The address of fp->path_name could be unaligned since seeking into the
device path buffer for a given node could end in byte boundary.
The fix is allocating aligned buffer by grub_malloc for holding the
UTF16 string copied from fp->path_name, and after using that buffer as
argument for grub_utf16_to_utf8 to convert it to UTF8 string.
[ 255s] ../../grub-core/kern/efi/efi.c: In function 'grub_efi_get_filename':
[ 255s] ../../grub-core/kern/efi/efi.c:410:60: error: taking address of packed member of 'struct grub_efi_file_path_device_path' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 255s] 410 | p = (char *) grub_utf16_to_utf8 ((unsigned char *) p, fp->path_name, len);
[ 255s] | ~~^~~~~~~~~~~
[ 255s] ../../grub-core/kern/efi/efi.c: In function 'grub_efi_print_device_path':
[ 255s] ../../grub-core/kern/efi/efi.c:900:33: error: taking address of packed member of 'struct grub_efi_file_path_device_path' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 255s] 900 | *grub_utf16_to_utf8 (buf, fp->path_name,
[ 255s] | ~~^~~~~~~~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The address of fp->path_name could be unaligned since seeking into the
device path buffer for a given node could end in byte boundary.
The fix is using aligned buffer allocated by grub_malloc for receiving
the converted UTF16 string by grub_utf8_to_utf16 and also the processing
after. The resulting string then gets copied to fp->path_name.
[ 243s] ../../grub-core/loader/efi/chainloader.c: In function 'copy_file_path':
[ 243s] ../../grub-core/loader/efi/chainloader.c:136:32: error: taking address of packed member of 'struct grub_efi_file_path_device_path' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 243s] 136 | size = grub_utf8_to_utf16 (fp->path_name, len * GRUB_MAX_UTF16_PER_UTF8,
[ 243s] | ~~^~~~~~~~~~~
[ 243s] ../../grub-core/loader/efi/chainloader.c:138:12: error: taking address of packed member of 'struct grub_efi_file_path_device_path' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 243s] 138 | for (p = fp->path_name; p < fp->path_name + size; p++)
[ 243s] | ^~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the
grub_usb_get_string function since the result is false postive. The
descstrp->str is found to be aligned in the buffer allocated for 'struct
grub_usb_desc_str'.
[ 229s] ../../grub-core/commands/usbtest.c: In function 'grub_usb_get_string':
[ 229s] ../../grub-core/commands/usbtest.c:104:58: error: taking address of packed member of 'struct grub_usb_desc_str' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 229s] 104 | *grub_utf16_to_utf8 ((grub_uint8_t *) *string, descstrp->str,
[ 229s] | ~~~~~~~~^~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The catkey->name could be unaligned since the address of 'void* record'
is calculated as offset in bytes to a malloc buffer.
The fix is using aligned buffer allocated by grub_malloc for holding
the UTF16 string copied from catkey->name. And use that buffer as
argument for grub_utf16_to_utf8 to convert to UTF8 strings.
In addition, using a new copy of buffer rather than catkey->name itself
for processing the endianess conversion, we can also get rid of the hunk
restoring byte order of catkey->name to what it was previously.
[ 59s] ../grub-core/fs/hfsplus.c: In function 'list_nodes':
[ 59s] ../grub-core/fs/hfsplus.c:738:57: error: taking address of packed member of 'struct grub_hfsplus_catkey' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 738 | *grub_utf16_to_utf8 ((grub_uint8_t *) filename, catkey->name,
[ 59s] | ~~~~~~^~~~~~
[ 59s] ../grub-core/fs/hfsplus.c: In function 'grub_hfsplus_label':
[ 59s] ../grub-core/fs/hfsplus.c:1019:57: error: taking address of packed member of 'struct grub_hfsplus_catkey' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 1019 | *grub_utf16_to_utf8 ((grub_uint8_t *) (*label), catkey->name,
[ 59s] | ~~~~~~^~~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the
grub_jfs_getent function since the result is found to be false postive.
The leaf is read into memory as continous chunks in size of 32 bytes and
the pointer to its base is aligned, which also guarentee its member
leaf->namepart is aligned.
