/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 1999,2000,2001,2002,2003,2004,2009,2010,2011 Free Software Foundation, Inc.
* Copyright 2010 Sun Microsystems, Inc.
* Copyright (c) 2012 by Delphix. All rights reserved.
*
* GRUB is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GRUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GRUB. If not, see .
*/
/*
* The zfs plug-in routines for GRUB are:
*
* zfs_mount() - locates a valid uberblock of the root pool and reads
* in its MOS at the memory address MOS.
*
* zfs_open() - locates a plain file object by following the MOS
* and places its dnode at the memory address DNODE.
*
* zfs_read() - read in the data blocks pointed by the DNODE.
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
GRUB_MOD_LICENSE ("GPLv3+");
#define ZPOOL_PROP_BOOTFS "bootfs"
/*
* For nvlist manipulation. (from nvpair.h)
*/
#define NV_ENCODE_NATIVE 0
#define NV_ENCODE_XDR 1
#define NV_BIG_ENDIAN 0
#define NV_LITTLE_ENDIAN 1
#define DATA_TYPE_UINT64 8
#define DATA_TYPE_STRING 9
#define DATA_TYPE_NVLIST 19
#define DATA_TYPE_NVLIST_ARRAY 20
#ifndef GRUB_UTIL
static grub_dl_t my_mod;
#endif
#define P2PHASE(x, align) ((x) & ((align) - 1))
static inline grub_disk_addr_t
DVA_OFFSET_TO_PHYS_SECTOR (grub_disk_addr_t offset)
{
return ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT);
}
/*
* FAT ZAP data structures
*/
#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
static inline grub_uint64_t
ZAP_HASH_IDX (grub_uint64_t hash, grub_uint64_t n)
{
return (((n) == 0) ? 0 : ((hash) >> (64 - (n))));
}
#define CHAIN_END 0xffff /* end of the chunk chain */
/*
* The amount of space within the chunk available for the array is:
* chunk size - space for type (1) - space for next pointer (2)
*/
#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
static inline int
ZAP_LEAF_HASH_SHIFT (int bs)
{
return bs - 5;
}
static inline int
ZAP_LEAF_HASH_NUMENTRIES (int bs)
{
return 1 << ZAP_LEAF_HASH_SHIFT(bs);
}
static inline grub_size_t
LEAF_HASH (int bs, grub_uint64_t h, zap_leaf_phys_t *l)
{
return ((ZAP_LEAF_HASH_NUMENTRIES (bs)-1)
& ((h) >> (64 - ZAP_LEAF_HASH_SHIFT (bs) - l->l_hdr.lh_prefix_len)));
}
/*
* The amount of space available for chunks is:
* block size shift - hash entry size (2) * number of hash
* entries - header space (2*chunksize)
*/
static inline int
ZAP_LEAF_NUMCHUNKS (int bs)
{
return (((1U << bs) - 2 * ZAP_LEAF_HASH_NUMENTRIES (bs)) /
ZAP_LEAF_CHUNKSIZE - 2);
}
/*
* The chunks start immediately after the hash table. The end of the
* hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
* chunk_t.
*/
static inline zap_leaf_chunk_t *
ZAP_LEAF_CHUNK (zap_leaf_phys_t *l, int bs, int idx)
{
return &((zap_leaf_chunk_t *) (l->l_entries
+ (ZAP_LEAF_HASH_NUMENTRIES(bs) * 2)
/ sizeof (grub_properly_aligned_t)))[idx];
}
static inline struct zap_leaf_entry *
ZAP_LEAF_ENTRY(zap_leaf_phys_t *l, int bs, int idx)
{
return &ZAP_LEAF_CHUNK(l, bs, idx)->l_entry;
}
/*
* Decompression Entry - lzjb & lz4
*/
extern grub_err_t lzjb_decompress (void *, void *, grub_size_t, grub_size_t);
extern grub_err_t lz4_decompress (void *, void *, grub_size_t, grub_size_t);
typedef grub_err_t zfs_decomp_func_t (void *s_start, void *d_start,
grub_size_t s_len, grub_size_t d_len);
typedef struct decomp_entry
{
const char *name;
zfs_decomp_func_t *decomp_func;
} decomp_entry_t;
/*
* Signature for checksum functions.
