elilo/fs/netfs.c

862 lines
23 KiB
C

/*
* Copyright (C) 2001-2009 Hewlett-Packard Co.
* Contributed by Stephane Eranian <eranian@hpl.hp.com>
* Contributed by Jason Fleischli <jason.fleischli@hp.com>
* Copyright (C) 2006-2009 Intel Corporation
* Contributed by Fenghua Yu <fenghua.yu@intel.com>
* Contributed by Bibo Mao <bibo.mao@intel.com>
* Contributed by Chandramouli Narayanan <mouli@linux.intel.com>
*
* This file is part of the ELILO, the EFI Linux boot loader.
*
* ELILO is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* ELILO is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ELILO; see the file COPYING. If not, write to the Free
* Software Foundation, 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* Please check out the elilo.txt for complete documentation on how
* to use this program.
*/
#include <efi.h>
#include <efilib.h>
#include "fs/netfs.h"
#include "elilo.h"
#define FS_NAME L"netfs"
#define NETFS_DEFAULT_BUFSIZE 16*MB
#define NETFS_DEFAULT_BUFSIZE_INC 8*MB
#define NETFS_DEFAULT_BLOCKSIZE 1024 /* setting to zero is supposed to default the underlying */
/* pxe implementation to largest blocksize supported,... */
/* in reality on original older efi implementations its */
/* never set causing the pxe transfer to timeout. */
/* the spec defines the minimum supported blocksize default */
/* to be 512 bytes... a bit extreme, 1024 should work for */
/* everything */
#define NETFS_DEFAULT_SERVER_TYPE EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP
#define NETFS_FD_MAX 2
typedef struct _netfs_fd {
struct _netfs_fd *next;
CHAR8 *netbuf;
UINT64 netbuf_maxsize; /* currently allocated buffer */
UINTN netbuf_size; /* number of bytes currently used in the buffer */
UINT64 netbuf_pos; /* current position in the buffer */
BOOLEAN is_valid; /* avoid conflicting opens */
BOOLEAN netbuf_reuse;
CHAR16 last_file[FILENAME_MAXLEN];
} netfs_fd_t;
typedef struct {
EFI_PXE_BASE_CODE *pxe;
EFI_HANDLE dev; /* handle to device we're attached to */
BOOLEAN using_pxe; /* true if downloaded using the PXE protocol vs. regular DHCP */
EFI_IP_ADDRESS srv_ip;
EFI_IP_ADDRESS cln_ip;
EFI_IP_ADDRESS gw_ip;
EFI_IP_ADDRESS netmask;
UINT8 hw_addr[16];
netfs_fd_t fd_tab[NETFS_FD_MAX];
netfs_fd_t *free_fd;
UINTN free_fd_count;
} netfs_priv_state_t;
#define NETFS_F2FD(l,f) (UINTN)((f)-(l)->fd_tab)
#define NETFS_FD2F(l,fd) ((l)->fd_tab+fd)
#define NETFS_F_INVALID(f) ((f)->is_valid == FALSE)
typedef union {
netfs_interface_t pub_intf;
struct {
netfs_interface_t pub_intf;
netfs_priv_state_t priv_data;
} netfs_priv;
} netfs_t;
#define FS_PRIVATE(n) (&(((netfs_t *)n)->netfs_priv.priv_data))
typedef union {
EFI_HANDLE *dev;
netfs_t *intf;
} dev_tab_t;
static dev_tab_t *dev_tab; /* holds all devices we found */
static UINTN ndev; /* how many entries in dev_tab */
static EFI_GUID NetFsProtocol = NETFS_PROTOCOL;
#if 0
static EFI_PXE_BASE_CODE_CALLBACK_STATUS
netfs_callback_func(
IN EFI_PXE_BASE_CODE_CALLBACK *this,
IN EFI_PXE_BASE_CODE_FUNCTION function,
IN BOOLEAN received,
IN UINT32 packet_len,
IN EFI_PXE_BASE_CODE_PACKET *packet OPTIONAL
)
{
Print(L"netfs_callback called received=%d packet_len=%d\n", received, packet_len);
