* grub-core/Makefile.core.def (xzio): New module.
* grub-core/io/xzio.c: New file. * grub-core/lib/xzembed/xz.h: New file (from xembed). * grub-core/lib/xzembed/xz_config.h: Likewise. * grub-core/lib/xzembed/xz_dec_bcj.c: Likewise. * grub-core/lib/xzembed/xz_dec_lzma2.c: Likewise. * grub-core/lib/xzembed/xz_dec_stream.c: Likewise. * grub-core/lib/xzembed/xz_lzma2.h: Likewise. * grub-core/lib/xzembed/xz_private.h: Likewise. * grub-core/lib/xzembed/xz_stream.h: Likewise. * include/grub/file.h (grub_file_filter_id): New compression filter GRUB_FILE_FILTER_XZIO.
This commit is contained in:
parent
82a8506214
commit
f0aff67c47
12 changed files with 3676 additions and 1 deletions
15
ChangeLog
15
ChangeLog
|
@ -1,3 +1,18 @@
|
|||
2010-09-05 Szymon Janc <szymon@janc.net.pl>
|
||||
|
||||
* grub-core/Makefile.core.def (xzio): New module.
|
||||
* grub-core/io/xzio.c: New file.
|
||||
* grub-core/lib/xzembed/xz.h: New file (from xembed).
|
||||
* grub-core/lib/xzembed/xz_config.h: Likewise.
|
||||
* grub-core/lib/xzembed/xz_dec_bcj.c: Likewise.
|
||||
* grub-core/lib/xzembed/xz_dec_lzma2.c: Likewise.
|
||||
* grub-core/lib/xzembed/xz_dec_stream.c: Likewise.
|
||||
* grub-core/lib/xzembed/xz_lzma2.h: Likewise.
|
||||
* grub-core/lib/xzembed/xz_private.h: Likewise.
|
||||
* grub-core/lib/xzembed/xz_stream.h: Likewise.
|
||||
* include/grub/file.h (grub_file_filter_id): New compression filter
|
||||
GRUB_FILE_FILTER_XZIO.
|
||||
|
||||
2010-09-05 Vladimir Serbinenko <phcoder@gmail.com>
|
||||
|
||||
* include/grub/file.h (GRUB_FILE_SIZE_UNKNOWN): New definition.
|
||||
|
|
|
@ -1389,6 +1389,15 @@ module = {
|
|||
common = tests/test_blockarg.c;
|
||||
};
|
||||
|
||||
module = {
|
||||
name = xzio;
|
||||
common = io/xzio.c;
|
||||
common = lib/xzembed/xz_dec_bcj.c;
|
||||
common = lib/xzembed/xz_dec_lzma2.c;
|
||||
common = lib/xzembed/xz_dec_stream.c;
|
||||
cppflags = '-I$(srcdir)/lib/posix_wrap -I$(srcdir)/lib/xzembed';
|
||||
};
|
||||
|
||||
module = {
|
||||
name = testload;
|
||||
common = commands/testload.c;
|
||||
|
|
353
grub-core/io/xzio.c
Normal file
353
grub-core/io/xzio.c
Normal file
|
@ -0,0 +1,353 @@
|
|||
/* xzio.c - decompression support for xz */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <grub/err.h>
|
||||
#include <grub/mm.h>
|
||||
#include <grub/misc.h>
|
||||
#include <grub/file.h>
|
||||
#include <grub/fs.h>
|
||||
#include <grub/dl.h>
|
||||
|
||||
#include "xz.h"
|
||||
#include "xz_stream.h"
|
||||
|
||||
#define XZBUFSIZ 0x2000
|
||||
#define VLI_MAX_DIGITS 9
|
||||
#define XZ_STREAM_FOOTER_SIZE 12
|
||||
|
||||
struct grub_xzio
|
||||
{
|
||||
grub_file_t file;
|
||||
struct xz_buf buf;
|
||||
struct xz_dec *dec;
|
||||
grub_uint8_t inbuf[XZBUFSIZ];
|
||||
grub_uint8_t outbuf[XZBUFSIZ];
|
||||
grub_off_t saved_offset;
|
||||
};
|
||||
|
||||
typedef struct grub_xzio *grub_xzio_t;
|
||||
static struct grub_fs grub_xzio_fs;
|
||||
|
||||
static grub_size_t
|
||||
decode_vli (const grub_uint8_t buf[], grub_size_t size_max,
|
||||
grub_uint64_t * num)
|
||||
{
|
||||
if (size_max == 0)
|
||||
return 0;
|
||||
|
||||
if (size_max > VLI_MAX_DIGITS)
|
||||
size_max = VLI_MAX_DIGITS;
|
||||
|
||||
*num = buf[0] & 0x7F;
|
||||
grub_size_t i = 0;
|
||||
|
||||
while (buf[i++] & 0x80)
|
||||
{
|
||||
if (i >= size_max || buf[i] == 0x00)
|
||||
return 0;
|
||||
|
||||
*num |= (uint64_t) (buf[i] & 0x7F) << (i * 7);
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
static grub_ssize_t
|
||||
read_vli (grub_file_t file, grub_uint64_t * num)
|
||||
{
|
||||
grub_uint8_t buf[VLI_MAX_DIGITS];
|
||||
grub_ssize_t read;
|
||||
grub_size_t dec;
|
||||
|
||||
read = grub_file_read (file, buf, VLI_MAX_DIGITS);
|
||||
if (read < 0)
|
||||
return -1;
|
||||
|
||||
dec = decode_vli (buf, read, num);
|
||||
grub_file_seek (file, file->offset - (read - dec));
|
||||
return dec;
|
||||
}
|
||||
|
||||
/* Function xz_dec_run() should consume header and ask for more (XZ_OK)
|
||||
* else file is corrupted (or options not supported) or not xz. */
|
||||
static int
|
||||
test_header (grub_file_t file)
|
||||
{
|
||||
grub_xzio_t xzio = file->data;
|
||||
xzio->buf.in_size = grub_file_read (xzio->file, xzio->inbuf,
|
||||
STREAM_HEADER_SIZE);
|
||||
|
||||
if (xzio->buf.in_size != STREAM_HEADER_SIZE)
|
||||
{
|
||||
grub_error (GRUB_ERR_BAD_FILE_TYPE, "no xz magic found");
|
||||
return 0;
|
||||
}
|
||||
|
||||
enum xz_ret ret = xz_dec_run (xzio->dec, &xzio->buf);
|
||||
|
||||
if (ret == XZ_FORMAT_ERROR)
|
||||
{
|
||||
grub_error (GRUB_ERR_BAD_FILE_TYPE, "no xz magic found");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (ret != XZ_OK)
|
||||
{
|
||||
grub_error (GRUB_ERR_BAD_COMPRESSED_DATA, "not supported xz options");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Try to find out size of uncompressed data,
|
||||
* also do some footer sanity checks. */
|
||||
static int
|
||||
test_footer (grub_file_t file)
|
||||
{
|
||||
grub_xzio_t xzio = file->data;
|
||||
grub_uint8_t footer[FOOTER_MAGIC_SIZE];
|
||||
grub_uint32_t backsize;
|
||||
grub_uint8_t imarker;
|
||||
grub_uint64_t uncompressed_size_total = 0;
|
||||
grub_uint64_t uncompressed_size;
|
||||
grub_uint64_t records;
|
||||
|
||||
grub_file_seek (xzio->file, xzio->file->size - FOOTER_MAGIC_SIZE);
|
||||
if (grub_file_read (xzio->file, footer, FOOTER_MAGIC_SIZE) !=
|
||||
FOOTER_MAGIC_SIZE
|
||||
|| grub_memcmp (footer, FOOTER_MAGIC, FOOTER_MAGIC_SIZE) != 0)
|
||||
goto ERROR;
|
||||
|
||||
grub_file_seek (xzio->file, xzio->file->size - 8);
|
||||
if (grub_file_read (xzio->file, &backsize, sizeof (backsize))
|
||||
!= sizeof (backsize))
|
||||
goto ERROR;
|
||||
|
||||
/* Calculate real backward size. */
|
||||
backsize = (grub_le_to_cpu32 (backsize) + 1) * 4;
|
||||
|
||||
/* Set file to the beginning of stream index. */
|
||||
grub_file_seek (xzio->file,
|
||||
xzio->file->size - XZ_STREAM_FOOTER_SIZE - backsize);
|
||||
|
||||
/* Test index marker. */
|
||||
if (grub_file_read (xzio->file, &imarker, sizeof (imarker)) !=
|
||||
sizeof (imarker) && imarker != 0x00)
|
||||
goto ERROR;
|
||||
|
||||
if (read_vli (xzio->file, &records) <= 0)
|
||||
goto ERROR;
|
||||
|
||||
for (; records != 0; records--)
|
||||
{
|
||||
if (read_vli (xzio->file, &uncompressed_size) <= 0) /* Ignore unpadded. */
|
||||
goto ERROR;
|
||||
if (read_vli (xzio->file, &uncompressed_size) <= 0) /* Uncompressed. */
|
||||
goto ERROR;
|
||||
|
||||
uncompressed_size_total += uncompressed_size;
|
||||
}
|
||||
|
||||
file->size = uncompressed_size_total;
|
||||
grub_file_seek (xzio->file, STREAM_HEADER_SIZE);
|
||||
return 1;
|
||||
|
||||
ERROR:
|
||||
grub_error (GRUB_ERR_BAD_COMPRESSED_DATA, "bad footer magic");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static grub_file_t
|
||||
grub_xzio_open (grub_file_t io)
|
||||
{
|
||||
grub_file_t file;
|
||||
grub_xzio_t xzio;
|
||||
|
||||
file = (grub_file_t) grub_zalloc (sizeof (*file));
|
||||
if (!file)
|
||||
return 0;
|
||||
|
||||
xzio = grub_zalloc (sizeof (*xzio));
|
||||
if (!xzio)
|
||||
{
|
||||
grub_free (file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
xzio->file = io;
|
||||
xzio->saved_offset = 0;
|
||||
|
||||
file->device = io->device;
|
||||
file->offset = 0;
|
||||
file->data = xzio;
|
||||
file->read_hook = 0;
|
||||
file->fs = &grub_xzio_fs;
|
||||
file->size = GRUB_FILE_SIZE_UNKNOWN;
|
||||
file->not_easly_seekable = 1;
|
||||
|
||||
if (grub_file_tell (xzio->file) != 0)
|
||||
grub_file_seek (xzio->file, 0);
|
||||
|
||||
/* Allocated 64KiB for dictionary.
