/* * Copyright (C) 2001-2003 Hewlett-Packard Co. * Contributed by Stephane Eranian * Contributed by Mike Johnston * Contributed by Chris Ahna * * This file is part of the ELILO, the EFI Linux boot loader. * * ELILO is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * ELILO is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ELILO; see the file COPYING. If not, write to the Free * Software Foundation, 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. * * Please check out the elilo.txt for complete documentation on how * to use this program. */ /* * this file contains all the IA-32 specific code expected by generic loader */ #include #include #include "elilo.h" #include "loader.h" #include "rmswitch.h" /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* extern loader_ops_t plain_loader, gzip_loader; */ efi_ia32_boot_params_t efi_ia32_bp; /* * Descriptor table base addresses & limits for Linux startup. */ dt_addr_t gdt_addr = { 0x800, 0x94000 }; dt_addr_t idt_addr = { 0, 0 }; /* * Initial GDT layout for Linux startup. */ UINT16 init_gdt[] = { /* gdt[0]: dummy */ 0, 0, 0, 0, /* gdt[1]: unused */ 0, 0, 0, 0, /* gdt[2]: code */ 0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */ 0x0000, /* base address=0 */ 0x9A00, /* code read/exec */ 0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */ /* gdt[3]: data */ 0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */ 0x0000, /* base address=0 */ 0x9200, /* data read/write */ 0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */ }; UINTN sizeof_init_gdt = sizeof init_gdt; /* * Highest available base memory address. * * For traditional kernels and loaders this is always at 0x90000. * For updated kernels and loaders this is computed by taking the * highest available base memory address and rounding down to the * nearest 64 kB boundary and then subtracting 64 kB. * * A non-compressed kernel is automatically assumed to be an updated * kernel. A compressed kernel that has bit 6 (0x40) set in the * loader_flags field is also assumed to be an updated kernel. */ UINTN high_base_mem = 0x90000; /* * Highest available extended memory address. * * This is computed by taking the highest available extended memory * address and rounding down to the nearest EFI_PAGE_SIZE (usually * 4 kB) boundary. The ia32 Linux kernel can only support up to * 2 GB (AFAIK). */ UINTN high_ext_mem = 32 * 1024 * 1024; /* * Starting location and size of runtime memory blocks. */ boot_params_t *param_start = NULL; UINTN param_size = 0; VOID *kernel_start = (VOID *)0x100000; /* 1M */ UINTN kernel_size = 0x200000; /* 2M (largest x86 kernel image) */ VOID *initrd_start = NULL; UINTN initrd_size = 0; /* * Boot parameters can be relocated if TRUE. * Boot parameters must be placed at 0x90000 if FALSE. * * This will be set to TRUE if bit 6 (0x40) is set in the loader_flags * field in a compressed x86 boot format kernel. This will also be set * to TRUE if the kernel is an uncompressed ELF32 image. * * To remote boot w/ the universal network driver and a 16-bit UNDI * this must be set to TRUE. */ BOOLEAN can_reloc_boot_params = FALSE; /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static INTN probe_bzImage_boot(CHAR16 *kname) { EFI_STATUS efi_status; UINTN size; fops_fd_t fd; UINT8 bootsect[512]; DBG_PRT((L"probe_bzImage_boot()\n")); if (!kname) { ERR_PRT((L"kname == %xh", kname)); free_kmem(); return -1; } /* * Open kernel image. */ DBG_PRT((L"opening %s...