runLatencyTest: true, kind: api.Kind("ReplicationController")},
{podsPerNode: 100, runLatencyTest: false, kind: api.Kind("ReplicationController")},
// Tests for other resource types:
{podsPerNode: 30, runLatencyTest: true, kind: extensions.Kind("Deployment")},
{podsPerNode: 30, runLatencyTest: true, kind: batch.Kind("Job")},
// Test scheduling when daemons are preset
{podsPerNode: 30, runLatencyTest: true, kind: api.Kind("ReplicationController"), daemonsPerNode: 2},
// Test with secrets
{podsPerNode: 30, runLatencyTest: true, kind: extensions.Kind("Deployment"), secretsPerPod: 2},
}
for _, testArg := range densityTests {
feature := "ManualPerformance"
switch testArg.podsPerNode {
case 30:
if testArg.kind == api.Kind("ReplicationController") && testArg.daemonsPerNode == 0 && testArg.secretsPerPod == 0 {
feature = "Performance"
}
case 95:
feature = "HighDensityPerformance"
}
name := fmt.Sprintf("[Feature:%s] should allow starting %d pods per node using %v with %v secrets and %v daemons",
feature,
testArg.podsPerNode,
testArg.kind,
testArg.secretsPerPod,
testArg.daemonsPerNode,
)
itArg := testArg
It(name, func() {
nodePreparer := framework.NewE2ETestNodePreparer(
f.ClientSet,
[]testutils.CountToStrategy{{Count: nodeCount, Strategy: &testutils.TrivialNodePrepareStrategy{}}},
)
framework.ExpectNoError(nodePreparer.PrepareNodes())
defer nodePreparer.CleanupNodes()
podsPerNode := itArg.podsPerNode
if podsPerNode == 30 {
f.AddonResourceConstraints = func() map[string]framework.ResourceConstraint { return density30AddonResourceVerifier(nodeCount) }()
}
totalPods = (podsPerNode - itArg.daemonsPerNode) * nodeCount
fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid))
framework.ExpectNoError(err)
defer fileHndl.Close()
// nodeCountPerNamespace and CreateNamespaces are defined in load.go
numberOfCollections := (nodeCount + nodeCountPerNamespace - 1) / nodeCountPerNamespace
namespaces, err := CreateNamespaces(f, numberOfCollections, fmt.Sprintf("density-%v", testArg.podsPerNode))
framework.ExpectNoError(err)
configs := make([]testutils.RunObjectConfig, numberOfCollections)
secretConfigs := make([]*testutils.SecretConfig, 0, numberOfCollections*itArg.secretsPerPod)
// Since all RCs are created at the same time, timeout for each config
// has to assume that it will be run at the very end.
podThroughput := 20
timeout := time.Duration(totalPods/podThroughput)*time.Second + 3*time.Minute
// createClients is defined in load.go
clients, internalClients, err := createClients(numberOfCollections)
for i := 0; i < numberOfCollections; i++ {
nsName := namespaces[i].Name
secretNames := []string{}
for j := 0; j < itArg.secretsPerPod; j++ {
secretName := fmt.Sprintf("density-secret-%v-%v", i, j)
secretConfigs = append(secretConfigs, &testutils.SecretConfig{
Content: map[string]string{"foo": "bar"},
Client: clients[i],
Name: secretName,
Namespace: nsName,
LogFunc: framework.Logf,
})
secretNames = append(secretNames, secretName)
}
name := fmt.Sprintf("density%v-%v-%v", totalPods, i, uuid)
baseConfig := &testutils.RCConfig{
Client: clients[i],
InternalClient: internalClients[i],
Image: framework.GetPauseImageName(f.ClientSet),
Name: name,
Namespace: nsName,
Labels: map[string]string{"type": "densityPod"},
PollInterval: DensityPollInterval,
Timeout: timeout,
PodStatusFile: fileHndl,
Replicas: (totalPods + numberOfCollections - 1) / numberOfCollections,
CpuRequest: nodeCpuCapacity / 100,
MemRequest: nodeMemCapacity / 100,
MaxContainerFailures: &MaxContainerFailures,
Silent: true,
LogFunc: framework.Logf,
SecretNames: secretNames,
}
switch itArg.kind {
case api.Kind("ReplicationController"):
configs[i] = baseConfig
case extensions.Kind("ReplicaSet"):
configs[i] = &testutils.ReplicaSetConfig{RCConfig: *baseConfig}
case extensions.Kind("Deployment"):
configs[i] = &testutils.DeploymentConfig{RCConfig: *baseConfig}
case batch.Kind("Job"):