|
||||
* Decoder will relocate if bigger is needed. */
|
||||
xzio->dec = xz_dec_init (1 << 16);
|
||||
if (!xzio->dec)
|
||||
{
|
||||
grub_free (file);
|
||||
grub_free (xzio);
|
||||
return 0;
|
||||
}
|
||||
|
||||
xzio->buf.in = xzio->inbuf;
|
||||
xzio->buf.in_pos = 0;
|
||||
xzio->buf.in_size = 0;
|
||||
xzio->buf.out = xzio->outbuf;
|
||||
xzio->buf.out_pos = 0;
|
||||
xzio->buf.out_size = XZBUFSIZ;
|
||||
|
||||
if (!test_header (file) || !(grub_file_seekable (io) && test_footer (file)))
|
||||
{
|
||||
grub_errno = GRUB_ERR_NONE;
|
||||
grub_file_seek (io, 0);
|
||||
xz_dec_end (xzio->dec);
|
||||
grub_free (xzio);
|
||||
grub_free (file);
|
||||
|
||||
return io;
|
||||
}
|
||||
|
||||
return file;
|
||||
}
|
||||
|
||||
static grub_ssize_t
|
||||
grub_xzio_read (grub_file_t file, char *buf, grub_size_t len)
|
||||
{
|
||||
grub_ssize_t ret = 0;
|
||||
grub_ssize_t readret;
|
||||
enum xz_ret xzret;
|
||||
grub_xzio_t xzio = file->data;
|
||||
grub_off_t current_offset;
|
||||
|
||||
/* If seek backward need to reset decoder and start from beginning of file.
|
||||
TODO Possible improvement by jumping blocks. */
|
||||
if (file->offset < xzio->saved_offset)
|
||||
{
|
||||
xz_dec_reset (xzio->dec);
|
||||
xzio->saved_offset = 0;
|
||||
xzio->buf.out_pos = 0;
|
||||
xzio->buf.in_pos = 0;
|
||||
xzio->buf.in_size = 0;
|
||||
grub_file_seek (xzio->file, 0);
|
||||
}
|
||||
|
||||
current_offset = xzio->saved_offset;
|
||||
|
||||
while (len > 0)
|
||||
{
|
||||
xzio->buf.out_size = grub_min (file->offset + ret + len - current_offset,
|
||||
XZBUFSIZ);
|
||||
|
||||
/* Feed input. */
|
||||
if (xzio->buf.in_pos == xzio->buf.in_size)
|
||||
{
|
||||
readret = grub_file_read (xzio->file, xzio->inbuf, XZBUFSIZ);
|
||||
if (readret < 0)
|
||||
return -1;
|
||||
xzio->buf.in_size = readret;
|
||||
xzio->buf.in_pos = 0;
|
||||
}
|
||||
|
||||
xzret = xz_dec_run (xzio->dec, &xzio->buf);
|
||||
switch (xzret)
|
||||
{
|
||||
case XZ_MEMLIMIT_ERROR:
|
||||
case XZ_FORMAT_ERROR:
|
||||
case XZ_OPTIONS_ERROR:
|
||||
case XZ_DATA_ERROR:
|
||||
case XZ_BUF_ERROR:
|
||||
grub_error (GRUB_ERR_BAD_COMPRESSED_DATA,
|
||||
"file corrupted or unsupported block options");
|
||||
return -1;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
{
|
||||
grub_off_t new_offset = current_offset + xzio->buf.out_pos;
|
||||
|
||||
if (file->offset <= new_offset)
|
||||
/* Store first chunk of data in buffer. */
|
||||
{
|
||||
grub_size_t delta = new_offset - (file->offset + ret);
|
||||
grub_memmove (buf, xzio->buf.out + (xzio->buf.out_pos - delta),
|
||||
delta);
|
||||
len -= delta;
|
||||
buf += delta;
|
||||
ret += delta;
|
||||
}
|
||||
current_offset = new_offset;
|
||||
}
|
||||
xzio->buf.out_pos = 0;
|
||||
|
||||
if (xzret == XZ_STREAM_END) /* Stream end, EOF. */
|
||||
break;
|
||||
}
|
||||
|
||||
if (ret >= 0)
|
||||
xzio->saved_offset = file->offset + ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Release everything, including the underlying file object. */
|
||||
static grub_err_t
|
||||
grub_xzio_close (grub_file_t file)
|
||||
{
|
||||
grub_xzio_t xzio = file->data;
|
||||
|
||||
xz_dec_end (xzio->dec);
|
||||
|
||||
grub_file_close (xzio->file);
|
||||
grub_free (xzio);
|
||||
|
||||
/* Device must not be closed twice. */
|
||||
file->device = 0;
|
||||
return grub_errno;
|
||||
}
|
||||
|
||||
static struct grub_fs grub_xzio_fs = {
|
||||
.name = "xzio",
|
||||
.dir = 0,
|
||||
.open = 0,
|
||||
.read = grub_xzio_read,
|
||||
.close = grub_xzio_close,
|
||||
.label = 0,
|
||||
.next = 0
|
||||
};
|
||||
|
||||
GRUB_MOD_INIT (xzio)
|
||||
{
|
||||
grub_file_filter_register (GRUB_FILE_FILTER_XZIO, grub_xzio_open);
|
||||
}
|
||||
|
||||
GRUB_MOD_FINI (xzio)
|
||||
{
|
||||
grub_file_filter_unregister (GRUB_FILE_FILTER_XZIO);
|
||||
}
|
180
grub-core/lib/xzembed/xz.h
Normal file
180
grub-core/lib/xzembed/xz.h
Normal file
|
@ -0,0 +1,180 @@
|
|||
/* xz.h - XZ decompressor */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#ifndef XZ_H
|
||||
#define XZ_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* enum xz_ret - Return codes
|
||||
* @XZ_OK: Everything is OK so far. More input or more output
|
||||
* space is required to continue.
|
||||
* @XZ_STREAM_END: Operation finished successfully.
|
||||
* @XZ_MEMLIMIT_ERROR: Not enough memory was preallocated at decoder
|
||||
* initialization time.
|
||||
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic bytes).
|
||||
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
|
||||
* compression options. In the decoder this means that
|
||||
* the header CRC32 matches, but the header itself
|
||||
* specifies something that we don't support.
|
||||
* @XZ_DATA_ERROR: Compressed data is corrupt.
|
||||
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
|
||||
* different between multi-call and single-call mode;
|
||||
* more information below.
|
||||
*
|
||||
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
|
||||
* to XZ code cannot consume any input and cannot produce any new output.
|
||||
* This happens when there is no new input available, or the output buffer
|
||||
* is full while at least one output byte is still pending. Assuming your
|
||||
* code is not buggy, you can get this error only when decoding a compressed
|
||||
* stream that is truncated or otherwise corrupt.
|
||||
*
|
||||
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
|
||||
* is too small, or the compressed input is corrupt in a way that makes the
|
||||
* decoder produce more output than the caller expected. When it is
|
||||
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
|
||||
* is used instead of XZ_BUF_ERROR.
|
||||
*/
|
||||
enum xz_ret {
|
||||
XZ_OK,
|
||||
XZ_STREAM_END,
|
||||
XZ_MEMLIMIT_ERROR,
|
||||
XZ_FORMAT_ERROR,
|
||||
XZ_OPTIONS_ERROR,
|
||||
XZ_DATA_ERROR,
|
||||
XZ_BUF_ERROR
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_buf - Passing input and output buffers to XZ code
|
||||
* @in: Beginning of the input buffer. This may be NULL if and only
|
||||
* if in_pos is equal to in_size.
|
||||
* @in_pos: Current position in the input buffer. This must not exceed
|
||||
* in_size.
|
||||
* @in_size: Size of the input buffer
|
||||
* @out: Beginning of the output buffer. This may be NULL if and only
|
||||
* if out_pos is equal to out_size.
|
||||
* @out_pos: Current position in the output buffer. This must not exceed
|
||||
* out_size.
|
||||
* @out_size: Size of the output buffer
|
||||
*
|
||||
* Only the contents of the output buffer from out[out_pos] onward, and
|
||||
* the variables in_pos and out_pos are modified by the XZ code.
|
||||
*/
|
||||
struct xz_buf {
|
||||
const uint8_t *in;
|
||||
size_t in_pos;
|
||||
size_t in_size;
|
||||
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_dec - Opaque type to hold the XZ decoder state
|
||||
*/
|
||||
struct xz_dec;
|
||||
|
||||
/**
|
||||
* xz_dec_init() - Allocate and initialize a XZ decoder state
|
||||
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
|
||||
* multi-call decoding, or special value of zero to indicate
|
||||
* single-call decoding mode.
|
||||
*
|
||||
* If dict_max > 0, the decoder is initialized to work in multi-call mode.
|
||||
* dict_max number of bytes of memory is preallocated for the LZMA2
|
||||
* dictionary. This way there is no risk that xz_dec_run() could run out
|
||||
* of memory, since xz_dec_run() will never allocate any memory. Instead,
|
||||
* if the preallocated dictionary is too small for decoding the given input
|
||||
* stream, xz_dec_run() will return XZ_MEMLIMIT_ERROR. Thus, it is important
|
||||
* to know what kind of data will be decoded to avoid allocating excessive
|
||||
* amount of memory for the dictionary.
