The reboot function calls machine_fini() and then reboots the system.
Currently it lives in lib/ which means it gets compiled into the
reboot module which lives on the heap.
In a following patch, I want to free the heap on machine_fini()
though, so we would free the memory that the code is running in. That
obviously breaks with smarter UEFI implementations.
So this patch moves it into the core. That way we ensure that all
code running after machine_fini() in the UEFI case is running from
memory that got allocated (and gets deallocated) by the UEFI core.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Previously we had multiboot and multiboot2 declaring the same symbols.
This can potentially lead to aliasing and strange behaviours when e.g.
module instead of module2 is used with multiboot2.
Bug: #51137
Add a generic GRUB_PE32_MAGIC definition for the PE 'MZ' tag and delete
the existing one in arm64/linux.h.
Update arm64 Linux loader to use this new definition.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
There is nothing ARM64 (or even ARM) specific about the efi fdt helper
library, which is used for locating or overriding a firmware-provided
devicetree in a UEFI system - so move it to loader/efi for reuse.
Move the fdtload.h include file to grub/efi and update path to
efi/fdtload.h in source code referring to it.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
grub_efi_allocate_pages Essentially does 2 unrelated things:
* Allocate at fixed address.
* Allocate at any address.
To switch between 2 different functions it uses address == 0 as magic
value which is wrong as 0 is a perfectly valid fixed adress to allocate at.
Expose a new function, grub_efi_allocate_pages_real(), making it possible
to specify allocation type and memory type as supported by the UEFI
AllocatePages boot service.
Make grub_efi_allocate_pages() a consumer of the new function,
maintaining its old functionality.
Also delete some left-around #if 1/#else blocks in the affected
functions.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
This patch adds support for virtual LAN (VLAN) tagging. VLAN tagging allows
multiple VLANs in a bridged network to share the same physical network link
but maintain isolation:
http://en.wikipedia.org/wiki/IEEE_802.1Q
* grub-core/net/ethernet.c: Add check, get, and set vlan tag id.
* grub-core/net/drivers/ieee1275/ofnet.c: Get vlan tag id from bootargs.
* grub-core/net/arp.c: Add check.
* grub-core/net/ip.c: Likewise.
* include/grub/net/arp.h: Add vlantag attribute.
* include/grub/net/ip.h: Likewise.
When building with GCC 8, there are several errors regarding packed-not-aligned.
./include/grub/gpt_partition.h:79:1: error: alignment 1 of ‘struct grub_gpt_partentry’ is less than 8 [-Werror=packed-not-aligned]
This patch fixes the build error by cleaning up the ambiguity of placing
aligned structure in a packed one. In "struct grub_btrfs_time" and "struct
grub_gpt_part_type", the aligned attribute seems to be superfluous, and also
has to be packed, to ensure the structure is bit-to-bit mapped to the format
laid on disk. I think we could blame to copy and paste error here for the
mistake. In "struct efi_variable", we have to use grub_efi_packed_guid_t, as
the name suggests. :)
Signed-off-by: Michael Chang <mchang@suse.com>
Tested-by: Michael Chang <mchang@suse.com>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
(cherry picked from commit 563b1da6e6)
According to the section 6.6.1 'Prototype' in 'TCG EFI Protocol Spec',
the 3rd parameter of the (*hash_log_extend_event) should be
'EFI_PHYSICAL_ADDRESS' which is 'grub_efi_physical_address_t' in the
real implementation. So this patch drop the pointer mark '*' from this
prototype.
Signed-off-by: Dennis Chen <dennis.chen@arm.com>
o Add some comments.
o Change image buffer type to (const void *).
o Add new macro VERITY_CMDLINE_LENGTH.
Signed-off-by: Geoff Levand <geoff@infradead.org>
We only support FDT files with EFI on arm and arm64 systems, not
on x86. So move the helper that finds a prepopulated FDT UUID
into its own file and only build it for architectures where it
also gets called.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
If EFI is nice enough to pass us an FDT using configuration tables on 32bit
ARM, we should really try and make use of it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Searching for a device tree that EFI passes to us via configuration tables
is nothing architecture specific. Move it into generic code.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Modern pvops linux kernels support a p2m list not covered by the
kernel mapping. This capability is flagged by an elf-note specifying
the virtual address the kernel is expecting the p2m list to be mapped
to.