[ 60s] ../grub-core/fs/jfs.c: In function 'grub_jfs_getent':
[ 60s] ../grub-core/fs/jfs.c:557:44: error: taking address of packed member of 'struct grub_jfs_leaf_dirent' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 60s] 557 | le_to_cpu16_copy (filename + strpos, leaf->namepart, len < diro->data->namecomponentlen ? len
[ 60s] | ~~~~^~~~~~~~~~
[ 60s] ../grub-core/fs/jfs.c:570:48: error: taking address of packed member of 'struct grub_jfs_leaf_next_dirent' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 60s] 570 | le_to_cpu16_copy (filename + strpos, next_leaf->namepart, len < 15 ? len : 15);
[ 60s] | ~~~~~~~~~^~~~~~~~~~
[ 60s] cc1: all warnings being treated as errors
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the
grub_cpio_find_file function since the result is found to be false
postive. Any pointers to member of the 'struct head hd' is aligned even
if the structure is packed without paddings.
[ 59s] In file included from ../grub-core/fs/cpio.c:51:
[ 59s] ../grub-core/fs/cpio_common.c: In function 'grub_cpio_find_file':
[ 59s] ../grub-core/fs/cpio_common.c:58:31: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 58 | data->size = read_number (hd.filesize, ARRAY_SIZE (hd.filesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:60:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 60 | *mtime = read_number (hd.mtime, ARRAY_SIZE (hd.mtime));
[ 59s] | ~~^~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:61:28: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 61 | modeval = read_number (hd.mode, ARRAY_SIZE (hd.mode));
[ 59s] | ~~^~~~~
[ 59s] ../grub-core/fs/cpio_common.c:62:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 62 | namesize = read_number (hd.namesize, ARRAY_SIZE (hd.namesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] In file included from ../grub-core/fs/cpio_be.c:51:
[ 59s] ../grub-core/fs/cpio_common.c: In function 'grub_cpio_find_file':
[ 59s] ../grub-core/fs/cpio_common.c:58:31: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 58 | data->size = read_number (hd.filesize, ARRAY_SIZE (hd.filesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:60:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 60 | *mtime = read_number (hd.mtime, ARRAY_SIZE (hd.mtime));
[ 59s] | ~~^~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:61:28: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 61 | modeval = read_number (hd.mode, ARRAY_SIZE (hd.mode));
[ 59s] | ~~^~~~~
[ 59s] ../grub-core/fs/cpio_common.c:62:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 62 | namesize = read_number (hd.namesize, ARRAY_SIZE (hd.namesize));
[ 59s] | ~~^~~~~~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The UEFI specification allows LoadImage() to be called with a memory
location only and without a device path. In this case FilePath will not be
set in the EFI_LOADED_IMAGE_PROTOCOL.
So in function grub_efi_get_filename() the device path argument may be
NULL. As we cannot determine the device path in this case just return NULL
from the function.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Function grub_strndup() may return NULL, this is called from
function grub_ieee1275_get_devname() which is then called from
function grub_ieee1275_encode_devname() to set device. The device
variable could then be used with a NULL pointer.
Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Previously the setup_header length was just assumed to be the size of the
linux_kernel_params struct. The linux x86 32-bit boot protocol says that the
end of the linux_i386_kernel_header is at 0x202 + the byte value at 0x201 in
the linux_i386_kernel_header. So, calculate the size of the header using the
end of the linux_i386_kernel_header, rather than assume it is the size of the
linux_kernel_params struct.
Additionally, add some required members to the linux_kernel_params
struct and align the content of linux_i386_kernel_header struct with
it. New members naming was taken directly from Linux kernel source.
linux_kernel_params and linux_i386_kernel_header structs require more
cleanup. However, this is not urgent, so, let's do this after release.
Just in case...
Signed-off-by: Andrew Jeddeloh <andrew.jeddeloh@coreos.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Vladimir Serbinenko <phcoder@google.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Function grub_efi_find_last_device_path() may return NULL when called
from grub_efidisk_get_device_name().
Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Function grub_efi_find_last_device() path may return NULL when called
from is_child().
Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Function grub_efi_find_last_device_path() may return constant NULL when
called from find_parent_device().
Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Recent versions of binutils dropped support for the a.out and COFF
formats on sparc64 targets. Since the boot loader on sparc64 is
supposed to be an a.out binary and the a.out header entries are
rather simple to calculate in our case, we just write the header
ourselves instead of relying on external tools to do that.
Signed-off-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This patch is similiar to commit e795b9011 (RISC-V: Add libgcc helpers
for clz) but for SPARC target.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
This patch is similiar to commit e795b9011 (RISC-V: Add libgcc helpers
for clz) but for MIPS target.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
MIPS fallout cleanup after commit 4d4a8c96e (verifiers: Add possibility
to verify kernel and modules command lines).
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
PowerPC fallout cleanup after commit 4d4a8c96e (verifiers: Add possibility
to verify kernel and modules command lines) and ca0a4f689 (verifiers: File
type for fine-grained signature-verification controlling).
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
IA-64 fallout cleanup after commit 4d4a8c96e (verifiers: Add possibility
to verify kernel and modules command lines).
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
In addition to what was already there, Gnulib's <intprops.h> needs SCHAR_MIN,
SCHAR_MAX, SHRT_MIN, INT_MIN, LONG_MIN, and LONG_MAX. Fixes build on CentOS 7.
Reported-by: "Chen, Farrah" <farrah.chen@intel.com>
Signed-off-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Mirror behaviour of ELF loader in libxc: first look for Xen notes in
PT_NOTE segment, then in SHT_NOTE section and only then fallback to
a section with __xen_guest name. This fixes loading PV kernels that
Xen note have outside of PT_NOTE. While this may be result of a buggy
linker script, loading such kernel directly works fine, so make it work
with GRUB too. Specifically, this applies to binaries built from Unikraft.
Signed-off-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Various GRUB utilities fail if the current directory doesn't exist,
because grub_find_device() chdirs to a different directory and then
fails when trying to chdir back. Gnulib's save-cwd module uses fchdir()
instead when it can, avoiding this category of problem.
Fixes Debian bug #918700.
Signed-off-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Mostly for cosmetic reasons, we add a "net_dhcp" command, which is (at the
moment) identical to the existing "net_bootp" command. Both actually trigger
a DHCP handshake now, and both should be able to deal with pure BOOTP servers.
We could think about dropping the DHCP options from the initial DISCOVER packet
when the user issues the net_bootp command, but it's unclear whether this is
really useful, as both protocols should be able to coexist.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Even though we were parsing some DHCP options sent by the server, so far
we are only using the BOOTP 2-way handshake, even when talking to a DHCP
server.
Change this by actually sending out DHCP DISCOVER packets instead of the
generic (mostly empty) BOOTP BOOTREQUEST packets.
A pure BOOTP server would ignore the extra DHCP options in the DISCOVER
packet and would just reply with a BOOTREPLY packet, which we also
handle in the code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
In respone to a BOOTREQUEST packet a BOOTP server would answer with a BOOTREPLY
packet, which ends the conversation for good. DHCP uses a 4-way handshake,
where the initial server respone is an OFFER, which has to be answered with
REQUEST by the client again, only to be completed by an ACKNOWLEDGE packet
from the server.
Teach the grub_net_process_dhcp() function to deal with OFFER packets,
and treat ACK packets the same es BOOTREPLY packets.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The BOOTP RFC describes the boot file name and the server name as being part
of the integral BOOTP data structure, with some limits on the size of them.
DHCP extends this by allowing them to be separate DHCP options, which is more
flexible.
Teach the code dealing with those fields to check for those DHCP options first
and use this information, if provided. We fall back to using the BOOTP
information if those options are not used.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Currently we have a global timeout for all network cards in the BOOTP/DHCP
discovery process.
Make this timeout a per-interface one, so better accommodate the upcoming
4-way DHCP handshake and to also cover the lease time limit a DHCP offer
will come with.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Change the interface of the function dealing with incoming BOOTP packets
to take an interface instead of a card, to allow more fine per-interface
state (timeout, handshake state) later on.
Use the opportunity to clean up the code a bit.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
In contrast to BOOTP, DHCP uses a 4-way handshake, so requires to send
packets more often.