*/
typedef void zio_checksum_t(const void *data, grub_uint64_t size,
grub_zfs_endian_t endian, zio_cksum_t *zcp);
/*
* Information about each checksum function.
*/
typedef struct zio_checksum_info {
zio_checksum_t *ci_func; /* checksum function for each byteorder */
int ci_correctable; /* number of correctable bits */
int ci_eck; /* uses zio embedded checksum? */
const char *ci_name; /* descriptive name */
} zio_checksum_info_t;
typedef struct dnode_end
{
dnode_phys_t dn;
grub_zfs_endian_t endian;
} dnode_end_t;
struct grub_zfs_device_desc
{
enum { DEVICE_LEAF, DEVICE_MIRROR, DEVICE_RAIDZ } type;
grub_uint64_t id;
grub_uint64_t guid;
unsigned ashift;
unsigned max_children_ashift;
/* Valid only for non-leafs. */
unsigned n_children;
struct grub_zfs_device_desc *children;
/* Valid only for RAIDZ. */
unsigned nparity;
/* Valid only for leaf devices. */
grub_device_t dev;
grub_disk_addr_t vdev_phys_sector;
uberblock_t current_uberblock;
int original;
};
struct subvolume
{
dnode_end_t mdn;
grub_uint64_t obj;
grub_uint64_t case_insensitive;
grub_size_t nkeys;
struct
{
grub_crypto_cipher_handle_t cipher;
grub_uint64_t txg;
grub_uint64_t algo;
} *keyring;
};
struct grub_zfs_data
{
/* cache for a file block of the currently zfs_open()-ed file */
char *file_buf;
grub_uint64_t file_start;
grub_uint64_t file_end;
/* cache for a dnode block */
dnode_phys_t *dnode_buf;
dnode_phys_t *dnode_mdn;
grub_uint64_t dnode_start;
grub_uint64_t dnode_end;
grub_zfs_endian_t dnode_endian;
dnode_end_t mos;
dnode_end_t dnode;
struct subvolume subvol;
struct grub_zfs_device_desc *devices_attached;
unsigned n_devices_attached;
unsigned n_devices_allocated;
struct grub_zfs_device_desc *device_original;
uberblock_t current_uberblock;
grub_uint64_t guid;
};
/* Context for grub_zfs_dir. */
struct grub_zfs_dir_ctx
{
grub_fs_dir_hook_t hook;
void *hook_data;
struct grub_zfs_data *data;
};
grub_err_t (*grub_zfs_decrypt) (grub_crypto_cipher_handle_t cipher,
grub_uint64_t algo,
void *nonce,
char *buf, grub_size_t size,
const grub_uint32_t *expected_mac,
grub_zfs_endian_t endian) = NULL;
grub_crypto_cipher_handle_t (*grub_zfs_load_key) (const struct grub_zfs_key *key,
grub_size_t keysize,
grub_uint64_t salt,
grub_uint64_t algo) = NULL;
/*
* List of pool features that the grub implementation of ZFS supports for
* read. Note that features that are only required for write do not need
* to be listed here since grub opens pools in read-only mode.