In case the elf-note is set by the kernel don't place the p2m list
into the kernel mapping, but map it to the given address. This will
allow to support domains with larger memory, as the kernel mapping is
limited to 2GB and a domain with huge memory in the TB range will have
a p2m list larger than this.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Modify the page table construction to allow multiple virtual regions
to be mapped. This is done as preparation for removing the p2m list
from the initial kernel mapping in order to support huge pv domains.
This allows a cleaner approach for mapping the relocator page by
using this capability.
The interface to the assembler level of the relocator has to be changed
in order to be able to process multiple page table areas.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Modern pvops linux kernels support an initrd not covered by the initial
mapping. This capability is flagged by an elf-note.
In case the elf-note is set by the kernel don't place the initrd into
the initial mapping. This will allow to load larger initrds and/or
support domains with larger memory, as the initial mapping is limited
to 2GB and it is containing the p2m list.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Get actual version of include/xen/xen.h from the Xen repository in
order to be able to use constants defined there.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Various features and parameters of a pv-kernel are specified via
elf notes in the kernel image. Those notes are part of the interface
between the Xen hypervisor and the kernel.
Instead of using num,bers in the code when interpreting the elf notes
make use of the header supplied by Xen for that purpose.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Currently multiboot2 protocol loads image exactly at address specified in
ELF or multiboot2 header. This solution works quite well on legacy BIOS
platforms. It is possible because memory regions are placed at predictable
addresses (though I was not able to find any spec which says that it is
strong requirement, so, it looks that it is just a goodwill of hardware
designers). However, EFI platforms are more volatile. Even if required
memory regions live at specific addresses then they are sometimes simply
not free (e.g. used by boot/runtime services on Dell PowerEdge R820 and
OVMF). This means that you are not able to just set up final image
destination on build time. You have to provide method to relocate image
contents to real load address which is usually different than load address
specified in ELF and multiboot2 headers.
This patch provides all needed machinery to do self relocation in image code.
First of all GRUB2 reads min_addr (min. load addr), max_addr (max. load addr),
align (required image alignment), preference (it says which memory regions are
preferred by image, e.g. none, low, high) from multiboot_header_tag_relocatable
header tag contained in binary (at this stage load addresses from multiboot2
and/or ELF headers are ignored). Later loader tries to fulfill request (not only
that one) and if it succeeds then it informs image about real load address via
multiboot_tag_load_base_addr tag. At this stage GRUB2 role is finished. Starting
from now executable must cope with relocations itself using whole static and
dynamic knowledge provided by boot loader.
This patch does not provide functionality which could do relocations using
ELF relocation data. However, I was asked by Konrad Rzeszutek Wilk and Vladimir
'phcoder' Serbinenko to investigate that thing. It looks that relevant machinery
could be added to existing code (including this patch) without huge effort.
Additionally, ELF relocation could live in parallel with self relocation provided
by this patch. However, during research I realized that first of all we should
establish the details how ELF relocatable image should look like and how it should
be build. At least to build proper test/example files.
So, this patch just provides support for self relocatable images. If ELF file
with relocs is loaded then GRUB2 complains loudly and ignores it. Support for
such files will be added later.
This patch was tested with Xen image which uses that functionality. However, this Xen
feature is still under development and new patchset will be released in about 2-3 weeks.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>
Add tags used to pass ImageHandle to loaded image if requested.
It is used by at least ExitBootServices() function.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>
Add grub_relocator64_efi relocator. It will be used on EFI 64-bit platforms
when multiboot2 compatible image requests MULTIBOOT_TAG_TYPE_EFI_BS. Relocator
will set lower parts of %rax and %rbx accordingly to multiboot2 specification.
On the other hand processor mode, just before jumping into loaded image, will
be set accordingly to Unified Extensible Firmware Interface Specification,
Version 2.4 Errata B, section 2.3.4, x64 Platforms, boot services. This way
loaded image will be able to use EFI boot services without any issues.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>