\n", kname)); efi_status = fops_open(kname, &fd); if (EFI_ERROR(efi_status)) { ERR_PRT((L"Could not open %s.", kname)); free_kmem(); return -1; } /* * Read boot sector. */ DBG_PRT((L"\nreading boot sector...\n")); size = sizeof bootsect; efi_status = fops_read(fd, bootsect, &size); if (EFI_ERROR(efi_status) || size != sizeof bootsect) { ERR_PRT((L"Could not read boot sector from %s.", kname)); fops_close(fd); free_kmem(); return -1; } /* * Verify boot sector signature. */ if (bootsect[0x1FE] != 0x55 || bootsect[0x1FF] != 0xAA) { ERR_PRT((L"%s is not a bzImage kernel image.\n", kname)); fops_close(fd); free_kmem(); return -1; } /* * Check for out of range setup data size. * Will almost always be 7, but we will accept 1 to 64. */ DBG_PRT((L"bootsect[1F1h] == %d setup sectors\n", bootsect[0x1F1])); if (bootsect[0x1F1] < 1 || bootsect[0x1F1] > 64) { ERR_PRT((L"%s is not a valid bzImage kernel image.", kname)); fops_close(fd); free_kmem(); return -1; } /* * Allocate and read setup data. */ DBG_PRT((L"reading setup data...\n")); param_size = (bootsect[0x1F1] + 1) * 512; //param_start = alloc(param_size, EfiBootServicesData); param_start = alloc(param_size, EfiLoaderData); DBG_PRT((L"param_size=%d param_start=%x", param_size, param_start)); if (!param_start) { ERR_PRT((L"Could not allocate %d bytes of setup data.", param_size)); fops_close(fd); free_kmem(); return -1; } CopyMem(param_start, bootsect, sizeof bootsect); size = param_size - 512; efi_status = fops_read(fd, ((UINT8 *)param_start) + 512, &size); if (EFI_ERROR(efi_status) || size != param_size - 512) { ERR_PRT((L"Could not read %d bytes of setup data.", param_size - 512)); free(param_start); param_start = NULL; param_size = 0; fops_close(fd); free_kmem(); return -1; } /* * Check for setup data signature. */ { UINT8 *c = ((UINT8 *)param_start)+514; DBG_PRT((L"param_start(c=%x): %c-%c-%c-%c", c, (CHAR16)c[0],(CHAR16) c[1], (CHAR16)c[2], (CHAR16)c[3])); } if (CompareMem(((UINT8 *)param_start) + 514, "HdrS", 4)) { ERR_PRT((L"%s does not have a setup signature.", kname)); free(param_start); param_start = NULL; param_size = 0; fops_close(fd); free_kmem(); return -1; } /* * Allocate memory for kernel. */ if (alloc_kmem(kernel_start, EFI_SIZE_TO_PAGES(kernel_size))) { ERR_PRT((L"Could not allocate kernel memory.")); return -1; } else { VERB_PRT(3, Print(L"kernel_start: 0x%x kernel_size: %d\n", kernel_start, kernel_size)); } /* * Now read the rest of the kernel image into memory. */ DBG_PRT((L"reading kernel image...