|
||||
*
|
||||
* LZMA2 dictionary is always 2^n bytes or 2^n + 2^(n-1) bytes (the latter
|
||||
* sizes are less common in practice). In the kernel, dictionary sizes of
|
||||
* 64 KiB, 128 KiB, 256 KiB, 512 KiB, and 1 MiB are probably the only
|
||||
* reasonable values.
|
||||
*
|
||||
* If dict_max == 0, the decoder is initialized to work in single-call mode.
|
||||
* In single-call mode, xz_dec_run() decodes the whole stream at once. The
|
||||
* caller must provide enough output space or the decoding will fail. The
|
||||
* output space is used as the dictionary buffer, which is why there is
|
||||
* no need to allocate the dictionary as part of the decoder's internal
|
||||
* state.
|
||||
*
|
||||
* Because the output buffer is used as the workspace, streams encoded using
|
||||
* a big dictionary are not a problem in single-call. It is enough that the
|
||||
* output buffer is is big enough to hold the actual uncompressed data; it
|
||||
* can be smaller than the dictionary size stored in the stream headers.
|
||||
*
|
||||
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
|
||||
* ready to be used with xz_dec_run(). On error, xz_dec_init() returns NULL.
|
||||
*/
|
||||
struct xz_dec * xz_dec_init(uint32_t dict_max);
|
||||
|
||||
/**
|
||||
* xz_dec_run() - Run the XZ decoder
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
* @b: Input and output buffers
|
||||
*
|
||||
* In multi-call mode, this function may return any of the values listed in
|
||||
* enum xz_ret.
|
||||
*
|
||||
* In single-call mode, this function never returns XZ_OK. If an error occurs
|
||||
* in single-call mode (return value is not XZ_STREAM_END), b->in_pos and
|
||||
* b->out_pos are not modified, and the contents of the output buffer from
|
||||
* b->out[b->out_pos] onward are undefined.
|
||||
*
|
||||
* NOTE: In single-call mode, the contents of the output buffer are undefined
|
||||
* also after XZ_BUF_ERROR. This is because with some filter chains, there
|
||||
* may be a second pass over the output buffer, and this pass cannot be
|
||||
* properly done if the output buffer is truncated. Thus, you cannot give
|
||||
* the single-call decoder a too small buffer and then expect to get that
|
||||
* amount valid data from the beginning of the stream. You must use the
|
||||
* multi-call decoder if you don't want to uncompress the whole stream.
|
||||
*/
|
||||
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
|
||||
|
||||
/**
|
||||
* xz_dec_reset() - Reset an already allocated decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
*
|
||||
* This function can be used to reset the multi-call decoder state without
|
||||
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
|
||||
*
|
||||
* In single-call mode, xz_dec_reset() is always called in the beginning of
|
||||
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
|
||||
* multi-call mode.
|
||||
*/
|
||||
void xz_dec_reset(struct xz_dec *s);
|
||||
|
||||
/**
|
||||
* xz_dec_end() - Free the memory allocated for the decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
|
||||
* this function does nothing.
|
||||
*/
|
||||
void xz_dec_end(struct xz_dec *s);
|
||||
|
||||
#endif
|
141
grub-core/lib/xzembed/xz_config.h
Normal file
141
grub-core/lib/xzembed/xz_config.h
Normal file
|
@ -0,0 +1,141 @@
|
|||
/* xz_config.h - Private includes and definitions for userspace use */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#ifndef XZ_CONFIG_H
|
||||
#define XZ_CONFIG_H
|
||||
|
||||
/* Enable BCJ filter decoders. */
|
||||
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
#define XZ_DEC_X86
|
||||
#endif
|
||||
|
||||
#ifdef __powerpc__
|
||||
#define XZ_DEC_POWERPC
|
||||
#endif
|
||||
|
||||
#ifdef __ia64__
|
||||
#define XZ_DEC_IA64
|
||||
#endif
|
||||
|
||||
#ifdef __arm__
|
||||
#define XZ_DEC_ARM
|
||||
#endif
|
||||
|
||||
#ifdef __thumb__
|
||||
#define XZ_DEC_ARMTHUMB
|
||||
#endif
|
||||
|
||||
#ifdef __sparc__
|
||||
#define XZ_DEC_SPARC
|
||||
#endif
|
||||
|
||||
|
||||
#include "xz.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#define kmalloc(size, flags) malloc(size)
|
||||
#define kfree(ptr) free(ptr)
|
||||
#define vmalloc(size) malloc(size)
|
||||
#define vfree(ptr) free(ptr)
|
||||
|
||||
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
#define memzero(buf, size) memset(buf, 0, size)
|
||||
|
||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
#define min_t(type, x, y) min(x, y)
|
||||
|
||||
/*
|
||||
* Some functions have been marked with __always_inline to keep the
|
||||
* performance reasonable even when the compiler is optimizing for
|
||||
* small code size. You may be able to save a few bytes by #defining
|
||||
* __always_inline to plain inline, but don't complain if the code
|
||||
* becomes slow.
|
||||
*
|
||||
* NOTE: System headers on GNU/Linux may #define this macro already,
|
||||
* so if you want to change it, it you need to #undef it first.
|
||||
*/
|
||||
#ifndef __always_inline
|
||||
# ifdef __GNUC__
|
||||
# define __always_inline \
|
||||
inline __attribute__((__always_inline__))
|
||||
# else
|
||||
# define __always_inline inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Some functions are marked to never be inlined to reduce stack usage.
|
||||
* If you don't care about stack usage, you may want to modify this so
|
||||
* that noinline_for_stack is #defined to be empty even when using GCC.
|
||||
* Doing so may save a few bytes in binary size.
|
||||
*/
|
||||
#ifndef noinline_for_stack
|
||||
# ifdef __GNUC__
|
||||
# define noinline_for_stack __attribute__((__noinline__))
|
||||
# else
|
||||
# define noinline_for_stack
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Inline functions to access unaligned unsigned 32-bit integers */
|
||||
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)buf[0]
|
||||
| ((uint32_t)buf[1] << 8)
|
||||
| ((uint32_t)buf[2] << 16)
|
||||
| ((uint32_t)buf[3] << 24);
|
||||
}
|
||||
|
||||
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)(buf[0] << 24)
|
||||
| ((uint32_t)buf[1] << 16)
|
||||
| ((uint32_t)buf[2] << 8)
|
||||
| (uint32_t)buf[3];
|
||||
}
|
||||
|
||||
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)val;
|
||||
buf[1] = (uint8_t)(val >> 8);
|
||||
buf[2] = (uint8_t)(val >> 16);
|
||||
buf[3] = (uint8_t)(val >> 24);
|
||||
}
|
||||
|
||||
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)(val >> 24);
|
||||
buf[1] = (uint8_t)(val >> 16);
|
||||
buf[2] = (uint8_t)(val >> 8);
|
||||
buf[3] = (uint8_t)val;
|
||||
}
|
||||
|
||||
/*
|
||||
* Use get_unaligned_le32() also for aligned access for simplicity. On
|
||||
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
|
||||
* could save a few bytes in code size.
|
||||
*/
|
||||
#define get_le32 get_unaligned_le32
|
||||
|
||||
#endif
|
569
grub-core/lib/xzembed/xz_dec_bcj.c
Normal file
569
grub-core/lib/xzembed/xz_dec_bcj.c
Normal file
|
@ -0,0 +1,569 @@
|
|||
/* xz_dec_bcj.c - Branch/Call/Jump (BCJ) filter decoders */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
struct xz_dec_bcj {
|
||||
/* Type of the BCJ filter being used */
|
||||
enum {
|
||||
BCJ_X86 = 4, /* x86 or x86-64 */
|
||||
BCJ_POWERPC = 5, /* Big endian only */
|
||||
BCJ_IA64 = 6, /* Big or little endian */
|
||||
BCJ_ARM = 7, /* Little endian only */
|
||||
BCJ_ARMTHUMB = 8, /* Little endian only */
|
||||
BCJ_SPARC = 9 /* Big or little endian */
|
||||
} type;
|
||||
|
||||
/*
|
||||
* Return value of the next filter in the chain. We need to preserve
|
||||
* this information across calls, because we must not call the next
|
||||
* filter anymore once it has returned XZ_STREAM_END.
|
||||
*/
|
||||
enum xz_ret ret;
|
||||
|
||||
/* True if we are operating in single-call mode. */
|
||||
bool single_call;
|
||||
|
||||
/*
|
||||
* Absolute position relative to the beginning of the uncompressed
|
||||
* data (in a single .xz Block). We care only about the lowest 32
|
||||
* bits so this doesn't need to be uint64_t even with big files.
|
||||
*/
|
||||
uint32_t pos;
|
||||
|
||||
/* x86 filter state */
|
||||
uint32_t x86_prev_mask;
|
||||
|
||||
/* Temporary space to hold the variables from struct xz_buf */
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
|
||||
struct {
|
||||
/* Amount of already filtered data in the beginning of buf */
|
||||
size_t filtered;
|
||||
|
||||
/* Total amount of data currently stored in buf */
|
||||
size_t size;
|
||||
|
||||
/*
|
||||
* Buffer to hold a mix of filtered and unfiltered data. This
|
||||
* needs to be big enough to hold Alignment + 2 * Look-ahead:
|
||||
*
|
||||
* Type Alignment Look-ahead
|
||||
* x86 1 4
|
||||
* PowerPC 4 0
|
||||
* IA-64 16 0
|
||||
* ARM 4 0
|
||||
* ARM-Thumb 2 2
|
||||
* SPARC 4 0
|
||||
*/
|
||||
uint8_t buf[16];
|
||||
} temp;
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_X86
|
||||
/*
|
||||
* This is macro used to test the most significant byte of a memory address
|
||||
* in an x86 instruction.
