/* mpi-mod.c - Modular reduction Copyright (C) 1998, 1999, 2001, 2002, 2003, 2007 Free Software Foundation, Inc. This file is part of Libgcrypt. Libgcrypt is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Libgcrypt is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <stdio.h> #include <stdlib.h> #include "mpi-internal.h" #include "longlong.h" #include "g10lib.h" /* Context used with Barrett reduction. */ struct barrett_ctx_s { gcry_mpi_t m; /* The modulus - may not be modified. */ int m_copied; /* If true, M needs to be released. */ int k; gcry_mpi_t y; gcry_mpi_t r1; /* Helper MPI. */ gcry_mpi_t r2; /* Helper MPI. */ gcry_mpi_t r3; /* Helper MPI allocated on demand. */ }; void _gcry_mpi_mod (gcry_mpi_t rem, gcry_mpi_t dividend, gcry_mpi_t divisor) { _gcry_mpi_fdiv_r (rem, dividend, divisor); rem->sign = 0; } /* This function returns a new context for Barrett based operations on the modulus M. This context needs to be released using _gcry_mpi_barrett_free. If COPY is true M will be transferred to the context and the user may change M. If COPY is false, M may not be changed until gcry_mpi_barrett_free has been called. */ mpi_barrett_t _gcry_mpi_barrett_init (gcry_mpi_t m, int copy) { mpi_barrett_t ctx; gcry_mpi_t tmp; mpi_normalize (m); ctx = gcry_xcalloc (1, sizeof *ctx); if (copy) { ctx->m = mpi_copy (m); ctx->m_copied = 1; } else ctx->m = m; ctx->k = mpi_get_nlimbs (m); tmp = mpi_alloc (ctx->k + 1); /* Barrett precalculation: y = floor(b^(2k) / m). */ mpi_set_ui (tmp, 1); mpi_lshift_limbs (tmp, 2 * ctx->k); mpi_fdiv_q (tmp, tmp, m); ctx->y = tmp; ctx->r1 = mpi_alloc ( 2 * ctx->k + 1 ); ctx->r2 = mpi_alloc ( 2 * ctx->k + 1 ); return ctx; } void _gcry_mpi_barrett_free (mpi_barrett_t ctx) { if (ctx) { mpi_free (ctx->y); mpi_free (ctx->r1); mpi_free (ctx->r2); if (ctx->r3) mpi_free (ctx->r3); if (ctx->m_copied) mpi_free (ctx->m); gcry_free (ctx); } } /* R = X mod M Using Barrett reduction. Before using this function _gcry_mpi_barrett_init must have been called to do the precalculations. CTX is the context created by this precalculation and also conveys M. If the Barret reduction could no be done a starightforward reduction method is used. We assume that these conditions are met: Input: x =(x_2k-1 ...x_0)_b m =(m_k-1 ....m_0)_b with m_k-1 != 0 Output: r = x mod m */ void _gcry_mpi_mod_barrett (gcry_mpi_t r, gcry_mpi_t x, mpi_barrett_t ctx) { gcry_mpi_t m = ctx->m; int k = ctx->k; gcry_mpi_t y = ctx->y; gcry_mpi_t r1 = ctx->r1; gcry_mpi_t r2 = ctx->r2; mpi_normalize (x); if (mpi_get_nlimbs (x) > 2*k ) { mpi_mod (r, x, m); return; } /* 1. q1 = floor( x / b^k-1) * q2 = q1 * y * q3 = floor( q2 / b^k+1 ) * Actually, we don't need qx, we can work direct on r2 */ mpi_set ( r2, x ); mpi_rshift_limbs ( r2, k-1 ); mpi_mul ( r2, r2, y ); mpi_rshift_limbs ( r2, k+1 ); /* 2. r1 = x mod b^k+1 * r2 = q3 * m mod b^k+1 * r = r1 - r2 * 3. if r < 0 then r = r + b^k+1 */ mpi_set ( r1, x ); if ( r1->nlimbs > k+1 ) /* Quick modulo operation. */ r1->nlimbs = k+1; mpi_mul ( r2, r2, m ); if ( r2->nlimbs > k+1 ) /* Quick modulo operation. */ r2->nlimbs = k+1; mpi_sub ( r, r1, r2 ); if ( mpi_is_neg( r ) ) { if (!ctx->r3) { ctx->r3 = mpi_alloc ( k + 2 ); mpi_set_ui (ctx->r3, 1); mpi_lshift_limbs (ctx->r3, k + 1 ); } mpi_add ( r, r, ctx->r3 ); } /* 4. while r >= m do r = r - m */ while ( mpi_cmp( r, m ) >= 0 ) mpi_sub ( r, r, m ); } void _gcry_mpi_mul_barrett (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_barrett_t ctx) { gcry_mpi_mul (w, u, v); mpi_mod_barrett (w, w, ctx); }