\n")); size = kernel_size; efi_status = fops_read(fd, kernel_start, &size); if (EFI_ERROR(efi_status) || size < 0x10000) { ERR_PRT((L"Error reading kernel image %s.", kname)); free(param_start); param_start = NULL; param_size = 0; fops_close(fd); free_kmem(); return -1; } DBG_PRT((L"kernel image read: %d bytes, %d Kbytes\n", size, size / 1024)); /* * Boot sector, setup data and kernel image loaded. */ fops_close(fd); return 0; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static INTN load_bzImage_boot(CHAR16 *kname, kdesc_t *kd) { DBG_PRT((L"load_bzImage_boot()\n")); if (!kname || !kd) { ERR_PRT((L"kname=0x%x kd=0x%x", kname, kd)); free(param_start); param_start = NULL; param_size = 0; free_kmem(); return -1; } kd->kstart = kd->kentry = kernel_start; kd->kend = ((UINT8 *)kd->kstart) + kernel_size; DBG_PRT((L"kstart=0x%x kentry=0x%x kend=0x%x\n", kd->kstart, kd->kentry, kd->kend)); return 0; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static loader_ops_t loader_bzImage_boot = { NULL, L"loader_bzImage_boot", &probe_bzImage_boot, &load_bzImage_boot }; /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ INTN sysdeps_init(EFI_HANDLE dev) { DBG_PRT((L"sysdeps_init()\n")); /* * Register our loader(s)... */ loader_register(&loader_bzImage_boot); /* loader_register(&plain_loader); */ /* loader_register(&gzip_loader); */ return 0; } /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* * initrd_get_addr() * Compute a starting address for the initial RAMdisk image. * For now, this image is placed immediately after the end of * the kernel memory. Inside the start_kernel() code, the * RAMdisk image will be relocated to the top of available * extended memory. */ INTN sysdeps_initrd_get_addr(kdesc_t *kd, memdesc_t *imem) { DBG_PRT((L"initrd_get_addr()\n")); if (!kd || !imem) { ERR_PRT((L"kd=0x%x imem=0x%x", kd, imem)); return -1; } VERB_PRT(3, Print(L"kstart=0x%x kentry=0x%x kend=0x%x\n", kd->kstart, kd->kentry, kd->kend)); imem->start_addr = kd->kend; VERB_PRT(3, Print(L"initrd start_addr=0x%x pgcnt=%d\n", imem->start_addr, imem->pgcnt)); return 0; } /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ VOID sysdeps_free_boot_params(boot_params_t *bp) { mmap_desc_t md; ZeroMem(&md, sizeof md); md.md = (VOID *)bp->s.efi_mem_map; free_memmap(&md); } /* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* * IA-32 specific boot parameters initialization routine */ INTN sysdeps_create_boot_params( boot_params_t *bp, CHAR8 *cmdline, memdesc_t *initrd, UINTN *cookie) { mmap_desc_t mdesc; EFI_STATUS efi_status; UINTN rows, cols; UINT8 row, col; UINT8 mode; UINT16 hdr_version; DBG_PRT((L"fill_boot_params()\n")); if (!bp || !cmdline || !initrd || !cookie) { ERR_PRT((L"bp=0x%x cmdline=0x%x initrd=0x%x cookie=0x%x", bp, cmdline, initrd, cookie)); free(param_start); param_start = NULL; param_size = 0; free_kmem(); return -1; } /* * Copy temporary boot sector and setup data storage to * elilo allocated boot parameter storage. We only need * the first two sectors (1K). The rest of the storage * can be used by the command line. */ CopyMem(bp, param_start, 0x2000); free(param_start); param_start = NULL; param_size = 0; /* * Save off our header revision information. */ hdr_version = (bp->s.hdr_major << 8) | bp->s.hdr_minor; /* * Clear out unused memory in boot sector image. */ bp->s.unused_1 = 0; bp->s.unused_2 = 0; ZeroMem(bp->s.unused_3, sizeof bp->s.unused_3); ZeroMem(bp->s.unused_4, sizeof bp->s.unused_4); ZeroMem(bp->s.unused_5, sizeof bp->s.unused_5); bp->s.unused_6 = 0; /* * Tell kernel this was loaded by an advanced loader type. * If this field is zero, the initrd_start and initrd_size * fields are ignored by the kernel. */ bp->s.loader_type = LDRTYPE_ELILO; /* * Setup command line information. */ bp->s.cmdline_magik = CMDLINE_MAGIK; bp->s.cmdline_offset = (UINT8 *)cmdline - (UINT8 *)bp; /* * Setup hard drive parameters. * %%TBD - It should be okay to zero fill the hard drive * info buffers. The kernel should do its own detection. */ ZeroMem(bp->s.hd0_info, sizeof bp->s.hd0_info); ZeroMem(bp->s.hd1_info, sizeof bp->s.hd1_info); #if 0 CopyMem(bp->s.hd0_info, *((VOID **)(0x41 * 4)), sizeof bp->s.hd0_info); CopyMem(bp->s.hd1_info, *((VOID **)(0x46 * 4)), sizeof bp->s.hd1_info); #endif /* * Memory info. */ bp->s.alt_mem_k = high_ext_mem / 1024; if (bp->s.alt_mem_k <= 65535) { bp->s.ext_mem_k = (UINT16)bp->s.alt_mem_k; } else { bp->s.ext_mem_k = 65535; } if (hdr_version < 0x0202) bp->s.base_mem_size = high_base_mem; /* * Initial RAMdisk and root device stuff. */ DBG_PRT((L"initrd->start_addr=0x%x initrd->pgcnt=%d\n", initrd->start_addr, initrd->pgcnt)); /* These RAMdisk flags are not needed, just zero them. */ bp->s.ramdisk_flags = 0; if (initrd->start_addr && initrd->pgcnt) { /* %%TBD - This will probably have to be changed. */ bp->s.initrd_start = (UINT32)initrd->start_addr; bp->s.initrd_size = (UINT32)(initrd->pgcnt * EFI_PAGE_SIZE); /* * This is the RAMdisk root device for RedHat 2.2.x * kernels (major 0x01, minor 0x00). * %%TBD - Will this work for other distributions and * 2.3.x and 2.4.x kernels? I do not know, yet. */ bp->s.orig_root_dev = 0x0100; } else { bp->s.initrd_start = 0; bp->s.initrd_size = 0; /* Do not change the root device if there is no RAMdisk. */ /* bp->s.orig_root_dev = 0; */ } /* * APM BIOS info. */ /* %%TBD - How to do Int 15h calls to get this info? */ bp->s.apm_bios_ver = NO_APM_BIOS; bp->s.bios_code_seg = 0; bp->s.bios_entry_point = 0; bp->s.bios_code_seg16 = 0; bp->s.bios_data_seg = 0; bp->s.apm_bios_flags = 0; bp->s.bios_code_len = 0; bp->s.bios_data_len = 0; /* * MCA BIOS info (misnomer). */ /* %%TBD - How to do Int 15h call to get this info? */ bp->s.mca_info_len = 0; ZeroMem(bp->s.mca_info_buf, sizeof bp->s.mca_info_buf); /* * Pointing device presence. */ /* %%TBD - How to do Int 11h call to get this info? */ bp->s.aux_dev_info = NO_MOUSE; /* * EFI loader signature and address of EFI system table. */ CopyMem(bp->s.efi_loader_sig, EFI_LOADER_SIG, 4); bp->s.efi_sys_tbl = 0; /* %%TBD */ /* * Kernel entry point. */ bp->s.kernel_start = (UINT32)kernel_start; /* * When changing stuff in the parameter structure compare * the offsets of the fields with the offsets used in the * boot sector and setup source files. * arch/i386/boot/bootsect.S * arch/i386/boot/setup.S * arch/i386/kernel/setup.c */ #define CHECK_OFFSET(n, o, f) \ { \ UINTN p = (UINT8 *)&bp->s.n - (UINT8 *)bp; \ UINTN q = (UINTN)(o); \ if (p != q) { \ test |= 1; \ Print(L"%20a: %3xh %3xh ", #n, p, q); \ if (*f) { \ Print(f, bp->s.n); \ } \ Print(L"\n"); \ } \ } #define WAIT_FOR_KEY() \ { \ EFI_INPUT_KEY key; \ while (ST->ConIn->ReadKeyStroke(ST->ConIn, &key) != EFI_SUCCESS) { \ ; \ } \ } { UINTN test = 0; CHECK_OFFSET(orig_cursor_col, 0x00, L"%xh"); CHECK_OFFSET(orig_cursor_row, 0x01, L"%xh"); CHECK_OFFSET(ext_mem_k, 0x02, L"%xh"); CHECK_OFFSET(orig_video_page, 0x04, L"%xh"); CHECK_OFFSET(orig_video_mode, 0x06, L"%xh"); CHECK_OFFSET(orig_video_cols, 0x07, L"%xh"); CHECK_OFFSET(orig_ega_bx, 0x0A, L"%xh"); CHECK_OFFSET(orig_video_rows, 0x0E, L"%xh"); CHECK_OFFSET(is_vga, 0x0F, L"%xh"); CHECK_OFFSET(orig_video_points, 0x10, L"%xh"); CHECK_OFFSET(lfb_width, 0x12, L"%xh"); CHECK_OFFSET(lfb_height, 0x14, L"%xh"); CHECK_OFFSET(lfb_depth, 0x16, L"%xh"); CHECK_OFFSET(lfb_base, 0x18, L"%xh"); CHECK_OFFSET(lfb_size, 0x1C, L"%xh"); CHECK_OFFSET(cmdline_magik, 0x20, L"%xh"); CHECK_OFFSET(cmdline_offset, 0x22, L"%xh"); CHECK_OFFSET(lfb_line_len, 0x24, L"%xh"); CHECK_OFFSET(lfb_red_size, 0x26, L"%xh"); CHECK_OFFSET(lfb_red_pos, 0x27, L"%xh"); CHECK_OFFSET(lfb_green_size, 0x28, L"%xh"); CHECK_OFFSET(lfb_green_pos, 0x29, L"%xh"); CHECK_OFFSET(lfb_blue_size, 0x2A, L"%xh"); CHECK_OFFSET(lfb_blue_pos, 0x2B, L"%xh"); CHECK_OFFSET(lfb_rsvd_size, 0x2C, L"%xh"); CHECK_OFFSET(lfb_rsvd_pos, 0x2D, L"%xh"); CHECK_OFFSET(vesa_seg, 0x2E, L"%xh"); CHECK_OFFSET(vesa_off, 0x30, L"%xh"); CHECK_OFFSET(lfb_pages, 0x32, L"%xh"); CHECK_OFFSET(lfb_reserved, 0x34, L""); CHECK_OFFSET(apm_bios_ver, 0x40, L"%xh"); CHECK_OFFSET(bios_code_seg, 0x42, L"%xh"); CHECK_OFFSET(bios_entry_point, 0x44, L"%xh"); CHECK_OFFSET(bios_code_seg16, 0x48, L"%xh"); CHECK_OFFSET(bios_data_seg, 0x4A, L"%xh"); CHECK_OFFSET(apm_bios_flags, 0x4C, L"%xh"); CHECK_OFFSET(bios_code_len, 0x4E, L"%xh"); CHECK_OFFSET(bios_data_len, 0x52, L"%xh"); CHECK_OFFSET(hd0_info, 0x80, L""); CHECK_OFFSET(hd1_info, 0x90, L""); CHECK_OFFSET(mca_info_len, 0xA0, L"%xh"); CHECK_OFFSET(mca_info_buf, 0xA2, L""); CHECK_OFFSET(efi_loader_sig, 0x1C0, L"'%-4.4a'"); CHECK_OFFSET(efi_sys_tbl, 0x1C4, L"%xh"); CHECK_OFFSET(efi_mem_desc_size, 0x1C8, L"%xh"); CHECK_OFFSET(efi_mem_desc_ver, 0x1CC, L"%xh"); CHECK_OFFSET(efi_mem_map, 0x1D0, L"%xh"); CHECK_OFFSET(efi_mem_map_size, 0x1D4, L"%xh"); CHECK_OFFSET(loader_start, 0x1D8, L"%xh"); CHECK_OFFSET(loader_size, 0x1DC, L"%xh"); CHECK_OFFSET(alt_mem_k, 0x1E0, L"%xh"); CHECK_OFFSET(setup_sectors, 0x1F1, L"%xh"); CHECK_OFFSET(mount_root_rdonly, 0x1F2, L"%xh"); CHECK_OFFSET(sys_size, 0x1F4, L"%xh"); CHECK_OFFSET(swap_dev, 0x1F6, L"%xh"); CHECK_OFFSET(ramdisk_flags, 0x1F8, L"%xh"); CHECK_OFFSET(video_mode_flag, 0x1FA, L"%xh"); CHECK_OFFSET(orig_root_dev, 0x1FC, L"%xh"); CHECK_OFFSET(aux_dev_info, 0x1FF, L"%xh"); CHECK_OFFSET(jump, 0x200, L"%xh"); CHECK_OFFSET(setup_sig, 0x202, L"'%-4.4a'"); CHECK_OFFSET(hdr_minor, 0x206, L"%xh"); CHECK_OFFSET(hdr_major, 