Refactor the generation and sending of the BOOTREQUEST packet into
a separate function, so that future code can more easily reuse this.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
DHCP specifies a special dummy option OVERLOAD, to allow DHCP options to
spill over into the (legacy) BOOTFILE and SNAME fields.
Parse and handle this option properly.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
For proper DHCP support we will need to parse DHCP options from a packet
more often and at various places.
Refactor the option parsing into a new function, which will scan a packet to
find *a particular* option field. Use that new function in places where we
were dealing with DHCP options before.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The comment is right, the "giaddr" fields holds the IP address of the BOOTP
relay, not a general purpose router address. Just remove the commented code,
archeologists can find it in the git history.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
In order to be able to read from and write to model-specific registers,
two new modules are added. They are i386 specific, as the cpuid module.
rdmsr module registers the command rdmsr that allows reading from a MSR.
wrmsr module registers the command wrmsr that allows writing to a MSR.
wrmsr module is disabled if UEFI secure boot is enabled.
Please note that on SMP systems, interacting with a MSR that has a scope
per hardware thread, implies that the value only applies to the
particular cpu/core/thread that ran the command.
Also, if you specify a reserved or unimplemented MSR address, it will
cause a general protection exception (which is not currently being
handled) and the system will reboot.
Signed-off-by: Jesús Diéguez Fernández <jesusdf@gmail.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
In order to maintain the coding style consistency, it was requested to
replace the methods that use "__asm__ __volatile__" with "asm volatile".
Signed-off-by: Jesús Diéguez Fernández <jesusdf@gmail.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Add a new disk driver called obdisk for IEEE1275 platforms. Currently
the only platform using this disk driver is SPARC, however other IEEE1275
platforms could start using it if they so choose. While the functionality
within the current IEEE1275 ofdisk driver may be suitable for PPC and x86, it
presented too many problems on SPARC hardware.
Within the old ofdisk, there is not a way to determine the true canonical
name for the disk. Within Open Boot, the same disk can have multiple names
but all reference the same disk. For example the same disk can be referenced
by its SAS WWN, using this form:
/pci@302/pci@2/pci@0/pci@17/LSI,sas@0/disk@w5000cca02f037d6d,0
It can also be referenced by its PHY identifier using this form:
/pci@302/pci@2/pci@0/pci@17/LSI,sas@0/disk@p0
It can also be referenced by its Target identifier using this form:
/pci@302/pci@2/pci@0/pci@17/LSI,sas@0/disk@0
Also, when the LUN=0, it is legal to omit the ,0 from the device name. So with
the disk above, before taking into account the device aliases, there are 6 ways
to reference the same disk.
Then it is possible to have 0 .. n device aliases all representing the same disk.
Within this new driver the true canonical name is determined using the the
IEEE1275 encode-unit and decode-unit commands when address_cells == 4. This
will determine the true single canonical name for the device so multiple ihandles
are not opened for the same device. This is what frequently happens with the old
ofdisk driver. With some devices when they are opened multiple times it causes
the entire system to hang.
Another problem solved with this driver is devices that do not have a device
alias can be booted and used within GRUB. Within the old ofdisk, this was not
possible, unless it was the original boot device. All devices behind a SAS
or SCSI parent can be found. Within the old ofdisk, finding these disks
relied on there being an alias defined. The alias requirement is not
necessary with this new driver. It can also find devices behind a parent
after they have been hot-plugged. This is something that is not possible
with the old ofdisk driver.
The old ofdisk driver also incorrectly assumes that the device pointing to by a
device alias is in its true canonical form. This assumption is never made with
this new driver.
Another issue solved with this driver is that it properly caches the ihandle
for all open devices. The old ofdisk tries to do this by caching the last
opened ihandle. However this does not work properly because the layer above
does not use a consistent device name for the same disk when calling into the
driver. This is because the upper layer uses the bootpath value returned within
/chosen, other times it uses the device alias, and other times it uses the
value within grub.cfg. It does not have a way to figure out that these devices
are the same disk. This is not a problem with this new driver.
Due to the way GRUB repeatedly opens and closes the same disk. Caching the
ihandle is important on SPARC. Without caching, some SAS devices can take
15 - 20 minutes to get to the GRUB menu. This ihandle caching is not possible
without correctly having the canonical disk name.