return EFI_ABORTED;
}
static EFI_PXE_BASE_CODE_CALLBACK netfs_callback = {
EFI_PXE_BASE_CODE_CALLBACK_INTERFACE_REVISION,
&netfs_callback_func
};
#endif
static netfs_fd_t *
netfs_fd_alloc(netfs_priv_state_t *nfs, CHAR16 *name)
{
netfs_fd_t *tmp = NULL, *prev = NULL, *match;
UINT8 netbuf_reuse = 0;
if (nfs->free_fd == NULL) {
ERR_PRT((L"out of file descriptor"));
return NULL;
}
match = nfs->free_fd;
for (tmp = nfs->free_fd; tmp; tmp = tmp->next) {
if (!StrCmp(name, tmp->last_file)) {
DBG_PRT((L"Using cached file %s netbuf_size=%d", tmp->last_file, tmp->netbuf_size));
netbuf_reuse = 1;
match = tmp;
break;
}
prev = tmp;
}
/* indicate whether or not we got a match in caching */
match->netbuf_reuse = netbuf_reuse;
if (match == nfs->free_fd)
nfs->free_fd = match->next;
else
prev->next = match->next;
nfs->free_fd_count--;
return match;
}
static VOID
netfs_fd_free(netfs_priv_state_t *nfs, netfs_fd_t *f)
{
if (f == NULL) {
ERR_PRT((L"invalid fd"));
return;
}
f->next = nfs->free_fd;
/* we keep the netbuf, in case we can reuse it */
f->is_valid = FALSE;
nfs->free_fd = f;
nfs->free_fd_count++;
if (nfs->free_fd_count > NETFS_FD_MAX) {
ERR_PRT((L"too many free descriptors %d", nfs->free_fd_count));
}
}
static INTN
netbuf_alloc(netfs_fd_t *f)
{
/* we will try to reuse the existing buffer first */
if (f->netbuf != 0) return 0;
f->netbuf_pos = 0;
f->netbuf = (CHAR8 *)alloc_pages(EFI_SIZE_TO_PAGES(f->netbuf_maxsize), EfiLoaderData, AllocateAnyPages, 0);
return f->netbuf == 0 ? -1 : 0;
}
static EFI_STATUS
netfs_name(netfs_interface_t *this, CHAR16 *name, UINTN maxlen)
{
if (name == NULL || maxlen < 1) return EFI_INVALID_PARAMETER;
StrnCpy(name, FS_NAME, maxlen-1);
name[maxlen-1] = CHAR_NULL;
return EFI_SUCCESS;
}
static VOID
netfs_extract_ip(netfs_priv_state_t *nfs)
{
EFI_PXE_BASE_CODE *pxe = nfs->pxe;
if (pxe->Mode->PxeDiscoverValid) {
nfs->using_pxe = TRUE;
Memcpy(&nfs->srv_ip, pxe->Mode->PxeReply.Dhcpv4.BootpSiAddr, sizeof(EFI_IP_ADDRESS));
Memcpy(&nfs->hw_addr, pxe->Mode->PxeReply.Dhcpv4.BootpHwAddr, 16*sizeof(UINT8));
} else {
Memcpy(&nfs->srv_ip, pxe->Mode->DhcpAck.Dhcpv4.BootpSiAddr, sizeof(EFI_IP_ADDRESS));
Memcpy(&nfs->hw_addr, pxe->Mode->DhcpAck.Dhcpv4.BootpHwAddr, sizeof(nfs->hw_addr));
}
Memcpy(&nfs->cln_ip, &pxe->Mode->StationIp, sizeof(EFI_IP_ADDRESS));
Memcpy(&nfs->netmask, &pxe->Mode->SubnetMask, sizeof(EFI_IP_ADDRESS));
/*
* the fact that we use index 0, is just a guess
*/
if (pxe->Mode->RouteTableEntries>0)
Memcpy(&nfs->gw_ip, &pxe->Mode->RouteTable[0].GwAddr, sizeof(EFI_IP_ADDRESS));
VERB_PRT(1, Print(L"PXE PxeDiscoverValid: %s\n", pxe->Mode->PxeDiscoverValid? L"Yes (PXE-aware DHCPD)\n" : L"No (Regular DHCPD)\n"));
#if 0
status = BS->HandleProtocol(dev, &PxeCallbackProtocol, (VOID **)&netfs_callback);
status = LibInstallProtocolInterfaces(&dev, &PxeCallbackProtocol, &netfs_callback, NULL);
Print(L"PXE Callback support : %r\n", status);
if (status == EFI_SUCCESS) {
BOOLEAN doit = TRUE;
status = pxe->SetParameters(pxe, NULL, NULL, NULL, NULL, &doit);
Print(L"PXE Callback SetParameters: %r\n", status);
}
#endif
/*
* XXX: TFTPD server not quite right when using PXE, need to extract bootservers...