0x207, L"%xh"); CHECK_OFFSET(rm_switch, 0x208, L"%xh"); CHECK_OFFSET(start_sys_seg, 0x20C, L"%xh"); CHECK_OFFSET(kernel_verstr_offset, 0x20E, L"%xh"); CHECK_OFFSET(loader_type, 0x210, L"%xh"); CHECK_OFFSET(loader_flags, 0x211, L"%xh"); CHECK_OFFSET(setup_move_size, 0x212, L"%xh"); CHECK_OFFSET(kernel_start, 0x214, L"%xh"); CHECK_OFFSET(initrd_start, 0x218, L"%xh"); CHECK_OFFSET(initrd_size, 0x21C, L"%xh"); CHECK_OFFSET(bootsect_helper, 0x220, L"%xh"); CHECK_OFFSET(heap_end_ptr, 0x224, L"%xh"); CHECK_OFFSET(base_mem_size, 0x226, L"%xh"); if (test) { ERR_PRT((L"Boot sector and/or setup parameter alignment error.")); free_kmem(); return -1; } } /* * Get video information. * Do this last so that any other cursor positioning done * in the fill routine gets accounted for. */ efi_status = ST->ConOut->QueryMode( ST->ConOut, ST->ConOut->Mode->Mode, &cols, &rows); if (EFI_ERROR(efi_status)) { ERR_PRT((L"QueryMode failed. Fake it.")); mode = 3; rows = 25; cols = 80; row = 24; col = 0; } else { mode = (UINT8)ST->ConOut->Mode->Mode; col = (UINT8)ST->ConOut->Mode->CursorColumn; row = (UINT8)ST->ConOut->Mode->CursorRow; } bp->s.orig_cursor_col = col; bp->s.orig_cursor_row = row; bp->s.orig_video_page = 0; bp->s.orig_video_mode = mode; bp->s.orig_video_cols = (UINT8)cols; bp->s.orig_video_rows = (UINT8)rows; /* %%TBD - How to do Int 10h calls to get video info? */ bp->s.orig_ega_bx = 0; bp->s.is_vga = 0; bp->s.orig_video_points = 0; /* %%TBD - How to do Int 10h calls to get frame buffer info? */ bp->s.lfb_width = 0; bp->s.lfb_height = 0; bp->s.lfb_depth = 0; bp->s.lfb_base = 0; bp->s.lfb_size = 0; bp->s.lfb_line_len = 0; bp->s.lfb_red_size = 0; bp->s.lfb_red_pos = 0; bp->s.lfb_green_size = 0; bp->s.lfb_green_pos = 0; bp->s.lfb_blue_size = 0; bp->s.lfb_blue_pos = 0; bp->s.lfb_rsvd_size = 0; bp->s.lfb_rsvd_pos = 0; bp->s.lfb_pages = 0; bp->s.vesa_seg = 0; bp->s.vesa_off = 0; /* * Get memory map description and cookie for ExitBootServices() */ if (get_memmap(&mdesc)) { ERR_PRT((L"Could not get memory map.")); free_kmem(); return -1; } *cookie = mdesc.cookie; bp->s.efi_mem_map = (UINTN)mdesc.md; bp->s.efi_mem_map_size = mdesc.map_size; bp->s.efi_mem_desc_size = mdesc.desc_size; bp->s.efi_mem_desc_ver = mdesc.desc_version; bp->s.efi_sys_tbl = (UINTN)systab; /* * my_ia32_boot_params and get ready to slap them into 0x00104c00 */ efi_ia32_bp.size= sizeof(efi_ia32_bp); efi_ia32_bp.command_line = (UINT32) cmdline; efi_ia32_bp.efi_sys_tbl = bp->s.efi_sys_tbl; efi_ia32_bp.efi_mem_map = bp->s.efi_mem_map; efi_ia32_bp.efi_mem_map_size = bp->s.efi_mem_map_size; efi_ia32_bp.efi_mem_desc_size = bp->s.efi_mem_desc_size; efi_ia32_bp.efi_mem_desc_version = bp->s.efi_mem_desc_ver; efi_ia32_bp.initrd_start = (UINTN)initrd->start_addr; efi_ia32_bp.initrd_size = initrd->pgcnt * EFI_PAGE_SIZE; efi_ia32_bp.loader_start = 0; efi_ia32_bp.loader_size = 0; efi_ia32_bp.kernel_start = bp->s.kernel_start; efi_ia32_bp.kernel_size = kernel_size; efi_ia32_bp.num_cols = cols; efi_ia32_bp.num_rows = rows; efi_ia32_bp.orig_x = col; efi_ia32_bp.orig_y = row; return 0; }