534 lines
14 KiB
C
534 lines
14 KiB
C
|
/* mpih-div.c - MPI helper functions
|
||
|
* Copyright (C) 1994, 1996, 1998, 2000,
|
||
|
* 2001, 2002 Free Software Foundation, Inc.
|
||
|
*
|
||
|
* This file is part of Libgcrypt.
|
||
|
*
|
||
|
* Libgcrypt is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU Lesser General Public License as
|
||
|
* published by the Free Software Foundation; either version 2.1 of
|
||
|
* the License, or (at your option) any later version.
|
||
|
*
|
||
|
* Libgcrypt is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||
|
*
|
||
|
* Note: This code is heavily based on the GNU MP Library.
|
||
|
* Actually it's the same code with only minor changes in the
|
||
|
* way the data is stored; this is to support the abstraction
|
||
|
* of an optional secure memory allocation which may be used
|
||
|
* to avoid revealing of sensitive data due to paging etc.
|
||
|
*/
|
||
|
|
||
|
#include <config.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include "mpi-internal.h"
|
||
|
#include "longlong.h"
|
||
|
|
||
|
#ifndef UMUL_TIME
|
||
|
#define UMUL_TIME 1
|
||
|
#endif
|
||
|
#ifndef UDIV_TIME
|
||
|
#define UDIV_TIME UMUL_TIME
|
||
|
#endif
|
||
|
|
||
|
/* FIXME: We should be using invert_limb (or invert_normalized_limb)
|
||
|
* here (not udiv_qrnnd).
|
||
|
*/
|
||
|
|
||
|
mpi_limb_t
|
||
|
_gcry_mpih_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
|
||
|
mpi_limb_t divisor_limb)
|
||
|
{
|
||
|
mpi_size_t i;
|
||
|
mpi_limb_t n1, n0, r;
|
||
|
int dummy;
|
||
|
|
||
|
/* Botch: Should this be handled at all? Rely on callers? */
|
||
|
if( !dividend_size )
|
||
|
return 0;
|
||
|
|
||
|
/* If multiplication is much faster than division, and the
|
||
|
* dividend is large, pre-invert the divisor, and use
|
||
|
* only multiplications in the inner loop.
|
||
|
*
|
||
|
* This test should be read:
|
||
|
* Does it ever help to use udiv_qrnnd_preinv?
|
||
|
* && Does what we save compensate for the inversion overhead?
|
||
|
*/
|
||
|
if( UDIV_TIME > (2 * UMUL_TIME + 6)
|
||
|
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
|
||
|
int normalization_steps;
|
||
|
|
||
|
count_leading_zeros( normalization_steps, divisor_limb );
|
||
|
if( normalization_steps ) {
|
||
|
mpi_limb_t divisor_limb_inverted;
|
||
|
|
||
|
divisor_limb <<= normalization_steps;
|
||
|
|
||
|
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
|
||
|
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
|
||
|
* most significant bit (with weight 2**N) implicit.
|
||
|
*
|
||
|
* Special case for DIVISOR_LIMB == 100...000.
|
||
|
*/
|
||
|
if( !(divisor_limb << 1) )
|
||
|
divisor_limb_inverted = ~(mpi_limb_t)0;
|
||
|
else
|
||
|
udiv_qrnnd(divisor_limb_inverted, dummy,
|
||
|
-divisor_limb, 0, divisor_limb);
|
||
|
|
||
|
n1 = dividend_ptr[dividend_size - 1];
|
||
|
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
|
||
|
|
||
|
/* Possible optimization:
|
||
|
* if (r == 0
|
||
|
* && divisor_limb > ((n1 << normalization_steps)
|
||
|
* | (dividend_ptr[dividend_size - 2] >> ...)))
|
||
|
* ...one division less...