|
||||
*/
|
||||
#define bcj_x86_test_msbyte(b) ((b) == 0x00 || (b) == 0xFF)
|
||||
|
||||
static noinline_for_stack size_t bcj_x86(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const bool mask_to_allowed_status[8]
|
||||
= { true, true, true, false, true, false, false, false };
|
||||
|
||||
static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
|
||||
|
||||
size_t i;
|
||||
size_t prev_pos = (size_t)-1;
|
||||
uint32_t prev_mask = s->x86_prev_mask;
|
||||
uint32_t src;
|
||||
uint32_t dest;
|
||||
uint32_t j;
|
||||
uint8_t b;
|
||||
|
||||
if (size <= 4)
|
||||
return 0;
|
||||
|
||||
size -= 4;
|
||||
for (i = 0; i < size; ++i) {
|
||||
if ((buf[i] & 0xFE) != 0xE8)
|
||||
continue;
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
if (prev_pos > 3) {
|
||||
prev_mask = 0;
|
||||
} else {
|
||||
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
|
||||
if (prev_mask != 0) {
|
||||
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
|
||||
if (!mask_to_allowed_status[prev_mask]
|
||||
|| bcj_x86_test_msbyte(b)) {
|
||||
prev_pos = i;
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i;
|
||||
|
||||
if (bcj_x86_test_msbyte(buf[i + 4])) {
|
||||
src = get_unaligned_le32(buf + i + 1);
|
||||
while (true) {
|
||||
dest = src - (s->pos + (uint32_t)i + 5);
|
||||
if (prev_mask == 0)
|
||||
break;
|
||||
|
||||
j = mask_to_bit_num[prev_mask] * 8;
|
||||
b = (uint8_t)(dest >> (24 - j));
|
||||
if (!bcj_x86_test_msbyte(b))
|
||||
break;
|
||||
|
||||
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
|
||||
}
|
||||
|
||||
dest &= 0x01FFFFFF;
|
||||
dest |= (uint32_t)0 - (dest & 0x01000000);
|
||||
put_unaligned_le32(dest, buf + i + 1);
|
||||
i += 4;
|
||||
} else {
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
static noinline_for_stack size_t bcj_powerpc(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr & 0xFC000003) == 0x48000001) {
|
||||
instr &= 0x03FFFFFC;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr &= 0x03FFFFFC;
|
||||
instr |= 0x48000001;
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_IA64
|
||||
static noinline_for_stack size_t bcj_ia64(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const uint8_t branch_table[32] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
4, 4, 6, 6, 0, 0, 7, 7,
|
||||
4, 4, 0, 0, 4, 4, 0, 0
|
||||
};
|
||||
|
||||
/*
|
||||
* The local variables take a little bit stack space, but it's less
|
||||
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
|
||||
* stack usage here without doing that for the LZMA2 decoder too.
|
||||
*/
|
||||
|
||||
/* Loop counters */
|
||||
size_t i;
|
||||
size_t j;
|
||||
|
||||
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
|
||||
uint32_t slot;
|
||||
|
||||
/* Bitwise offset of the instruction indicated by slot */
|
||||
uint32_t bit_pos;
|
||||
|
||||
/* bit_pos split into byte and bit parts */
|
||||
uint32_t byte_pos;
|
||||
uint32_t bit_res;
|
||||
|
||||
/* Address part of an instruction */
|
||||
uint32_t addr;
|
||||
|
||||
/* Mask used to detect which instructions to convert */
|
||||
uint32_t mask;
|
||||
|
||||
/* 41-bit instruction stored somewhere in the lowest 48 bits */
|
||||
uint64_t instr;
|
||||
|
||||
/* Instruction normalized with bit_res for easier manipulation */
|
||||
uint64_t norm;
|
||||
|
||||
for (i = 0; i + 16 <= size; i += 16) {
|
||||
mask = branch_table[buf[i] & 0x1F];
|
||||
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
|
||||
if (((mask >> slot) & 1) == 0)
|
||||
continue;
|
||||
|
||||
byte_pos = bit_pos >> 3;
|
||||
bit_res = bit_pos & 7;
|
||||
instr = 0;
|
||||
for (j = 0; j < 6; ++j)
|
||||
instr |= (uint64_t)(buf[i + j + byte_pos])
|
||||
<< (8 * j);
|
||||
|
||||
norm = instr >> bit_res;
|
||||
|
||||
if (((norm >> 37) & 0x0F) == 0x05
|
||||
&& ((norm >> 9) & 0x07) == 0) {
|
||||
addr = (norm >> 13) & 0x0FFFFF;
|
||||
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
|
||||
addr <<= 4;
|
||||
addr -= s->pos + (uint32_t)i;
|
||||
addr >>= 4;
|
||||
|
||||
norm &= ~((uint64_t)0x8FFFFF << 13);
|
||||
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
|
||||
norm |= (uint64_t)(addr & 0x100000)
|
||||
<< (36 - 20);
|
||||
|
||||
instr &= (1 << bit_res) - 1;
|
||||
instr |= norm << bit_res;
|
||||
|
||||
for (j = 0; j < 6; j++)
|
||||
buf[i + j + byte_pos]
|
||||
= (uint8_t)(instr >> (8 * j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARM
|
||||
static noinline_for_stack size_t bcj_arm(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
if (buf[i + 3] == 0xEB) {
|
||||
addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
|
||||
| ((uint32_t)buf[i + 2] << 16);
|
||||
addr <<= 2;
|
||||
addr -= s->pos + (uint32_t)i + 8;
|
||||
addr >>= 2;
|
||||
buf[i] = (uint8_t)addr;
|
||||
buf[i + 1] = (uint8_t)(addr >> 8);
|
||||
buf[i + 2] = (uint8_t)(addr >> 16);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
static noinline_for_stack size_t bcj_armthumb(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 2) {
|
||||
if ((buf[i + 1] & 0xF8) == 0xF0
|
||||
&& (buf[i + 3] & 0xF8) == 0xF8) {
|
||||
addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
|
||||
| ((uint32_t)buf[i] << 11)
|
||||
| (((uint32_t)buf[i + 3] & 0x07) << 8)
|
||||
| (uint32_t)buf[i + 2];
|
||||
addr <<= 1;
|
||||
addr -= s->pos + (uint32_t)i + 4;
|
||||
addr >>= 1;
|
||||
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
|
||||
buf[i] = (uint8_t)(addr >> 11);
|
||||
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
|
||||
buf[i + 2] = (uint8_t)addr;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_SPARC
|
||||
static noinline_for_stack size_t bcj_sparc(
|
||||
struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
|
||||
instr <<= 2;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr >>= 2;
|
||||
instr = ((uint32_t)0x40000000 - (instr & 0x400000))
|
||||
| 0x40000000 | (instr & 0x3FFFFF);
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
|
||||
* of data that got filtered.
|
||||
*
|
||||
* NOTE: This is implemented as a switch statement to avoid using function
|
||||
* pointers, which could be problematic in the kernel boot code, which must
|
||||
* avoid pointers to static data (at least on x86).
|
||||
*/
|
||||
static void bcj_apply(struct xz_dec_bcj *s,
|
||||
uint8_t *buf, size_t *pos, size_t size)
|
||||
{
|
||||
size_t filtered;
|
||||
|
||||
buf += *pos;
|
||||
size -= *pos;
|
||||
|
||||
switch (s->type) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
filtered = bcj_x86(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
filtered = bcj_powerpc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
filtered = bcj_ia64(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
filtered = bcj_arm(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
filtered = bcj_armthumb(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
filtered = bcj_sparc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
/* Never reached but silence compiler warnings. */
|
||||
filtered = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
*pos += filtered;
|
||||
s->pos += filtered;
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush pending filtered data from temp to the output buffer.
|
||||
* Move the remaining mixture of possibly filtered and unfiltered
|
||||
* data to the beginning of temp.
|
||||
*/
|
||||
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size;
|
||||
|
||||
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
|
||||
b->out_pos += copy_size;
|
||||
|
||||
s->temp.filtered -= copy_size;
|
||||
s->temp.size -= copy_size;
|
||||
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
|
||||
}
|
||||
|
||||
/*
|
||||
* The BCJ filter functions are primitive in sense that they process the
|
||||
* data in chunks of 1-16 bytes. To hide this issue, this function does
|
||||
* some buffering.
|
||||
*/
|
||||
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
||||
struct xz_dec_lzma2 *lzma2, struct xz_buf *b)
|
||||
{
|
||||
size_t out_start;
|
||||
|
||||
/*
|
||||
* Flush pending already filtered data to the output buffer. Return
|
||||
* immediatelly if we couldn't flush everything, or if the next
|
||||
* filter in the chain had already returned XZ_STREAM_END.
|
||||
*/
|
||||
if (s->temp.filtered > 0) {
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have more output space than what is currently pending in
|
||||
* temp, copy the unfiltered data from temp to the output buffer
|
||||
* and try to fill the output buffer by decoding more data from the
|
||||
* next filter in the chain. Apply the BCJ filter on the new data
|
||||
* in the output buffer. If everything cannot be filtered, copy it
|
||||
* to temp and rewind the output buffer position accordingly.
|
||||
*/
|
||||
if (s->temp.size < b->out_size - b->out_pos) {
|
||||
out_start = b->out_pos;
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
|
||||
b->out_pos += s->temp.size;
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
if (s->ret != XZ_STREAM_END
|
||||
&& (s->ret != XZ_OK || s->single_call))
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, b->out, &out_start, b->out_pos);
|
||||
|
||||
/*
|
||||
* As an exception, if the next filter returned XZ_STREAM_END,
|
||||
* we can do that too, since the last few bytes that remain
|
||||
* unfiltered are meant to remain unfiltered.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
|
||||
s->temp.size = b->out_pos - out_start;
|
||||
b->out_pos -= s->temp.size;
|
||||
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have unfiltered data in temp, try to fill by decoding more
|
||||
* data from the next filter. Apply the BCJ filter on temp. Then we
|
||||
* hopefully can fill the actual output buffer by copying filtered
|
||||
* data from temp. A mix of filtered and unfiltered data may be left
|
||||
* in temp; it will be taken care on the next call to this function.