*/
VERB_PRT(1, Print(L"Local IP: %d.%d.%d.%d\n",
pxe->Mode->StationIp.v4.Addr[0] & 0xff,
pxe->Mode->StationIp.v4.Addr[1] & 0xff,
pxe->Mode->StationIp.v4.Addr[2] & 0xff,
pxe->Mode->StationIp.v4.Addr[3] & 0xff));
VERB_PRT(1, Print(L"SM: %d.%d.%d.%d\n",
pxe->Mode->SubnetMask.v4.Addr[0] & 0xff,
pxe->Mode->SubnetMask.v4.Addr[1] & 0xff,
pxe->Mode->SubnetMask.v4.Addr[2] & 0xff,
pxe->Mode->SubnetMask.v4.Addr[3] & 0xff));
VERB_PRT(1, Print(L"TFTPD IP: %d.%d.%d.%d\n",
nfs->srv_ip.v4.Addr[0] & 0xff,
nfs->srv_ip.v4.Addr[1] & 0xff,
nfs->srv_ip.v4.Addr[2] & 0xff,
nfs->srv_ip.v4.Addr[3] & 0xff));
VERB_PRT(1, Print(L"Gateway IP: %d.%d.%d.%d\n",
nfs->gw_ip.v4.Addr[0] & 0xff,
nfs->gw_ip.v4.Addr[1] & 0xff,
nfs->gw_ip.v4.Addr[2] & 0xff,
nfs->gw_ip.v4.Addr[3] & 0xff));
}
static EFI_STATUS
netfs_start(EFI_PXE_BASE_CODE *pxe)
{
EFI_STATUS status;
status = uefi_call_wrapper(pxe->Start, 2, pxe, FALSE);
if (EFI_ERROR(status)) return status;
return pxe->Dhcp(pxe, FALSE);
}
static EFI_STATUS
netfs_open(netfs_interface_t *this, CHAR16 *name, UINTN *fd)
{
netfs_priv_state_t *nfs;
netfs_fd_t *f;
EFI_STATUS status;
CHAR8 ascii_name[FILENAME_MAXLEN];
UINTN blocksize = NETFS_DEFAULT_BLOCKSIZE;
UINTN prev_netbufsize, retries = 0;
BOOLEAN server_provided_filesize = FALSE;
if (this == NULL || name == NULL || fd == NULL) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
if (nfs->pxe == NULL) return EFI_INVALID_PARAMETER;
/*
* Try to start protocol if not already active
*/
if (nfs->pxe->Mode->Started == FALSE) {
status = netfs_start(nfs->pxe);
if (EFI_ERROR(status)) return status;
netfs_extract_ip(nfs);
}
if ((f=netfs_fd_alloc(nfs, name)) == NULL) return EFI_OUT_OF_RESOURCES;
if (f->netbuf_reuse) {
f->netbuf_pos = 0;
f->is_valid = TRUE;
*fd = NETFS_F2FD(nfs, f);
return EFI_SUCCESS;
}
f->netbuf_maxsize = NETFS_DEFAULT_BUFSIZE;
f->netbuf_size = 0;
if (f->netbuf == NULL && netbuf_alloc(f) == -1) {
netfs_fd_free(nfs, f);
return EFI_OUT_OF_RESOURCES;
}
/* well, we need to download ! */
U2ascii(name, ascii_name, FILENAME_MAXLEN);
VERB_PRT(2, Print(L"downloading %a from %d.%d.%d.%d...\n", ascii_name,
nfs->srv_ip.v4.Addr[0],
nfs->srv_ip.v4.Addr[1],
nfs->srv_ip.v4.Addr[2],
nfs->srv_ip.v4.Addr[3]));
retry:
if (retries == 2) {
netfs_fd_free(nfs, f);
VERB_PRT(2, Print(L"Failed: %r\n", status));
return status;
}
/*
* netboot bugfix SF tracker 2874380
* EFI 1.10 spec
* For read operations, the return data will be placed in the buffer specified by BufferPtr. If
* BufferSize is too small to contain the entire downloaded file, then
* EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero or the size of
* the requested file (the size of the requested file is only returned if the TFTP server supports TFTP
* options). If BufferSize is large enough for the read operation, then BufferSize will be set to
* the size of the downloaded file, and EFI_SUCCESS will be returned. Applications using the
* PxeBc.Mtftp() services should use the get-file-size operations to determine the size of the
* downloaded file prior to using the read-file operations—especially when downloading large
* (greater than 64 MB) files—instead of making two calls to the read-file operation. Following this
* recommendation will save time if the file is larger than expected and the TFTP server does not
* support TFTP option extensions. Without TFTP option extension support, the client has to
* download the entire file, counting and discarding the received packets, to determine the file size.