When available, this driver also tries to use the deblocker #blocks and
a way of determining the disk size.
Finally and probably most importantly, this new driver is also capable of
seeing all partitions on a GPT disk. With the old driver, the GPT
partition table can not be read and only the first partition on the disk
can be seen.
Signed-off-by: Eric Snowberg <eric.snowberg@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Upgrade Gnulib files to 20190105.
It's much easier to maintain GRUB's use of portability support files
from Gnulib when the process is automatic and driven by a single
configuration file, rather than by maintainers occasionally running
gnulib-tool and committing the result. Removing these
automatically-copied files from revision control also removes the
temptation to hack the output in ways that are difficult for future
maintainers to follow. Gnulib includes a "bootstrap" program which is
designed for this.
The canonical way to bootstrap GRUB from revision control is now
"./bootstrap", but "./autogen.sh" is still useful if you just want to
generate the GRUB-specific parts of the build system.
GRUB now requires Autoconf >= 2.63 and Automake >= 1.11, in line with
Gnulib.
Gnulib source code is now placed in grub-core/lib/gnulib/ (which should
not be edited directly), and GRUB's patches are in
grub-core/lib/gnulib-patches/. I've added a few notes to the developer
manual on how to maintain this.
Signed-off-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
syslinux_parse simplifies some filenames by removing things like ".."
segments, but the tests assumed that @abs_top_srcdir@ would be
untouched, which is not true in the case of out-of-tree builds where
@abs_top_srcdir@ may contain ".." segments.
Performing the substitution requires some awkwardness in Makefile.am due
to details of how config.status works.
Signed-off-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Many of GRUB's utilities don't check anywhere near all the possible
write errors. For example, if grub-install runs out of space when
copying a file, it won't notice. There were missing checks for the
return values of write, fflush, fsync, and close (or the equivalents on
other OSes), all of which must be checked.
I tried to be consistent with the existing logging practices of the
various hostdisk implementations, but they weren't entirely consistent
to start with so I used my judgement. The result at least looks
reasonable on GNU/Linux when I provoke a write error:
Installing for x86_64-efi platform.
grub-install: error: cannot copy `/usr/lib/grub/x86_64-efi-signed/grubx64.efi.signed' to `/boot/efi/EFI/debian/grubx64.efi': No space left on device.
There are more missing checks in other utilities, but this should fix
the most critical ones.
Fixes Debian bug #922741.
Signed-off-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Steve McIntyre <93sam@debian.org>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
For EBR partitions, "start" is the relative starting sector of the EBR
header itself, whereas "offset" is the relative starting byte of the
partition's contents, excluding the EBR header and any padding. Thus we
must use "offset", and divide by the sector size to convert to sectors.
Fixes Debian bug #923253.
Signed-off-by: James Clarke <jrtc27@jrtc27.com>
Reviewed-by: Colin Watson <cjwatson@ubuntu.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Much like on x86, we can work out if the system is running on top of EFI
firmware. If so, return "arm-efi". If not, fall back to "arm-uboot" as
previously.
Split out the code to (maybe) load the efivar module and check for
/sys/firmware/efi into a common helper routine is_efi_system().
Signed-off-by: Steve McIntyre <93sam@debian.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This reverts commit 082fd84d52.
Incorrect version of the patch was pushed into the git repo.
Reported-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Much like on x86, we can work out if the system is running on top
of EFI firmware. If so, return "arm-efi". If not, fall back to
"arm-uboot" as previously.
Heavily inspired by the existing code for x86.
Signed-off-by: Steve McIntyre <93sam@debian.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
grub_efi_get_ram_base() looks for the lowest available RAM address by
traversing the memory map, comparing lowest address found so far.
Due to a brain glitch, that "so far" was initialized to GRUB_UINT_MAX -
completely preventing boot on systems without RAM below 4GB.
Change the initial value to GRUB_EFI_MAX_USABLE_ADDRESS, as originally
intended.
Reported-by: Steve McIntyre <93sam@debian.org>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Steve McIntyre <93sam@debian.org>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>