|
||||
*/
|
||||
if (s->temp.size > 0) {
|
||||
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
|
||||
s->out = b->out;
|
||||
s->out_pos = b->out_pos;
|
||||
s->out_size = b->out_size;
|
||||
b->out = s->temp.buf;
|
||||
b->out_pos = s->temp.size;
|
||||
b->out_size = sizeof(s->temp.buf);
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
|
||||
s->temp.size = b->out_pos;
|
||||
b->out = s->out;
|
||||
b->out_pos = s->out_pos;
|
||||
b->out_size = s->out_size;
|
||||
|
||||
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
|
||||
|
||||
/*
|
||||
* If the next filter returned XZ_STREAM_END, we mark that
|
||||
* everything is filtered, since the last unfiltered bytes
|
||||
* of the stream are meant to be left as is.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
s->temp.filtered = s->temp.size;
|
||||
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
return s->ret;
|
||||
}
|
||||
|
||||
struct xz_dec_bcj * xz_dec_bcj_create(bool single_call)
|
||||
{
|
||||
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s != NULL)
|
||||
s->single_call = single_call;
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
enum xz_ret xz_dec_bcj_reset(
|
||||
struct xz_dec_bcj *s, uint8_t id)
|
||||
{
|
||||
switch (id) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Unsupported Filter ID */
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
|
||||
s->type = id;
|
||||
s->ret = XZ_OK;
|
||||
s->pos = 0;
|
||||
s->x86_prev_mask = 0;
|
||||
s->temp.filtered = 0;
|
||||
s->temp.size = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
1168
grub-core/lib/xzembed/xz_dec_lzma2.c
Normal file
1168
grub-core/lib/xzembed/xz_dec_lzma2.c
Normal file
File diff suppressed because it is too large
Load diff
854
grub-core/lib/xzembed/xz_dec_stream.c
Normal file
854
grub-core/lib/xzembed/xz_dec_stream.c
Normal file
|
@ -0,0 +1,854 @@
|
|||
/* xz_dec_stream.c - .xz Stream decoder */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#include "xz_config.h"
|
||||
#include "xz_private.h"
|
||||
#include "xz_stream.h"
|
||||
|
||||
#include <grub/crypto.h>
|
||||
|
||||
/* Hash used to validate the Index field */
|
||||
struct xz_dec_hash {
|
||||
vli_type unpadded;
|
||||
vli_type uncompressed;
|
||||
uint8_t *crc32_context;
|
||||
};
|
||||
|
||||
struct xz_dec {
|
||||
/* Position in dec_main() */
|
||||
enum {
|
||||
SEQ_STREAM_HEADER,
|
||||
SEQ_BLOCK_START,
|
||||
SEQ_BLOCK_HEADER,
|
||||
SEQ_BLOCK_UNCOMPRESS,
|
||||
SEQ_BLOCK_PADDING,
|
||||
SEQ_BLOCK_CHECK,
|
||||
SEQ_INDEX,
|
||||
SEQ_INDEX_PADDING,
|
||||
SEQ_INDEX_CRC32,
|
||||
SEQ_STREAM_FOOTER
|
||||
} sequence;
|
||||
|
||||
/* Position in variable-length integers and Check fields */
|
||||
uint32_t pos;
|
||||
|
||||
/* Variable-length integer decoded by dec_vli() */
|
||||
vli_type vli;
|
||||
|
||||
/* Saved in_pos and out_pos */
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
|
||||
/* CRC32 value in Block or Index */
|
||||
uint32_t crc32_temp; /* need for crc32_validate*/
|
||||
uint8_t *crc32_context;
|
||||
|
||||
/* True if CRC32 is calculated from uncompressed data */
|
||||
bool has_crc32;
|
||||
|
||||
/* True if we are operating in single-call mode. */
|
||||
bool single_call;
|
||||
|
||||
/*
|
||||
* True if the next call to xz_dec_run() is allowed to return
|
||||
* XZ_BUF_ERROR.
|
||||
*/
|
||||
bool allow_buf_error;
|
||||
|
||||
/* Information stored in Block Header */
|
||||
struct {
|
||||
/*
|
||||
* Value stored in the Compressed Size field, or
|
||||
* VLI_UNKNOWN if Compressed Size is not present.
|
||||
*/
|
||||
vli_type compressed;
|
||||
|
||||
/*
|
||||
* Value stored in the Uncompressed Size field, or
|
||||
* VLI_UNKNOWN if Uncompressed Size is not present.
|
||||
*/
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Size of the Block Header field */
|
||||
uint32_t size;
|
||||
} block_header;
|
||||
|
||||
/* Information collected when decoding Blocks */
|
||||
struct {
|
||||
/* Observed compressed size of the current Block */
|
||||
vli_type compressed;
|
||||
|
||||
/* Observed uncompressed size of the current Block */
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Number of Blocks decoded so far */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Block sizes. This is used to
|
||||
* validate the Index field.
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} block;
|
||||
|
||||
/* Variables needed when verifying the Index field */
|
||||
struct {
|
||||
/* Position in dec_index() */
|
||||
enum {
|
||||
SEQ_INDEX_COUNT,
|
||||
SEQ_INDEX_UNPADDED,
|
||||
SEQ_INDEX_UNCOMPRESSED
|
||||
} sequence;
|
||||
|
||||
/* Size of the Index in bytes */
|
||||
vli_type size;
|
||||
|
||||
/* Number of Records (matches block.count in valid files) */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Records (matches block.hash in
|
||||
* valid files).
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} index;
|
||||
|
||||
/*
|
||||
* Temporary buffer needed to hold Stream Header, Block Header,
|
||||
* and Stream Footer. The Block Header is the biggest (1 KiB)
|
||||
* so we reserve space according to that. buf[] has to be aligned
|
||||
* to a multiple of four bytes; the size_t variables before it
|
||||
* should guarantee this.
|
||||
*/
|
||||
struct {
|
||||
size_t pos;
|
||||
size_t size;
|
||||
uint8_t buf[1024];
|
||||
} temp;
|
||||
|
||||
struct xz_dec_lzma2 *lzma2;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
struct xz_dec_bcj *bcj;
|
||||
bool bcj_active;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
|
||||
* must have set s->temp.pos to indicate how much data we are supposed
|
||||
* to copy into s->temp.buf. Return true once s->temp.pos has reached
|
||||
* s->temp.size.
|
||||
*/
|
||||
static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size = min_t(size_t,
|
||||
b->in_size - b->in_pos, s->temp.size - s->temp.pos);
|
||||
|
||||
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
|
||||
b->in_pos += copy_size;
|
||||
s->temp.pos += copy_size;
|
||||
|
||||
if (s->temp.pos == s->temp.size) {
|
||||
s->temp.pos = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Decode a variable-length integer (little-endian base-128 encoding) */
|
||||
static enum xz_ret dec_vli(struct xz_dec *s,
|
||||
const uint8_t *in, size_t *in_pos, size_t in_size)
|
||||
{
|
||||
uint8_t byte;
|
||||
|
||||
if (s->pos == 0)
|
||||
s->vli = 0;
|
||||
|
||||
while (*in_pos < in_size) {
|
||||
byte = in[*in_pos];
|
||||
++*in_pos;
|
||||
|
||||
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
|
||||
|
||||
if ((byte & 0x80) == 0) {
|
||||
/* Don't allow non-minimal encodings. */
|
||||
if (byte == 0 && s->pos != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos = 0;
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
s->pos += 7;
|
||||
if (s->pos == 7 * VLI_BYTES_MAX)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Compressed Data field from a Block. Update and validate
|
||||
* the observed compressed and uncompressed sizes of the Block so that
|
||||
* they don't exceed the values possibly stored in the Block Header
|
||||
* (validation assumes that no integer overflow occurs, since vli_type
|
||||
* is normally uint64_t). Update the CRC32 if presence of the CRC32
|
||||
* field was indicated in Stream Header.
|
||||
*
|
||||
* Once the decoding is finished, validate that the observed sizes match
|
||||
* the sizes possibly stored in the Block Header. Update the hash and
|
||||
* Block count, which are later used to validate the Index field.
|
||||
*/
|
||||
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
s->in_start = b->in_pos;
|
||||
s->out_start = b->out_pos;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->bcj_active)
|
||||
ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
|
||||
else
|
||||
#endif
|
||||
ret = xz_dec_lzma2_run(s->lzma2, b);
|
||||
|
||||
s->block.compressed += b->in_pos - s->in_start;
|
||||
s->block.uncompressed += b->out_pos - s->out_start;
|
||||
|
||||
/*
|
||||
* There is no need to separately check for VLI_UNKNOWN, since
|
||||
* the observed sizes are always smaller than VLI_UNKNOWN.
|
||||
*/
|
||||
if (s->block.compressed > s->block_header.compressed
|
||||
|| s->block.uncompressed
|
||||
> s->block_header.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->has_crc32)
|
||||
GRUB_MD_CRC32->write(s->crc32_context,b->out + s->out_start,
|
||||
b->out_pos - s->out_start);
|
||||
|
||||
if (ret == XZ_STREAM_END) {
|
||||
if (s->block_header.compressed != VLI_UNKNOWN
|
||||
&& s->block_header.compressed
|
||||
!= s->block.compressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->block_header.uncompressed != VLI_UNKNOWN
|
||||
&& s->block_header.uncompressed
|
||||
!= s->block.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block.hash.unpadded += s->block_header.size
|
||||
+ s->block.compressed;
|
||||
if (s->has_crc32)
|
||||
s->block.hash.unpadded += 4;
|
||||
|
||||
s->block.hash.uncompressed += s->block.uncompressed;
|
||||
|
||||
GRUB_MD_CRC32->write(s->block.hash.crc32_context,
|
||||
(const uint8_t *)&s->block.hash, sizeof(s->block.hash));
|
||||
|
||||
++s->block.count;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Update the Index size and the CRC32 value. */
|
||||
static void index_update(struct xz_dec *s, const struct xz_buf *b)
|
||||
{
|
||||
size_t in_used = b->in_pos - s->in_start;
|
||||
s->index.size += in_used;
|
||||
GRUB_MD_CRC32->write(s->crc32_context,b->in + s->in_start, in_used);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Number of Records, Unpadded Size, and Uncompressed Size
|
||||
* fields from the Index field. That is, Index Padding and CRC32 are not
|
||||
* decoded by this function.