configs[i] = &testutils.JobConfig{RCConfig: *baseConfig}
default:
framework.Failf("Unsupported kind: %v", itArg.kind)
}
}
dConfig := DensityTestConfig{
ClientSet: f.ClientSet,
InternalClientset: f.InternalClientset,
Configs: configs,
PodCount: totalPods,
PollInterval: DensityPollInterval,
kind: itArg.kind,
SecretConfigs: secretConfigs,
}
for i := 0; i < itArg.daemonsPerNode; i++ {
dConfig.DaemonConfigs = append(dConfig.DaemonConfigs,
&testutils.DaemonConfig{
Client: f.ClientSet,
Name: fmt.Sprintf("density-daemon-%v", i),
Namespace: f.Namespace.Name,
LogFunc: framework.Logf,
})
}
e2eStartupTime = runDensityTest(dConfig)
if itArg.runLatencyTest {
By("Scheduling additional Pods to measure startup latencies")
createTimes := make(map[string]metav1.Time, 0)
nodeNames := make(map[string]string, 0)
scheduleTimes := make(map[string]metav1.Time, 0)
runTimes := make(map[string]metav1.Time, 0)
watchTimes := make(map[string]metav1.Time, 0)
var mutex sync.Mutex
checkPod := func(p *v1.Pod) {
mutex.Lock()
defer mutex.Unlock()
defer GinkgoRecover()
if p.Status.Phase == v1.PodRunning {
if _, found := watchTimes[p.Name]; !found {
watchTimes[p.Name] = metav1.Now()
createTimes[p.Name] = p.CreationTimestamp
nodeNames[p.Name] = p.Spec.NodeName
var startTime metav1.Time
for _, cs := range p.Status.ContainerStatuses {
if cs.State.Running != nil {
if startTime.Before(cs.State.Running.StartedAt) {
startTime = cs.State.Running.StartedAt
}
}
}
if startTime != metav1.NewTime(time.Time{}) {
runTimes[p.Name] = startTime
} else {
framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name)
}
}
}
}
additionalPodsPrefix = "density-latency-pod"
stopCh := make(chan struct{})
latencyPodStores := make([]cache.Store, len(namespaces))
for i := 0; i < len(namespaces); i++ {
nsName := namespaces[i].Name
latencyPodsStore, controller := cache.NewInformer(
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}).String()
obj, err := c.Core().Pods(nsName).List(options)
return runtime.Object(obj), err
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix}).String()
return c.Core().Pods(nsName).Watch(options)
},
},
&v1.Pod{},
0,
cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
p, ok := obj.(*v1.Pod)
if !ok {
framework.Logf("Failed to cast observed object to *v1.Pod.")
}
Expect(ok).To(Equal(true))
go checkPod(p)
},
UpdateFunc: func(oldObj, newObj interface{}) {
p, ok := newObj.(*v1.Pod)
if !ok {
framework.Logf("Failed to cast observed object to *v1.Pod.")
}
Expect(ok).To(Equal(true))
go checkPod(p)
},
},
)
latencyPodStores[i] = latencyPodsStore
go controller.Run(stopCh)
}
// Create some additional pods with throughput ~5 pods/sec.
var wg sync.WaitGroup
wg.Add(nodeCount)
// Explicitly set requests here.
// Thanks to it we trigger increasing priority function by scheduling
// a pod to a node, which in turn will result in spreading latency pods
// more evenly between nodes.
cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI)
memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI)
if podsPerNode > 30 {
// This is to make them schedulable on high-density tests
// (e.g. 100 pods/node kubemark).
cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI)
memRequest = *resource.NewQuantity(0, resource.DecimalSI)
}
rcNameToNsMap := map[string]string{}
for i := 1; i <= nodeCount; i++ {
name := additionalPodsPrefix + "-" + strconv.Itoa(i)
nsName := namespaces[i%len(namespaces)].Name
rcNameToNsMap[name] = nsName
go createRunningPodFromRC(&wg, c, name, nsName, framework.GetPauseImageName(f.ClientSet), additionalPodsPrefix, cpuRequest, memRequest)
time.Sleep(200 * time.Millisecond)
}
wg.Wait()
By("Waiting for all Pods begin observed by the watch...")
waitTimeout := 10 * time.Minute
for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) {
if time.Since(start) < waitTimeout {
framework.Failf("Timeout reached waiting for all Pods being observed by the watch.")