|
||
|
*/
|
||
|
for( i = dividend_size - 2; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
UDIV_QRNND_PREINV(dummy, r, r,
|
||
|
((n1 << normalization_steps)
|
||
|
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
|
||
|
divisor_limb, divisor_limb_inverted);
|
||
|
n1 = n0;
|
||
|
}
|
||
|
UDIV_QRNND_PREINV(dummy, r, r,
|
||
|
n1 << normalization_steps,
|
||
|
divisor_limb, divisor_limb_inverted);
|
||
|
return r >> normalization_steps;
|
||
|
}
|
||
|
else {
|
||
|
mpi_limb_t divisor_limb_inverted;
|
||
|
|
||
|
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
|
||
|
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
|
||
|
* most significant bit (with weight 2**N) implicit.
|
||
|
*
|
||
|
* Special case for DIVISOR_LIMB == 100...000.
|
||
|
*/
|
||
|
if( !(divisor_limb << 1) )
|
||
|
divisor_limb_inverted = ~(mpi_limb_t)0;
|
||
|
else
|
||
|
udiv_qrnnd(divisor_limb_inverted, dummy,
|
||
|
-divisor_limb, 0, divisor_limb);
|
||
|
|
||
|
i = dividend_size - 1;
|
||
|
r = dividend_ptr[i];
|
||
|
|
||
|
if( r >= divisor_limb )
|
||
|
r = 0;
|
||
|
else
|
||
|
i--;
|
||
|
|
||
|
for( ; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
UDIV_QRNND_PREINV(dummy, r, r,
|
||
|
n0, divisor_limb, divisor_limb_inverted);
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if( UDIV_NEEDS_NORMALIZATION ) {
|
||
|
int normalization_steps;
|
||
|
|
||
|
count_leading_zeros(normalization_steps, divisor_limb);
|
||
|
if( normalization_steps ) {
|
||
|
divisor_limb <<= normalization_steps;
|
||
|
|
||
|
n1 = dividend_ptr[dividend_size - 1];
|
||
|
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
|
||
|
|
||
|
/* Possible optimization:
|
||
|
* if (r == 0
|
||
|
* && divisor_limb > ((n1 << normalization_steps)
|
||
|
* | (dividend_ptr[dividend_size - 2] >> ...)))
|
||
|
* ...one division less...
|
||
|
*/
|
||
|
for(i = dividend_size - 2; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
udiv_qrnnd (dummy, r, r,
|
||
|
((n1 << normalization_steps)
|
||
|
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
|
||
|
divisor_limb);
|
||
|
n1 = n0;
|
||
|
}
|
||
|
udiv_qrnnd (dummy, r, r,
|
||
|
n1 << normalization_steps,
|
||
|
divisor_limb);
|
||
|
return r >> normalization_steps;
|
||
|
}
|
||
|
}
|
||
|
/* No normalization needed, either because udiv_qrnnd doesn't require
|
||
|
* it, or because DIVISOR_LIMB is already normalized. */
|
||
|
i = dividend_size - 1;
|
||
|
r = dividend_ptr[i];
|
||
|
|
||
|
if(r >= divisor_limb)
|
||
|
r = 0;
|
||
|
else
|
||
|
i--;
|
||
|
|
||
|
for(; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
udiv_qrnnd (dummy, r, r, n0, divisor_limb);
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
|
||
|
* the NSIZE-DSIZE least significant quotient limbs at QP
|
||
|
* and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
|
||
|
* non-zero, generate that many fraction bits and append them after the
|
||
|
* other quotient limbs.
|
||
|
* Return the most significant limb of the quotient, this is always 0 or 1.
|
||
|
*
|
||
|
* Preconditions:
|
||
|
* 0. NSIZE >= DSIZE.
|
||
|
* 1. The most significant bit of the divisor must be set.
|
||
|
* 2. QP must either not overlap with the input operands at all, or
|
||
|
* QP + DSIZE >= NP must hold true. (This means that it's
|
||
|
* possible to put the quotient in the high part of NUM, right after the
|
||
|
* remainder in NUM.