*/
#define MAX_SUPPORTED_FEATURE_STRLEN 50
static const char *spa_feature_names[] = {
"org.illumos:lz4_compress",NULL
};
static int
check_feature(const char *name, grub_uint64_t val, struct grub_zfs_dir_ctx *ctx);
static grub_err_t
check_mos_features(dnode_phys_t *mosmdn_phys,grub_zfs_endian_t endian,struct grub_zfs_data* data );
static grub_err_t
zlib_decompress (void *s, void *d,
grub_size_t slen, grub_size_t dlen)
{
if (grub_zlib_decompress (s, slen, 0, d, dlen) == (grub_ssize_t) dlen)
return GRUB_ERR_NONE;
if (!grub_errno)
grub_error (GRUB_ERR_BAD_COMPRESSED_DATA,
"premature end of compressed");
return grub_errno;
}
static grub_err_t
zle_decompress (void *s, void *d,
grub_size_t slen, grub_size_t dlen)
{
grub_uint8_t *iptr, *optr;
grub_size_t clen;
for (iptr = s, optr = d; iptr < (grub_uint8_t *) s + slen
&& optr < (grub_uint8_t *) d + dlen;)
{
if (*iptr & 0x80)
clen = ((*iptr) & 0x7f) + 0x41;
else
clen = ((*iptr) & 0x3f) + 1;
if ((grub_ssize_t) clen > (grub_uint8_t *) d + dlen - optr)
clen = (grub_uint8_t *) d + dlen - optr;
if (*iptr & 0x40 || *iptr & 0x80)
{
grub_memset (optr, 0, clen);
iptr++;
optr += clen;
continue;
}
if ((grub_ssize_t) clen > (grub_uint8_t *) s + slen - iptr - 1)
clen = (grub_uint8_t *) s + slen - iptr - 1;
grub_memcpy (optr, iptr + 1, clen);
optr += clen;
iptr += clen + 1;
}
if (optr < (grub_uint8_t *) d + dlen)
grub_memset (optr, 0, (grub_uint8_t *) d + dlen - optr);
return GRUB_ERR_NONE;
}
static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
{"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
{"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
{"off", NULL}, /* ZIO_COMPRESS_OFF */
{"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
{"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
{"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
{"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
{"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
{"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
{"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
{"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
{"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
{"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
{"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
{"zle", zle_decompress}, /* ZIO_COMPRESS_ZLE */
{"lz4", lz4_decompress}, /* ZIO_COMPRESS_LZ4 */
};
static grub_err_t zio_read_data (blkptr_t * bp, grub_zfs_endian_t endian,
void *buf, struct grub_zfs_data *data);
/*
* Our own version of log2(). Same thing as highbit()-1.
*/
static int
zfs_log2 (grub_uint64_t num)
{
int i = 0;
while (num > 1)
{
i++;
num = num >> 1;
}
return i;
}
/* Checksum Functions */
static void
zio_checksum_off (const void *buf __attribute__ ((unused)),
grub_uint64_t size __attribute__ ((unused)),
grub_zfs_endian_t endian __attribute__ ((unused)),
zio_cksum_t * zcp)
{
ZIO_SET_CHECKSUM (zcp, 0, 0, 0, 0);
}
/* Checksum Table and Values */
static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
{NULL, 0, 0, "inherit"},
{NULL, 0, 0, "on"},
{zio_checksum_off, 0, 0, "off"},
{zio_checksum_SHA256, 1, 1, "label"},
{zio_checksum_SHA256, 1, 1, "gang_header"},
{NULL, 0, 0, "zilog"},
{fletcher_2, 0, 0, "fletcher2"},
{fletcher_4, 1, 0, "fletcher4"},
{zio_checksum_SHA256, 1, 0, "SHA256"},
{NULL, 0, 0, "zilog2"},
{zio_checksum_SHA256, 1, 0, "SHA256+MAC"},
};
/*
* zio_checksum_verify: Provides support for checksum verification.
*
* Fletcher2, Fletcher4, and SHA256 are supported.