* ...
* For TFTP “get file size” operations, the size of the requested file or directory is returned in
* BufferSize, and EFI_SUCCESS will be returned. If the TFTP server does not support options,
* the file will be downloaded into a bit bucket and the length of the downloaded file will be returned.
*/
status = uefi_call_wrapper(nfs->pxe->Mtftp, 10,
nfs->pxe,
EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
f->netbuf,
FALSE,
&(f->netbuf_size), // PXE writes size of file from server here
&blocksize,
&nfs->srv_ip,
ascii_name,
NULL,
FALSE);
/*
* If options are not supported by this tftp server, according to the spec the file will be
* downloaded into a bit bucket, the size calculated by efi fw and returned in the status
* field of this call. YUK!!... in this case we will default to currently allocated max
* if thats still not big enough it will be caught and increased following the read file attempt
* then retried.
* XXX need to research how this is handled or changed in the latest UEFI spec.
*/
if (status != EFI_SUCCESS) {
f->netbuf_size = f->netbuf_maxsize;
VERB_PRT(2, Print(L"setting default buffer size of %d for %a, no filesize recd from tftp server\n",
f->netbuf_size, ascii_name));
}
if (status == EFI_SUCCESS) {
server_provided_filesize = TRUE;
VERB_PRT(2, Print(L"received file size of %d for %a from tftp server.\n",
f->netbuf_size, ascii_name));
}
if (f->netbuf_size > f->netbuf_maxsize) { // we need a bigger buffer
VERB_PRT(2, Print(L"allocated buffer too small, attempting to increase\n"));
f->netbuf_maxsize += f->netbuf_size;
free(f->netbuf);
f->netbuf = NULL;
if (netbuf_alloc(f) == -1) return EFI_OUT_OF_RESOURCES;
}
/* paranoid catch any corner case missed */
if (f->netbuf_size == 0) f->netbuf_size = f->netbuf_maxsize;
DBG_PRT((L"\nbefore read: netbuf:" PTR_FMT " netbuf_size=%d blocksize=%d\n",
f->netbuf,
f->netbuf_size,
blocksize));
prev_netbufsize = f->netbuf_size;
/* now try and download this file from the tftp server */
status = uefi_call_wrapper(nfs->pxe->Mtftp, 10,
nfs->pxe,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
f->netbuf,
FALSE,
&(f->netbuf_size),
&blocksize,
&nfs->srv_ip,
ascii_name,
NULL,
FALSE);
DBG_PRT((L"after: status=%r netbuf:" PTR_FMT " netbuf_size=%d blocksize=%d\n",
status,
f->netbuf,
f->netbuf_size,
blocksize));
if ((status == EFI_TIMEOUT || status == EFI_BUFFER_TOO_SMALL) && !server_provided_filesize) {
Print(L"buffer too small, need netbuf_size=%d\n", f->netbuf_size);
/*
* if the TFTP server supports TFTP options, then we should
* get the required size. So we test to see if the size
* we set has changed. If so, we got the required size.
* If not, we increase the buffer size and retry.