|
||||
*
|
||||
* This can return XZ_OK (more input needed), XZ_STREAM_END (everything
|
||||
* successfully decoded), or XZ_DATA_ERROR (input is corrupt).
|
||||
*/
|
||||
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
do {
|
||||
ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
|
||||
if (ret != XZ_STREAM_END) {
|
||||
index_update(s, b);
|
||||
return ret;
|
||||
}
|
||||
|
||||
switch (s->index.sequence) {
|
||||
case SEQ_INDEX_COUNT:
|
||||
s->index.count = s->vli;
|
||||
|
||||
/*
|
||||
* Validate that the Number of Records field
|
||||
* indicates the same number of Records as
|
||||
* there were Blocks in the Stream.
|
||||
*/
|
||||
if (s->index.count != s->block.count)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNPADDED:
|
||||
s->index.hash.unpadded += s->vli;
|
||||
s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNCOMPRESSED:
|
||||
s->index.hash.uncompressed += s->vli;
|
||||
|
||||
GRUB_MD_CRC32->write(s->index.hash.crc32_context,
|
||||
(const uint8_t *)&s->index.hash,
|
||||
sizeof(s->index.hash));
|
||||
|
||||
--s->index.count;
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
}
|
||||
} while (s->index.count > 0);
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* Validate that the next four input bytes match the value of s->crc32.
|
||||
* s->pos must be zero when starting to validate the first byte.
|
||||
*/
|
||||
static enum xz_ret crc32_validate(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
if(s->crc32_temp == 0)
|
||||
{
|
||||
GRUB_MD_CRC32->final(s->crc32_context);
|
||||
s->crc32_temp = get_unaligned_be32(GRUB_MD_CRC32->read(s->crc32_context));
|
||||
}
|
||||
|
||||
do {
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (((s->crc32_temp >> s->pos) & 0xFF) != b->in[b->in_pos++])
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos += 8;
|
||||
|
||||
} while (s->pos < 32);
|
||||
|
||||
GRUB_MD_CRC32->init(s->crc32_context);
|
||||
s->crc32_temp = 0;
|
||||
s->pos = 0;
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
|
||||
static enum xz_ret dec_stream_header(struct xz_dec *s)
|
||||
{
|
||||
if (! memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
|
||||
return XZ_FORMAT_ERROR;
|
||||
|
||||
uint8_t crc32_context[GRUB_MD_CRC32->contextsize];
|
||||
|
||||
GRUB_MD_CRC32->init(crc32_context);
|
||||
GRUB_MD_CRC32->write(crc32_context,s->temp.buf + HEADER_MAGIC_SIZE, 2);
|
||||
GRUB_MD_CRC32->final(crc32_context);
|
||||
|
||||
uint32_t resultcrc = get_unaligned_be32(GRUB_MD_CRC32->read(crc32_context));
|
||||
uint32_t readcrc = get_unaligned_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2);
|
||||
|
||||
if(resultcrc != readcrc)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Decode the Stream Flags field. Of integrity checks, we support
|
||||
* only none (Check ID = 0) and CRC32 (Check ID = 1).
|
||||
*/
|
||||
if (s->temp.buf[HEADER_MAGIC_SIZE] != 0
|
||||
|| s->temp.buf[HEADER_MAGIC_SIZE + 1] > 1)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
s->has_crc32 = s->temp.buf[HEADER_MAGIC_SIZE + 1];
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
|
||||
static enum xz_ret dec_stream_footer(struct xz_dec *s)
|
||||
{
|
||||
if (! memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
uint8_t crc32_context[GRUB_MD_CRC32->contextsize];
|
||||
|
||||
GRUB_MD_CRC32->init(crc32_context);
|
||||
GRUB_MD_CRC32->write(crc32_context, s->temp.buf + 4, 6);
|
||||
GRUB_MD_CRC32->final(crc32_context);
|
||||
|
||||
uint32_t resultcrc = get_unaligned_be32(GRUB_MD_CRC32->read(crc32_context));
|
||||
uint32_t readcrc = get_unaligned_le32(s->temp.buf);
|
||||
|
||||
if(resultcrc != readcrc)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Validate Backward Size. Note that we never added the size of the
|
||||
* Index CRC32 field to s->index.size, thus we use s->index.size / 4
|
||||
* instead of s->index.size / 4 - 1.
|
||||
*/
|
||||
if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->has_crc32)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Use XZ_STREAM_END instead of XZ_OK to be more convenient
|
||||
* for the caller.
|
||||
*/
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/* Decode the Block Header and initialize the filter chain. */
|
||||
static enum xz_ret dec_block_header(struct xz_dec *s)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Validate the CRC32. We know that the temp buffer is at least
|
||||
* eight bytes so this is safe.
|
||||
*/
|
||||
s->temp.size -= 4;
|
||||
|
||||
uint8_t crc32_context[GRUB_MD_CRC32->contextsize];
|
||||
|
||||
GRUB_MD_CRC32->init(crc32_context);
|
||||
GRUB_MD_CRC32->write(crc32_context, s->temp.buf, s->temp.size);
|
||||
GRUB_MD_CRC32->final(crc32_context);
|
||||
|
||||
uint32_t resultcrc = get_unaligned_be32(GRUB_MD_CRC32->read(crc32_context));
|
||||
uint32_t readcrc = get_unaligned_le32(s->temp.buf + s->temp.size);
|
||||
|
||||
if (resultcrc != readcrc)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->temp.pos = 2;
|
||||
|
||||
/*
|
||||
* Catch unsupported Block Flags. We support only one or two filters
|
||||
* in the chain, so we catch that with the same test.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->temp.buf[1] & 0x3E)
|
||||
#else
|
||||
if (s->temp.buf[1] & 0x3F)
|
||||
#endif
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Compressed Size */
|
||||
if (s->temp.buf[1] & 0x40) {
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
||||
!= XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.compressed = s->vli;
|
||||
} else {
|
||||
s->block_header.compressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
/* Uncompressed Size */
|
||||
if (s->temp.buf[1] & 0x80) {
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
||||
!= XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.uncompressed = s->vli;
|
||||
} else {
|
||||
s->block_header.uncompressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
/* If there are two filters, the first one must be a BCJ filter. */
|
||||
s->bcj_active = s->temp.buf[1] & 0x01;
|
||||
if (s->bcj_active) {
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* We don't support custom start offset,
|
||||
* so Size of Properties must be zero.
|
||||
*/
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Valid Filter Flags always take at least two bytes. */
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/* Filter ID = LZMA2 */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x21)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Size of Properties = 1-byte Filter Properties */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x01)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Filter Properties contains LZMA2 dictionary size. */
|
||||
if (s->temp.size - s->temp.pos < 1)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/* The rest must be Header Padding. */
|
||||
while (s->temp.pos < s->temp.size)
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
s->temp.pos = 0;
|
||||
s->block.compressed = 0;
|
||||
s->block.uncompressed = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Store the start position for the case when we are in the middle
|
||||
* of the Index field.
|
||||
*/
|
||||
s->in_start = b->in_pos;
|
||||
|
||||
while (true) {
|
||||
switch (s->sequence) {
|
||||
case SEQ_STREAM_HEADER:
|
||||
/*
|
||||
* Stream Header is copied to s->temp, and then
|
||||
* decoded from there. This way if the caller
|
||||
* gives us only little input at a time, we can
|
||||
* still keep the Stream Header decoding code
|
||||
* simple. Similar approach is used in many places
|
||||
* in this file.
|
||||
*/
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
ret = dec_stream_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
|
||||
case SEQ_BLOCK_START:
|
||||
/* We need one byte of input to continue. */
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
/* See if this is the beginning of the Index field. */
|
||||
if (b->in[b->in_pos] == 0) {
|
||||
s->in_start = b->in_pos++;
|
||||
s->sequence = SEQ_INDEX;
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the size of the Block Header and
|
||||
* prepare to decode it.
|
||||
*/
|
||||
s->block_header.size
|
||||
= ((uint32_t)b->in[b->in_pos] + 1) * 4;
|
||||
|
||||
s->temp.size = s->block_header.size;
|
||||
s->temp.pos = 0;
|
||||
s->sequence = SEQ_BLOCK_HEADER;
|
||||
|
||||
case SEQ_BLOCK_HEADER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
ret = dec_block_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_UNCOMPRESS;
|
||||
|
||||
case SEQ_BLOCK_UNCOMPRESS:
|
||||
ret = dec_block(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_PADDING;
|
||||
|
||||
case SEQ_BLOCK_PADDING:
|
||||
/*
|
||||
* Size of Compressed Data + Block Padding
|
||||
* must be a multiple of four. We don't need
|
||||
* s->block.compressed for anything else
|
||||
* anymore, so we use it here to test the size
|
||||
* of the Block Padding field.