|
||
|
* 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
|
||
|
*/
|
||
|
|
||
|
mpi_limb_t
|
||
|
_gcry_mpih_divrem( mpi_ptr_t qp, mpi_size_t qextra_limbs,
|
||
|
mpi_ptr_t np, mpi_size_t nsize,
|
||
|
mpi_ptr_t dp, mpi_size_t dsize)
|
||
|
{
|
||
|
mpi_limb_t most_significant_q_limb = 0;
|
||
|
|
||
|
switch(dsize) {
|
||
|
case 0:
|
||
|
/* We are asked to divide by zero, so go ahead and do it! (To make
|
||
|
the compiler not remove this statement, return the value.) */
|
||
|
return 1 / dsize;
|
||
|
|
||
|
case 1:
|
||
|
{
|
||
|
mpi_size_t i;
|
||
|
mpi_limb_t n1;
|
||
|
mpi_limb_t d;
|
||
|
|
||
|
d = dp[0];
|
||
|
n1 = np[nsize - 1];
|
||
|
|
||
|
if( n1 >= d ) {
|
||
|
n1 -= d;
|
||
|
most_significant_q_limb = 1;
|
||
|
}
|
||
|
|
||
|
qp += qextra_limbs;
|
||
|
for( i = nsize - 2; i >= 0; i--)
|
||
|
udiv_qrnnd( qp[i], n1, n1, np[i], d );
|
||
|
qp -= qextra_limbs;
|
||
|
|
||
|
for( i = qextra_limbs - 1; i >= 0; i-- )
|
||
|
udiv_qrnnd (qp[i], n1, n1, 0, d);
|
||
|
|
||
|
np[0] = n1;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
{
|
||
|
mpi_size_t i;
|
||
|
mpi_limb_t n1, n0, n2;
|
||
|
mpi_limb_t d1, d0;
|
||
|
|
||
|
np += nsize - 2;
|
||
|
d1 = dp[1];
|
||
|
d0 = dp[0];
|
||
|
n1 = np[1];
|
||
|
n0 = np[0];
|
||
|
|
||
|
if( n1 >= d1 && (n1 > d1 || n0 >= d0) ) {
|
||
|
sub_ddmmss (n1, n0, n1, n0, d1, d0);
|
||
|
most_significant_q_limb = 1;
|
||
|
}
|
||
|
|
||
|
for( i = qextra_limbs + nsize - 2 - 1; i >= 0; i-- ) {
|
||
|
mpi_limb_t q;
|
||
|
mpi_limb_t r;
|
||
|
|
||
|
if( i >= qextra_limbs )
|
||
|
np--;
|
||
|
else
|
||
|
np[0] = 0;
|
||
|
|
||
|
if( n1 == d1 ) {
|
||
|
/* Q should be either 111..111 or 111..110. Need special
|
||
|
* treatment of this rare case as normal division would
|
||
|
* give overflow. */
|
||
|
q = ~(mpi_limb_t)0;
|
||
|
|
||
|
r = n0 + d1;
|
||
|
if( r < d1 ) { /* Carry in the addition? */
|
||
|
add_ssaaaa( n1, n0, r - d0, np[0], 0, d0 );
|
||
|
qp[i] = q;
|
||
|
continue;
|
||
|
}
|
||
|
n1 = d0 - (d0 != 0?1:0);
|
||
|
n0 = -d0;
|
||
|
}
|
||
|
else {
|
||
|
udiv_qrnnd (q, r, n1, n0, d1);
|
||
|
umul_ppmm (n1, n0, d0, q);
|
||
|
}
|
||
|
|
||
|
n2 = np[0];
|
||
|
q_test:
|
||
|
if( n1 > r || (n1 == r && n0 > n2) ) {
|
||
|
/* The estimated Q was too large. */
|
||
|
q--;
|
||
|
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
||
|
r += d1;
|
||
|
if( r >= d1 ) /* If not carry, test Q again. */
|
||
|
goto q_test;
|
||
|
}
|
||
|
|
||
|
qp[i] = q;
|
||
|
sub_ddmmss (n1, n0, r, n2, n1, n0);
|
||
|
}
|
||
|
np[1] = n1;
|
||
|
np[0] = n0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
{
|
||
|
mpi_size_t i;
|
||
|
mpi_limb_t dX, d1, n0;
|
||
|
|
||
|
np += nsize - dsize;
|
||
|
dX = dp[dsize - 1];
|
||
|
d1 = dp[dsize - 2];
|
||
|
n0 = np[dsize - 1];
|
||
|
|
||
|
if( n0 >= dX ) {
|
||
|
if(n0 > dX || _gcry_mpih_cmp(np, dp, dsize - 1) >= 0 ) {
|
||
|
_gcry_mpih_sub_n(np, np, dp, dsize);
|
||
|
n0 = np[dsize - 1];
|
||
|