*/
if (f->netbuf_size == prev_netbufsize) {
f->netbuf_maxsize += NETFS_DEFAULT_BUFSIZE_INC;
} else {
/* we got an answer from the TFTP server, let's try it */
f->netbuf_maxsize = f->netbuf_size;
server_provided_filesize = TRUE;
}
free(f->netbuf);
f->netbuf = NULL; /* will force reallocation */
if (netbuf_alloc(f) == 0) {
retries++;
goto retry;
}
} else if (status == EFI_TIMEOUT) { //if just a simple timeout, buffers are good just retry
VERB_PRT(2, Print(L"TFTP returned EFI_TIMEOUT ERROR... %d retries left.\n", (2 - retries)));
retries++;
goto retry;
}
if (status == EFI_SUCCESS) {
/* start at the beginning of the file */
f->netbuf_pos = 0;
/* cache file name */
StrCpy(f->last_file, name);
f->is_valid = 1;
*fd = NETFS_F2FD(nfs, f);
VERB_PRT(2, Print(L"Done\n"));
} else {
netfs_fd_free(nfs, f);
VERB_PRT(2, Print(L"Failed: %r\n", status));
}
DBG_PRT((L"File %s netbuf_size=%d: %r", name, f->netbuf_size, status));
#if 0
Print(L"\n---\n");
{ INTN i;
for(i=0; i < netbuf_size; i++) {
Print(L"%c", (CHAR16)netbuf[i]);
}
}
Print(L"\n---\n");
#endif
return status;
}
static EFI_STATUS
netfs_read(netfs_interface_t *this, UINTN fd, VOID *buf, UINTN *size)
{
netfs_priv_state_t *nfs;
netfs_fd_t *f;
UINTN count;
if (this == NULL || fd >= NETFS_FD_MAX || buf == NULL || size == NULL) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
f = NETFS_FD2F(nfs, fd);
if (NETFS_F_INVALID(f)) return EFI_INVALID_PARAMETER;
count = MIN(*size, f->netbuf_size - f->netbuf_pos);
if (count) Memcpy(buf, f->netbuf+f->netbuf_pos, count);
*size = count;
f->netbuf_pos += count;
return EFI_SUCCESS;
}
static EFI_STATUS
netfs_close(netfs_interface_t *this, UINTN fd)
{
netfs_priv_state_t *nfs;
netfs_fd_t *f;
if (this == NULL || fd >= NETFS_FD_MAX) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
f = NETFS_FD2F(nfs, fd);
if (NETFS_F_INVALID(f)) return EFI_INVALID_PARAMETER;
netfs_fd_free(nfs, f);
return EFI_SUCCESS;
}
static EFI_STATUS
netfs_seek(netfs_interface_t *this, UINTN fd, UINT64 newpos)
{
netfs_priv_state_t *nfs;
netfs_fd_t *f;
if (this == NULL || fd >= NETFS_FD_MAX) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
f = NETFS_FD2F(nfs, fd);
if (NETFS_F_INVALID(f)) return EFI_INVALID_PARAMETER;
if (newpos > f->netbuf_size) return EFI_INVALID_PARAMETER;
f->netbuf_pos = newpos;
return EFI_SUCCESS;
}
static EFI_STATUS
netfs_infosize(netfs_interface_t *this, UINTN fd, UINT64 *sz)
{
netfs_priv_state_t *nfs;
netfs_fd_t *f;
if (this == NULL || fd >= NETFS_FD_MAX || sz == NULL) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
f = NETFS_FD2F(nfs, fd);
if (NETFS_F_INVALID(f)) return EFI_INVALID_PARAMETER;
*sz = f->netbuf_size;
return EFI_SUCCESS;
}
static INTN
find_dhcp_option(EFI_PXE_BASE_CODE_PACKET *packet, UINT8 use_ipv6, UINT8 option, CHAR8 *str, INTN *len)
{
INTN i = 0;
UINT8 tag, length;
UINT8 *opts = packet->Dhcpv4.DhcpOptions;
*len = 0;
for(;;) {
if (i >= 56) {
DBG_PRT((L"reach end of options (no marker)\n"));
break;
}
tag = opts[i++];
if (tag == 0) continue;
if (tag == 255) break;
length = opts[i++];
#if 0
{ UINT8 l = length, k = 0;
Print(L"found option %d len=%d: ", tag, length);
while (l--) { Print(L"%c(%d)\n", (CHAR16)opts[k], opts[k]); k++; }