|
||||
*/
|
||||
while (s->block.compressed & 3) {
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
++s->block.compressed;
|
||||
}
|
||||
|
||||
s->sequence = SEQ_BLOCK_CHECK;
|
||||
|
||||
case SEQ_BLOCK_CHECK:
|
||||
if (s->has_crc32) {
|
||||
ret = crc32_validate(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
}
|
||||
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX:
|
||||
ret = dec_index(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_INDEX_PADDING;
|
||||
|
||||
case SEQ_INDEX_PADDING:
|
||||
while ((s->index.size + (b->in_pos - s->in_start))
|
||||
& 3) {
|
||||
if (b->in_pos == b->in_size) {
|
||||
index_update(s, b);
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
/* Finish the CRC32 value and Index size. */
|
||||
index_update(s, b);
|
||||
|
||||
/* Compare the hashes to validate the Index field. */
|
||||
if (! memeq(&s->block.hash, &s->index.hash, sizeof(s->block.hash)))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->sequence = SEQ_INDEX_CRC32;
|
||||
|
||||
case SEQ_INDEX_CRC32:
|
||||
ret = crc32_validate(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
s->sequence = SEQ_STREAM_FOOTER;
|
||||
|
||||
case SEQ_STREAM_FOOTER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
return dec_stream_footer(s);
|
||||
}
|
||||
}
|
||||
|
||||
/* Never reached */
|
||||
}
|
||||
|
||||
/*
|
||||
* xz_dec_run() is a wrapper for dec_main() to handle some special cases in
|
||||
* multi-call and single-call decoding.
|
||||
*
|
||||
* In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
|
||||
* are not going to make any progress anymore. This is to prevent the caller
|
||||
* from calling us infinitely when the input file is truncated or otherwise
|
||||
* corrupt. Since zlib-style API allows that the caller fills the input buffer
|
||||
* only when the decoder doesn't produce any new output, we have to be careful
|
||||
* to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
|
||||
* after the second consecutive call to xz_dec_run() that makes no progress.
|
||||
*
|
||||
* In single-call mode, if we couldn't decode everything and no error
|
||||
* occurred, either the input is truncated or the output buffer is too small.
|
||||
* Since we know that the last input byte never produces any output, we know
|
||||
* that if all the input was consumed and decoding wasn't finished, the file
|
||||
* must be corrupt. Otherwise the output buffer has to be too small or the
|
||||
* file is corrupt in a way that decoding it produces too big output.
|
||||
*
|
||||
* If single-call decoding fails, we reset b->in_pos and b->out_pos back to
|
||||
* their original values. This is because with some filter chains there won't
|
||||
* be any valid uncompressed data in the output buffer unless the decoding
|
||||
* actually succeeds (that's the price to pay of using the output buffer as
|
||||
* the workspace).
|
||||
*/
|
||||
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
enum xz_ret ret;
|
||||
|
||||
if (s->single_call)
|
||||
xz_dec_reset(s);
|
||||
|
||||
in_start = b->in_pos;
|
||||
out_start = b->out_pos;
|
||||
ret = dec_main(s, b);
|
||||
|
||||
if (s->single_call) {
|
||||
if (ret == XZ_OK)
|
||||
ret = b->in_pos == b->in_size
|
||||
? XZ_DATA_ERROR : XZ_BUF_ERROR;
|
||||
|
||||
if (ret != XZ_STREAM_END) {
|
||||
b->in_pos = in_start;
|
||||
b->out_pos = out_start;
|
||||
}
|
||||
|
||||
} else if (ret == XZ_OK && in_start == b->in_pos
|
||||
&& out_start == b->out_pos) {
|
||||
if (s->allow_buf_error)
|
||||
ret = XZ_BUF_ERROR;
|
||||
|
||||
s->allow_buf_error = true;
|
||||
} else {
|
||||
s->allow_buf_error = false;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct xz_dec * xz_dec_init(uint32_t dict_max)
|
||||
{
|
||||
struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s == NULL)
|
||||
return NULL;
|
||||
|
||||
/* prepare CRC32 calculators */
|
||||
if(GRUB_MD_CRC32 == NULL)
|
||||
{
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
s->crc32_context = kmalloc(GRUB_MD_CRC32->contextsize, GFP_KERNEL);
|
||||
if (s->crc32_context == NULL)
|
||||
{
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
s->index.hash.crc32_context = kmalloc(GRUB_MD_CRC32->contextsize, GFP_KERNEL);
|
||||
if (s->index.hash.crc32_context == NULL)
|
||||
{
|
||||
kfree(s->crc32_context);
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
s->block.hash.crc32_context = kmalloc(GRUB_MD_CRC32->contextsize, GFP_KERNEL);
|
||||
if (s->block.hash.crc32_context == NULL)
|
||||
{
|
||||
kfree(s->index.hash.crc32_context);
|
||||
kfree(s->crc32_context);
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
GRUB_MD_CRC32->init(s->crc32_context);
|
||||
s->crc32_temp = 0;
|
||||
GRUB_MD_CRC32->init(s->index.hash.crc32_context);
|
||||
GRUB_MD_CRC32->init(s->block.hash.crc32_context);
|
||||
|
||||
|
||||
s->single_call = dict_max == 0;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
s->bcj = xz_dec_bcj_create(s->single_call);
|
||||
if (s->bcj == NULL)
|
||||
goto error_bcj;
|
||||
#endif
|
||||
|
||||
s->lzma2 = xz_dec_lzma2_create(dict_max);
|
||||
if (s->lzma2 == NULL)
|
||||
goto error_lzma2;
|
||||
|
||||
xz_dec_reset(s);
|
||||
return s;
|
||||
|
||||
error_lzma2:
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
error_bcj:
|
||||
#endif
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void xz_dec_reset(struct xz_dec *s)
|
||||
{
|
||||
s->sequence = SEQ_STREAM_HEADER;
|
||||
s->allow_buf_error = false;
|
||||
s->pos = 0;
|
||||
|
||||
memzero(&s->block, sizeof(s->block));
|
||||
memzero(&s->index, sizeof(s->index));
|
||||
s->temp.pos = 0;
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
|
||||
GRUB_MD_CRC32->init(s->crc32_context);
|
||||
s->crc32_temp = 0;
|
||||
GRUB_MD_CRC32->init(s->index.hash.crc32_context);
|
||||
GRUB_MD_CRC32->init(s->block.hash.crc32_context);
|
||||
|
||||
}
|
||||
|
||||
void xz_dec_end(struct xz_dec *s)
|
||||
{
|
||||
if (s != NULL) {
|
||||
xz_dec_lzma2_end(s->lzma2);
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
#endif
|
||||
kfree(s);
|
||||
}
|
||||
}
|
236
grub-core/lib/xzembed/xz_lzma2.h
Normal file
236
grub-core/lib/xzembed/xz_lzma2.h
Normal file
|
@ -0,0 +1,236 @@
|
|||
/* xz_lzma2.h - LZMA2 definitions */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#ifndef XZ_LZMA2_H
|
||||
#define XZ_LZMA2_H
|
||||
|
||||
/* dictionary size hard limit
|
||||
* actual size limit is calculated as shown in 5.3.1
|
||||
* http://tukaani.org/xz/xz-file-format.txt
|
||||
*
|
||||
* if bits > 39 dictionary_size = UINT32_MAX
|
||||
* else
|
||||
* dictionary_size = 2 | (bits & 1);
|
||||
* dictionary_size <<= bits / 2 + 11;
|
||||
*
|
||||
* i.e.
|
||||
* 0 - 4 KiB
|
||||
* 6 - 32 KiB
|
||||
* 30 - 128MiB
|
||||
* 39 - 3072 MiB
|
||||
* 40 - 4096 MiB - 1 B
|
||||
* note: implementation supports 39 at maximum
|
||||
*/
|
||||
#define DICT_BIT_SIZE 30
|
||||
|
||||
/* Range coder constants */
|
||||
#define RC_SHIFT_BITS 8
|
||||
#define RC_TOP_BITS 24
|
||||
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
|
||||
#define RC_BIT_MODEL_TOTAL_BITS 11
|
||||
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
|
||||
#define RC_MOVE_BITS 5
|
||||
|
||||
/*
|
||||
* Maximum number of position states. A position state is the lowest pb
|
||||
* number of bits of the current uncompressed offset. In some places there
|
||||
* are different sets of probabilities for different position states.
|
||||
*/
|
||||
#define POS_STATES_MAX (1 << 4)
|
||||
|
||||
/*
|
||||
* This enum is used to track which LZMA symbols have occurred most recently
|
||||
* and in which order. This information is used to predict the next symbol.
|
||||
*
|
||||
* Symbols:
|
||||
* - Literal: One 8-bit byte
|
||||
* - Match: Repeat a chunk of data at some distance
|
||||
* - Long repeat: Multi-byte match at a recently seen distance
|
||||
* - Short repeat: One-byte repeat at a recently seen distance
|
||||
*
|
||||
* The symbol names are in from STATE_oldest_older_previous. REP means
|
||||
* either short or long repeated match, and NONLIT means any non-literal.
|
||||
*/
|
||||
enum lzma_state {
|
||||
STATE_LIT_LIT,
|
||||
STATE_MATCH_LIT_LIT,
|
||||
STATE_REP_LIT_LIT,
|
||||
STATE_SHORTREP_LIT_LIT,
|
||||
STATE_MATCH_LIT,
|
||||
STATE_REP_LIT,
|
||||
STATE_SHORTREP_LIT,
|
||||
STATE_LIT_MATCH,
|
||||
STATE_LIT_LONGREP,
|
||||
STATE_LIT_SHORTREP,
|
||||
STATE_NONLIT_MATCH,
|
||||
STATE_NONLIT_REP
|
||||
};
|
||||
|
||||
/* Total number of states */
|
||||
#define STATES 12
|
||||
|
||||
/* The lowest 7 states indicate that the previous state was a literal. */
|
||||
#define LIT_STATES 7
|
||||
|
||||
/* Indicate that the latest symbol was a literal. */
|
||||
static inline void lzma_state_literal(enum lzma_state *state)
|
||||
{
|
||||
if (*state <= STATE_SHORTREP_LIT_LIT)
|
||||
*state = STATE_LIT_LIT;
|
||||
else if (*state <= STATE_LIT_SHORTREP)
|
||||
*state -= 3;
|
||||
else
|
||||
*state -= 6;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a match. */
|
||||
static inline void lzma_state_match(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
|
||||
}
|
||||
|
||||
/* Indicate that the latest state was a long repeated match. */
|
||||
static inline void lzma_state_long_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a short match. */
|
||||
static inline void lzma_state_short_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Test if the previous symbol was a literal. */
|
||||
static inline bool lzma_state_is_literal(enum lzma_state state)
|
||||
{
|
||||
return state < LIT_STATES;
|
||||
}
|
||||
|
||||
/* Each literal coder is divided in three sections:
|
||||
* - 0x001-0x0FF: Without match byte
|
||||
* - 0x101-0x1FF: With match byte; match bit is 0
|
||||
* - 0x201-0x2FF: With match byte; match bit is 1
|
||||
*
|
||||
* Match byte is used when the previous LZMA symbol was something else than
|
||||
* a literal (that is, it was some kind of match).