most_significant_q_limb = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for( i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
|
||
|
mpi_limb_t q;
|
||
|
mpi_limb_t n1, n2;
|
||
|
mpi_limb_t cy_limb;
|
||
|
|
||
|
if( i >= qextra_limbs ) {
|
||
|
np--;
|
||
|
n2 = np[dsize];
|
||
|
}
|
||
|
else {
|
||
|
n2 = np[dsize - 1];
|
||
|
MPN_COPY_DECR (np + 1, np, dsize - 1);
|
||
|
np[0] = 0;
|
||
|
}
|
||
|
|
||
|
if( n0 == dX ) {
|
||
|
/* This might over-estimate q, but it's probably not worth
|
||
|
* the extra code here to find out. */
|
||
|
q = ~(mpi_limb_t)0;
|
||
|
}
|
||
|
else {
|
||
|
mpi_limb_t r;
|
||
|
|
||
|
udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
|
||
|
umul_ppmm(n1, n0, d1, q);
|
||
|
|
||
|
while( n1 > r || (n1 == r && n0 > np[dsize - 2])) {
|
||
|
q--;
|
||
|
r += dX;
|
||
|
if( r < dX ) /* I.e. "carry in previous addition?" */
|
||
|
break;
|
||
|
n1 -= n0 < d1;
|
||
|
n0 -= d1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
||
|
* after the calculation of q. Taking advantage of that, we
|
||
|
* could make this loop make two iterations less. */
|
||
|
cy_limb = _gcry_mpih_submul_1(np, dp, dsize, q);
|
||
|
|
||
|
if( n2 != cy_limb ) {
|
||
|
_gcry_mpih_add_n(np, np, dp, dsize);
|
||
|
q--;
|
||
|
}
|
||
|
|
||
|
qp[i] = q;
|
||
|
n0 = np[dsize - 1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return most_significant_q_limb;
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************
|
||
|
* Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
|
||
|
* Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
|
||
|
* Return the single-limb remainder.
|
||
|
* There are no constraints on the value of the divisor.
|
||
|
*
|
||
|
* QUOT_PTR and DIVIDEND_PTR might point to the same limb.
|
||
|
*/
|
||
|
|
||
|
mpi_limb_t
|
||
|
_gcry_mpih_divmod_1( mpi_ptr_t quot_ptr,
|
||
|
mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
|
||
|
mpi_limb_t divisor_limb)
|
||
|
{
|
||
|
mpi_size_t i;
|
||
|
mpi_limb_t n1, n0, r;
|
||
|
int dummy;
|
||
|
|
||
|
if( !dividend_size )
|
||
|
return 0;
|
||
|
|
||
|
/* If multiplication is much faster than division, and the
|
||
|
* dividend is large, pre-invert the divisor, and use
|
||
|
* only multiplications in the inner loop.
|
||
|
*
|
||
|
* This test should be read:
|
||
|
* Does it ever help to use udiv_qrnnd_preinv?
|
||
|
* && Does what we save compensate for the inversion overhead?
|
||
|
*/
|
||
|
if( UDIV_TIME > (2 * UMUL_TIME + 6)
|
||
|
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
|
||
|
int normalization_steps;
|
||
|
|
||
|
count_leading_zeros( normalization_steps, divisor_limb );
|
||
|
if( normalization_steps ) {
|
||
|
mpi_limb_t divisor_limb_inverted;
|
||
|
|
||
|
divisor_limb <<= normalization_steps;
|
||
|
|
||
|
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
|
||
|
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
|
||
|
* most significant bit (with weight 2**N) implicit.