Print(L"\n");
}
#endif
if (tag == option) {
*len = length;
while (length--) { *str++ = opts[i++]; }
return 0;
}
i += length;
}
return -1;
}
static EFI_STATUS
netfs_getinfo(netfs_interface_t *this, netfs_info_t *info)
{
netfs_priv_state_t *nfs;
CHAR8 str[256];
INTN len, r;
if (this == NULL || info == NULL) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
Memcpy(&info->cln_ipaddr, &nfs->cln_ip, sizeof(EFI_IP_ADDRESS));
Memcpy(&info->srv_ipaddr, &nfs->srv_ip, sizeof(EFI_IP_ADDRESS));
Memcpy(&info->netmask, &nfs->netmask, sizeof(EFI_IP_ADDRESS));
Memcpy(&info->gw_ipaddr, &nfs->gw_ip, sizeof(EFI_IP_ADDRESS));
Memcpy(&info->hw_addr, &nfs->hw_addr, sizeof(info->hw_addr));
info->using_pxe = nfs->using_pxe;
info->started = nfs->pxe->Mode->Started;
info->using_ipv6 = nfs->pxe->Mode->UsingIpv6;
if (nfs->pxe->Mode->UsingIpv6) goto skip_options;
r = find_dhcp_option(&nfs->pxe->Mode->DhcpAck,nfs->pxe->Mode->UsingIpv6, 15, str, &len);
str[len] = '\0';
ascii2U(str, info->domainame, 255);
VERB_PRT(3, Print(L"domain(15): %a\n", str));
r = find_dhcp_option(&nfs->pxe->Mode->DhcpAck,nfs->pxe->Mode->UsingIpv6, 12, str, &len);
str[len] = '\0';
ascii2U(str, info->hostname, 255);
VERB_PRT(3, Print(L"hostname(12): %a\n", str));
/*
* extract bootfile name from DHCP exchanges
*/
if (nfs->using_pxe == 0) {
ascii2U(nfs->pxe->Mode->DhcpAck.Dhcpv4.BootpBootFile, info->bootfile, NETFS_BOOTFILE_MAXLEN);
VERB_PRT(3, Print(L"bootfile: %s\n", info->bootfile));
}
skip_options:
return EFI_SUCCESS;
}
static UINT16
find_pxe_server_type(EFI_PXE_BASE_CODE *pxe)
{
INTN i = 0, max;
UINT8 tag, length;
UINT8 *opts = pxe->Mode->PxeReply.Dhcpv4.DhcpOptions;
UINT16 server_type;
while(i < 55) {
tag = opts[i];
length = opts[i+1];
DBG_PRT((L"Tag #%d Length %d\n",tag, length));
if (tag == 43) goto found;
i += 2 + length;
}
return NETFS_DEFAULT_SERVER_TYPE;
found:
max = i+2+length;
i += 2;
while (i < max) {
tag = opts[i];
length = opts[i+1];
if (tag == 71) {
server_type =(opts[i+2]<<8) | opts[i+3];
DBG_PRT((L"ServerType: %d\n", server_type));
return server_type;
}
i+= 2 + length;
}
return NETFS_DEFAULT_SERVER_TYPE;
}
static EFI_STATUS
netfs_query_layer(netfs_interface_t *this, UINT16 server_type, UINT16 layer, UINTN maxlen, CHAR16 *str)
{
netfs_priv_state_t *nfs;
EFI_STATUS status;
if (this == NULL || str == NULL) return EFI_INVALID_PARAMETER;
nfs = FS_PRIVATE(this);
if (nfs->using_pxe == FALSE) return EFI_UNSUPPORTED;
if (server_type == 0) server_type = find_pxe_server_type(nfs->pxe);
status = uefi_call_wrapper(nfs->pxe->Discover, 5, nfs->pxe, server_type, &layer, FALSE, 0);
if(status == EFI_SUCCESS) {
ascii2U(nfs->pxe->Mode->PxeReply.Dhcpv4.BootpBootFile, str, maxlen);
}
return status;
}
static VOID
netfs_init_state(netfs_t *netfs, EFI_HANDLE dev, EFI_PXE_BASE_CODE *pxe)
{
netfs_priv_state_t *nfs = FS_PRIVATE(netfs);
UINTN i;
/* need to do some init here on netfs_intf */
Memset(netfs, 0, sizeof(*netfs));
netfs->pub_intf.netfs_name = netfs_name;
netfs->pub_intf.netfs_open = netfs_open;
netfs->pub_intf.netfs_read = netfs_read;
netfs->pub_intf.netfs_close = netfs_close;
netfs->pub_intf.netfs_infosize = netfs_infosize;
netfs->pub_intf.netfs_seek = netfs_seek;