|
||||
*/
|
||||
#define LITERAL_CODER_SIZE 0x300
|
||||
|
||||
/* Maximum number of literal coders */
|
||||
#define LITERAL_CODERS_MAX (1 << 4)
|
||||
|
||||
/* Minimum length of a match is two bytes. */
|
||||
#define MATCH_LEN_MIN 2
|
||||
|
||||
/* Match length is encoded with 4, 5, or 10 bits.
|
||||
*
|
||||
* Length Bits
|
||||
* 2-9 4 = Choice=0 + 3 bits
|
||||
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
|
||||
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
|
||||
*/
|
||||
#define LEN_LOW_BITS 3
|
||||
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
|
||||
#define LEN_MID_BITS 3
|
||||
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
|
||||
#define LEN_HIGH_BITS 8
|
||||
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
|
||||
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
|
||||
|
||||
/*
|
||||
* Maximum length of a match is 273 which is a result of the encoding
|
||||
* described above.
|
||||
*/
|
||||
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
|
||||
|
||||
/*
|
||||
* Different sets of probabilities are used for match distances that have
|
||||
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
|
||||
* set of probabilities for each length. The matches with longer length
|
||||
* use a shared set of probabilities.
|
||||
*/
|
||||
#define DIST_STATES 4
|
||||
|
||||
/*
|
||||
* Get the index of the appropriate probability array for decoding
|
||||
* the distance slot.
|
||||
*/
|
||||
static inline uint32_t lzma_get_dist_state(uint32_t len)
|
||||
{
|
||||
return len < DIST_STATES + MATCH_LEN_MIN
|
||||
? len - MATCH_LEN_MIN : DIST_STATES - 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The highest two bits of a 32-bit match distance are encoded using six bits.
|
||||
* This six-bit value is called a distance slot. This way encoding a 32-bit
|
||||
* value takes 6-36 bits, larger values taking more bits.
|
||||
*/
|
||||
#define DIST_SLOT_BITS 6
|
||||
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
|
||||
|
||||
/* Match distances up to 127 are fully encoded using probabilities. Since
|
||||
* the highest two bits (distance slot) are always encoded using six bits,
|
||||
* the distances 0-3 don't need any additional bits to encode, since the
|
||||
* distance slot itself is the same as the actual distance. DIST_MODEL_START
|
||||
* indicates the first distance slot where at least one additional bit is
|
||||
* needed.
|
||||
*/
|
||||
#define DIST_MODEL_START 4
|
||||
|
||||
/*
|
||||
* Match distances greater than 127 are encoded in three pieces:
|
||||
* - distance slot: the highest two bits
|
||||
* - direct bits: 2-26 bits below the highest two bits
|
||||
* - alignment bits: four lowest bits
|
||||
*
|
||||
* Direct bits don't use any probabilities.
|
||||
*
|
||||
* The distance slot value of 14 is for distances 128-191.
|
||||
*/
|
||||
#define DIST_MODEL_END 14
|
||||
|
||||
/* Distance slots that indicate a distance <= 127. */
|
||||
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
|
||||
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
|
||||
|
||||
/*
|
||||
* For match distances greater than 127, only the highest two bits and the
|
||||
* lowest four bits (alignment) is encoded using probabilities.
|
||||
*/
|
||||
#define ALIGN_BITS 4
|
||||
#define ALIGN_SIZE (1 << ALIGN_BITS)
|
||||
#define ALIGN_MASK (ALIGN_SIZE - 1)
|
||||
|
||||
/* Total number of all probability variables */
|
||||
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
|
||||
|
||||
/*
|
||||
* LZMA remembers the four most recent match distances. Reusing these
|
||||
* distances tends to take less space than re-encoding the actual
|
||||
* distance value.
|
||||
*/
|
||||
#define REPS 4
|
||||
|
||||
#endif
|
96
grub-core/lib/xzembed/xz_private.h
Normal file
96
grub-core/lib/xzembed/xz_private.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/* xz_private.h - Private includes and definitions */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#ifndef XZ_PRIVATE_H
|
||||
#define XZ_PRIVATE_H
|
||||
|
||||
/*
|
||||
* For userspace builds, use a separate header to define the required
|
||||
* macros and functions. This makes it easier to adapt the code into
|
||||
* different environments and avoids clutter in the Linux kernel tree.
|
||||
*/
|
||||
#include "xz_config.h"
|
||||
|
||||
/*
|
||||
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
|
||||
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
|
||||
*/
|
||||
#ifndef XZ_DEC_BCJ
|
||||
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
|
||||
|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
|
||||
|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
|
||||
|| defined(XZ_DEC_SPARC)
|
||||
# define XZ_DEC_BCJ
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
|
||||
* before calling xz_dec_lzma2_run().
|
||||
*/
|
||||
struct xz_dec_lzma2 * xz_dec_lzma2_create(
|
||||
uint32_t dict_max);
|
||||
|
||||
/*
|
||||
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
|
||||
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
|
||||
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
|
||||
* decoder doesn't support.
|
||||
*/
|
||||
enum xz_ret xz_dec_lzma2_reset(
|
||||
struct xz_dec_lzma2 *s, uint8_t props);
|
||||
|
||||
/* Decode raw LZMA2 stream from b->in to b->out. */
|
||||
enum xz_ret xz_dec_lzma2_run(
|
||||
struct xz_dec_lzma2 *s, struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the LZMA2 decoder. */
|
||||
void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
|
||||
|
||||
/*
|
||||
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
|
||||
* calling xz_dec_bcj_run().
|
||||
*/
|
||||
struct xz_dec_bcj * xz_dec_bcj_create(bool single_call);
|
||||
|
||||
/*
|
||||
* Decode the Filter ID of a BCJ filter. This implementation doesn't
|
||||
* support custom start offsets, so no decoding of Filter Properties
|
||||
* is needed. Returns XZ_OK if the given Filter ID is supported.
|
||||
* Otherwise XZ_OPTIONS_ERROR is returned.
|
||||
*/
|
||||
enum xz_ret xz_dec_bcj_reset(
|
||||
struct xz_dec_bcj *s, uint8_t id);
|
||||
|
||||
/*
|
||||
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
|
||||
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
|
||||
* must be called directly.
|
||||
*/
|
||||
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
||||
struct xz_dec_lzma2 *lzma2, struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the BCJ filters. */
|
||||
#define xz_dec_bcj_end(s) kfree(s)
|
||||
|
||||
#endif
|
53
grub-core/lib/xzembed/xz_stream.h
Normal file
53
grub-core/lib/xzembed/xz_stream.h
Normal file
|
@ -0,0 +1,53 @@
|
|||
/* xz_stream.h - Definitions for handling the .xz file format */
|
||||
/*
|
||||
* GRUB -- GRand Unified Bootloader
|
||||
* Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
*
|
||||
* GRUB is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GRUB is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
* This file is based on code from XZ embedded project
|
||||
* http://tukaani.org/xz/embedded.html
|
||||
*/
|
||||
|
||||
#ifndef XZ_STREAM_H
|
||||
#define XZ_STREAM_H
|
||||
|
||||
/*
|
||||
* See the .xz file format specification at
|
||||
* http://tukaani.org/xz/xz-file-format.txt
|
||||
* to understand the container format.
|
||||
*/
|
||||
|
||||
#define STREAM_HEADER_SIZE 12
|
||||
|
||||
#define HEADER_MAGIC "\3757zXZ\0"
|
||||
#define HEADER_MAGIC_SIZE 6
|
||||
|
||||
#define FOOTER_MAGIC "YZ"
|
||||
#define FOOTER_MAGIC_SIZE 2
|
||||
|
||||
/*
|
||||
* Variable-length integer can hold a 63-bit unsigned integer, or a special
|
||||
* value to indicate that the value is unknown.
|
||||
*/
|
||||
typedef uint64_t vli_type;
|
||||
|
||||
#define VLI_MAX ((vli_type)-1 / 2)
|
||||
#define VLI_UNKNOWN ((vli_type)-1)
|
||||
|
||||
/* Maximum encoded size of a VLI */
|
||||
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
|
||||
|
||||
#endif
|
|
@ -55,9 +55,10 @@ typedef struct grub_file *grub_file_t;
|
|||
typedef enum grub_file_filter_id
|
||||
{
|
||||
GRUB_FILE_FILTER_GZIO,
|
||||
GRUB_FILE_FILTER_XZIO,
|
||||
GRUB_FILE_FILTER_MAX,
|
||||
GRUB_FILE_FILTER_COMPRESSION_FIRST = GRUB_FILE_FILTER_GZIO,
|
||||
GRUB_FILE_FILTER_COMPRESSION_LAST = GRUB_FILE_FILTER_GZIO,
|
||||
GRUB_FILE_FILTER_COMPRESSION_LAST = GRUB_FILE_FILTER_XZIO,
|
||||
} grub_file_filter_id_t;
|
||||
|
||||
typedef grub_file_t (*grub_file_filter_t) (grub_file_t in);
|
||||
|
|
Loading…
Reference in a new issue