|
||
|
*/
|
||
|
/* Special case for DIVISOR_LIMB == 100...000. */
|
||
|
if( !(divisor_limb << 1) )
|
||
|
divisor_limb_inverted = ~(mpi_limb_t)0;
|
||
|
else
|
||
|
udiv_qrnnd(divisor_limb_inverted, dummy,
|
||
|
-divisor_limb, 0, divisor_limb);
|
||
|
|
||
|
n1 = dividend_ptr[dividend_size - 1];
|
||
|
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
|
||
|
|
||
|
/* Possible optimization:
|
||
|
* if (r == 0
|
||
|
* && divisor_limb > ((n1 << normalization_steps)
|
||
|
* | (dividend_ptr[dividend_size - 2] >> ...)))
|
||
|
* ...one division less...
|
||
|
*/
|
||
|
for( i = dividend_size - 2; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
UDIV_QRNND_PREINV( quot_ptr[i + 1], r, r,
|
||
|
((n1 << normalization_steps)
|
||
|
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
|
||
|
divisor_limb, divisor_limb_inverted);
|
||
|
n1 = n0;
|
||
|
}
|
||
|
UDIV_QRNND_PREINV( quot_ptr[0], r, r,
|
||
|
n1 << normalization_steps,
|
||
|
divisor_limb, divisor_limb_inverted);
|
||
|
return r >> normalization_steps;
|
||
|
}
|
||
|
else {
|
||
|
mpi_limb_t divisor_limb_inverted;
|
||
|
|
||
|
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
|
||
|
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
|
||
|
* most significant bit (with weight 2**N) implicit.
|
||
|
*/
|
||
|
/* Special case for DIVISOR_LIMB == 100...000. */
|
||
|
if( !(divisor_limb << 1) )
|
||
|
divisor_limb_inverted = ~(mpi_limb_t) 0;
|
||
|
else
|
||
|
udiv_qrnnd(divisor_limb_inverted, dummy,
|
||
|
-divisor_limb, 0, divisor_limb);
|
||
|
|
||
|
i = dividend_size - 1;
|
||
|
r = dividend_ptr[i];
|
||
|
|
||
|
if( r >= divisor_limb )
|
||
|
r = 0;
|
||
|
else
|
||
|
quot_ptr[i--] = 0;
|
||
|
|
||
|
for( ; i >= 0; i-- ) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
UDIV_QRNND_PREINV( quot_ptr[i], r, r,
|
||
|
n0, divisor_limb, divisor_limb_inverted);
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if(UDIV_NEEDS_NORMALIZATION) {
|
||
|
int normalization_steps;
|
||
|
|
||
|
count_leading_zeros (normalization_steps, divisor_limb);
|
||
|
if( normalization_steps ) {
|
||
|
divisor_limb <<= normalization_steps;
|
||
|
|
||
|
n1 = dividend_ptr[dividend_size - 1];
|
||
|
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
|
||
|
|
||
|
/* Possible optimization:
|
||
|
* if (r == 0
|
||
|
* && divisor_limb > ((n1 << normalization_steps)
|
||
|
* | (dividend_ptr[dividend_size - 2] >> ...)))
|
||
|
* ...one division less...
|
||
|
*/
|
||
|
for( i = dividend_size - 2; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
udiv_qrnnd (quot_ptr[i + 1], r, r,
|
||
|
((n1 << normalization_steps)
|
||
|
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
|
||
|
divisor_limb);
|
||
|
n1 = n0;
|
||
|
}
|
||
|
udiv_qrnnd (quot_ptr[0], r, r,
|
||
|
n1 << normalization_steps,
|
||
|
divisor_limb);
|
||
|
return r >> normalization_steps;
|
||
|
}
|
||
|
}
|
||
|
/* No normalization needed, either because udiv_qrnnd doesn't require
|
||
|
* it, or because DIVISOR_LIMB is already normalized. */
|
||
|
i = dividend_size - 1;
|
||
|
r = dividend_ptr[i];
|
||
|
|
||
|
if(r >= divisor_limb)
|
||
|
r = 0;
|
||
|
else
|
||
|
quot_ptr[i--] = 0;
|
||
|
|
||
|
for(; i >= 0; i--) {
|
||
|
n0 = dividend_ptr[i];
|
||
|
udiv_qrnnd( quot_ptr[i], r, r, n0, divisor_limb );
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
}
|