netfs->pub_intf.netfs_query_layer = netfs_query_layer;
netfs->pub_intf.netfs_getinfo = netfs_getinfo;
nfs->dev = dev;
nfs->pxe = pxe;
/*
* we defer DHCP request until it is really necessary (netfs_open)
*/
if (pxe->Mode->Started == TRUE) netfs_extract_ip(nfs);
Memset(nfs->fd_tab, 0, sizeof(nfs->fd_tab));
for (i=0; i < NETFS_FD_MAX-1; i++) {
nfs->fd_tab[i].next = &nfs->fd_tab[i+1];
}
/* null on last element is done by memset */
nfs->free_fd = nfs->fd_tab;
nfs->free_fd_count = NETFS_FD_MAX;
}
static EFI_STATUS
netfs_install_one(EFI_HANDLE dev, VOID **intf)
{
EFI_STATUS status;
netfs_t *netfs;
EFI_PXE_BASE_CODE *pxe;
status = uefi_call_wrapper(BS->HandleProtocol, 3, dev, &NetFsProtocol, (VOID **)&netfs);
if (status == EFI_SUCCESS) {
ERR_PRT((L"Warning: found existing %s protocol on device", FS_NAME));
goto found;
}
status = uefi_call_wrapper(BS->HandleProtocol, 3, dev, &PxeBaseCodeProtocol, (VOID **)&pxe);
if (EFI_ERROR(status)) return EFI_INVALID_PARAMETER;
netfs = (netfs_t *)alloc(sizeof(*netfs), EfiLoaderData);
if (netfs == NULL) {
ERR_PRT((L"failed to allocate %s", FS_NAME));
return EFI_OUT_OF_RESOURCES;
}
netfs_init_state(netfs, dev, pxe);
status = LibInstallProtocolInterfaces(&dev, &NetFsProtocol, netfs, NULL);
if (EFI_ERROR(status)) {
ERR_PRT((L"Cannot install %s protocol: %r", FS_NAME, status));
free(netfs);
return status;
}
found:
if (intf) *intf = (VOID *)netfs;
VERB_PRT(3,
{ EFI_DEVICE_PATH *dp; CHAR16 *str;
dp = DevicePathFromHandle(dev);
str = DevicePathToStr(dp);
Print(L"attached %s to %s\n", FS_NAME, str);
FreePool(str);
});
return EFI_SUCCESS;
}
EFI_STATUS
netfs_install(VOID)
{
UINTN size = 0;
UINTN i;
EFI_STATUS status;
VOID *intf;
uefi_call_wrapper(BS->LocateHandle, 5, ByProtocol, &PxeBaseCodeProtocol, NULL, &size, NULL);
if (size == 0) return EFI_UNSUPPORTED; /* no device found, oh well */
DBG_PRT((L"size=%d", size));
dev_tab = (dev_tab_t *)alloc(size, EfiLoaderData);
if (dev_tab == NULL) {
ERR_PRT((L"failed to allocate handle table"));
return EFI_OUT_OF_RESOURCES;
}
status = uefi_call_wrapper(BS->LocateHandle, 5, ByProtocol, &PxeBaseCodeProtocol, NULL, &size, (VOID **)dev_tab);
if (status != EFI_SUCCESS) {
ERR_PRT((L"failed to get handles: %r", status));
free(dev_tab);
return status;
}
ndev = size / sizeof(EFI_HANDLE);
for(i=0; i < ndev; i++) {
intf = NULL;
netfs_install_one(dev_tab[i].dev, &intf);
/* override device handle with interface pointer */
dev_tab[i].intf = intf;
}
return EFI_SUCCESS;
}
EFI_STATUS
netfs_uninstall(VOID)
{
netfs_priv_state_t *nfs;
EFI_STATUS status;
UINTN i;
for(i=0; i < ndev; i++) {
if (dev_tab[i].intf == NULL) continue;
nfs = FS_PRIVATE(dev_tab[i].intf);
status = uefi_call_wrapper(BS->UninstallProtocolInterface, 3, nfs->dev, &NetFsProtocol, dev_tab[i].intf);
if (EFI_ERROR(status)) {
ERR_PRT((L"Uninstall %s error: %r", FS_NAME, status));
continue;
}
VERB_PRT(3,
{ EFI_DEVICE_PATH *dp; CHAR16 *str;
dp = DevicePathFromHandle(nfs->dev);
str = DevicePathToStr(dp);
Print(L"uninstalled %s on %s\n", FS_NAME, str);
FreePool(str);
});
if (nfs->pxe->Mode->Started == TRUE)
uefi_call_wrapper(nfs->pxe->Stop, 1, nfs->pxe);
free(dev_tab[i].intf);
}
if (dev_tab) free(dev_tab);
return EFI_SUCCESS;
}