}
}
close(stopCh)
nodeToLatencyPods := make(map[string]int)
for i := range latencyPodStores {
for _, item := range latencyPodStores[i].List() {
pod := item.(*v1.Pod)
nodeToLatencyPods[pod.Spec.NodeName]++
}
for node, count := range nodeToLatencyPods {
if count > 1 {
framework.Logf("%d latency pods scheduled on %s", count, node)
}
}
}
for i := 0; i < len(namespaces); i++ {
nsName := namespaces[i].Name
selector := fields.Set{
"involvedObject.kind": "Pod",
"involvedObject.namespace": nsName,
"source": v1.DefaultSchedulerName,
}.AsSelector().String()
options := metav1.ListOptions{FieldSelector: selector}
schedEvents, err := c.Core().Events(nsName).List(options)
framework.ExpectNoError(err)
for k := range createTimes {
for _, event := range schedEvents.Items {
if event.InvolvedObject.Name == k {
scheduleTimes[k] = event.FirstTimestamp
break
}
}
}
}
scheduleLag := make([]framework.PodLatencyData, 0)
startupLag := make([]framework.PodLatencyData, 0)
watchLag := make([]framework.PodLatencyData, 0)
schedToWatchLag := make([]framework.PodLatencyData, 0)
e2eLag := make([]framework.PodLatencyData, 0)
for name, create := range createTimes {
sched, ok := scheduleTimes[name]
if !ok {
framework.Logf("Failed to find schedule time for %v", name)
}
Expect(ok).To(Equal(true))
run, ok := runTimes[name]
if !ok {
framework.Logf("Failed to find run time for %v", name)
}
Expect(ok).To(Equal(true))
watch, ok := watchTimes[name]
if !ok {
framework.Logf("Failed to find watch time for %v", name)
}
Expect(ok).To(Equal(true))
node, ok := nodeNames[name]
if !ok {
framework.Logf("Failed to find node for %v", name)
}
Expect(ok).To(Equal(true))
scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)})
startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)})
watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)})
schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)})
e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)})
}
sort.Sort(framework.LatencySlice(scheduleLag))
sort.Sort(framework.LatencySlice(startupLag))
sort.Sort(framework.LatencySlice(watchLag))
sort.Sort(framework.LatencySlice(schedToWatchLag))
sort.Sort(framework.LatencySlice(e2eLag))
framework.PrintLatencies(scheduleLag, "worst schedule latencies")
framework.PrintLatencies(startupLag, "worst run-after-schedule latencies")
framework.PrintLatencies(watchLag, "worst watch latencies")
framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies")
framework.PrintLatencies(e2eLag, "worst e2e total latencies")
// Test whether e2e pod startup time is acceptable.
podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)}
framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency))
framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c)
By("Removing additional replication controllers")
deleteRC := func(i int) {
defer GinkgoRecover()
name := additionalPodsPrefix + "-" + strconv.Itoa(i+1)
framework.ExpectNoError(framework.DeleteRCAndWaitForGC(c, rcNameToNsMap[name], name))
}
workqueue.Parallelize(16, nodeCount, deleteRC)
}
cleanupDensityTest(dConfig)
})
}
// Calculate total number of pods from each node's max-pod
It("[Feature:ManualPerformance] should allow running maximum capacity pods on nodes", func() {
totalPods = 0
for _, n := range nodes.Items {
totalPods += int(n.Status.Capacity.Pods().Value())
}
totalPods -= framework.WaitForStableCluster(c, masters)
fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid))
framework.ExpectNoError(err)
defer fileHndl.Close()
collectionCount := 1
configs := make([]testutils.RunObjectConfig, collectionCount)
podsPerCollection := int(totalPods / collectionCount)
for i := 0; i < collectionCount; i++ {
if i == collectionCount-1 {
podsPerCollection += int(math.Mod(float64(totalPods), float64(collectionCount)))
}
name = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid
configs[i] = &testutils.RCConfig{Client: c,
Image: framework.GetPauseImageName(f.ClientSet),
Name: name,
Namespace: ns,
Labels: map[string]string{"type": "densityPod"},
PollInterval: DensityPollInterval,
PodStatusFile: fileHndl,
Replicas: podsPerCollection,
MaxContainerFailures: &MaxContainerFailures,
Silent: true,
LogFunc: framework.Logf,
}
}
dConfig := DensityTestConfig{
ClientSet: f.ClientSet,
Configs: configs,
PodCount: totalPods,
PollInterval: DensityPollInterval,
}
e2eStartupTime = runDensityTest(dConfig)
cleanupDensityTest(dConfig)
})
})
func createRunningPodFromRC(wg *sync.WaitGroup, c clientset.Interface, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) {
defer GinkgoRecover()
defer wg.Done()
labels := map[string]string{
"type": podType,
"name": name,
}
rc := &v1.ReplicationController{
ObjectMeta: metav1.ObjectMeta{
Name: name,
Labels: labels,
},
Spec: v1.ReplicationControllerSpec{
Replicas: func(i int) *int32 { x := int32(i); return &x }(1),
Selector: labels,
Template: &v1.PodTemplateSpec{
ObjectMeta: metav1.ObjectMeta{
Labels: labels,
},
Spec: v1.PodSpec{
Containers: []v1.Container{
{
Name: name,
Image: image,
Resources: v1.ResourceRequirements{
Requests: v1.ResourceList{
v1.ResourceCPU: cpuRequest,
v1.ResourceMemory: memRequest,
},
},
},
},
DNSPolicy: v1.DNSDefault,
},
},
},
}
_, err := c.Core().ReplicationControllers(ns).Create(rc)
framework.ExpectNoError(err)
framework.ExpectNoError(framework.WaitForControlledPodsRunning(c, ns, name, api.Kind("ReplicationController")))
framework.Logf("Found pod '%s' running", name)
}
func kindSupportsGarbageCollector(kind schema.GroupKind) bool {
return kind != extensions.Kind("Deployment") && kind != batch.Kind("Job")
}