*
*/
static grub_err_t
zio_checksum_verify (zio_cksum_t zc, grub_uint32_t checksum,
grub_zfs_endian_t endian,
char *buf, grub_size_t size)
{
zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
zio_checksum_info_t *ci = &zio_checksum_table[checksum];
zio_cksum_t actual_cksum, expected_cksum;
if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL)
{
grub_dprintf ("zfs", "unknown checksum function %d\n", checksum);
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"unknown checksum function %d", checksum);
}
if (ci->ci_eck)
{
expected_cksum = zec->zec_cksum;
zec->zec_cksum = zc;
ci->ci_func (buf, size, endian, &actual_cksum);
zec->zec_cksum = expected_cksum;
zc = expected_cksum;
}
else
ci->ci_func (buf, size, endian, &actual_cksum);
if (grub_memcmp (&actual_cksum, &zc,
checksum != ZIO_CHECKSUM_SHA256_MAC ? 32 : 20) != 0)
{
grub_dprintf ("zfs", "checksum %s verification failed\n", ci->ci_name);
grub_dprintf ("zfs", "actual checksum %016llx %016llx %016llx %016llx\n",
(unsigned long long) actual_cksum.zc_word[0],
(unsigned long long) actual_cksum.zc_word[1],
(unsigned long long) actual_cksum.zc_word[2],
(unsigned long long) actual_cksum.zc_word[3]);
grub_dprintf ("zfs", "expected checksum %016llx %016llx %016llx %016llx\n",
(unsigned long long) zc.zc_word[0],
(unsigned long long) zc.zc_word[1],
(unsigned long long) zc.zc_word[2],
(unsigned long long) zc.zc_word[3]);
return grub_error (GRUB_ERR_BAD_FS, N_("checksum verification failed"));
}
return GRUB_ERR_NONE;
}
/*
* vdev_uberblock_compare takes two uberblock structures and returns an integer
* indicating the more recent of the two.
* Return Value = 1 if ub2 is more recent
* Return Value = -1 if ub1 is more recent
* The most recent uberblock is determined using its transaction number and
* timestamp. The uberblock with the highest transaction number is
* considered "newer". If the transaction numbers of the two blocks match, the
* timestamps are compared to determine the "newer" of the two.
*/
static int
vdev_uberblock_compare (uberblock_t * ub1, uberblock_t * ub2)
{
grub_zfs_endian_t ub1_endian, ub2_endian;
if (grub_zfs_to_cpu64 (ub1->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
== UBERBLOCK_MAGIC)
ub1_endian = GRUB_ZFS_LITTLE_ENDIAN;
else
ub1_endian = GRUB_ZFS_BIG_ENDIAN;
if (grub_zfs_to_cpu64 (ub2->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
== UBERBLOCK_MAGIC)
ub2_endian = GRUB_ZFS_LITTLE_ENDIAN;
else
ub2_endian = GRUB_ZFS_BIG_ENDIAN;
if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian)
< grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))
return -1;
if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian)
> grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian))
return 1;
if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian)
< grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian))
return -1;
if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian)
> grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian))
return 1;
return 0;
}
/*
* Three pieces of information are needed to verify an uberblock: the magic
* number, the version number, and the checksum.
*
* Currently Implemented: version number, magic number, checksum
*
*/
static grub_err_t
uberblock_verify (uberblock_phys_t * ub, grub_uint64_t offset,
grub_size_t s)
{
uberblock_t *uber = &ub->ubp_uberblock;
grub_err_t err;
grub_zfs_endian_t endian = GRUB_ZFS_UNKNOWN_ENDIAN;
zio_cksum_t zc;
if (grub_zfs_to_cpu64 (uber->ub_magic, GRUB_ZFS_LITTLE_ENDIAN)
== UBERBLOCK_MAGIC
&& SPA_VERSION_IS_SUPPORTED(grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_LITTLE_ENDIAN)))
endian = GRUB_ZFS_LITTLE_ENDIAN;
if (grub_zfs_to_cpu64 (uber->ub_magic, GRUB_ZFS_BIG_ENDIAN) == UBERBLOCK_MAGIC
&& SPA_VERSION_IS_SUPPORTED(grub_zfs_to_cpu64 (uber->ub_version, GRUB_ZFS_BIG_ENDIAN)))
endian = GRUB_ZFS_BIG_ENDIAN;
if (endian == GRUB_ZFS_UNKNOWN_ENDIAN)
return grub_error (GRUB_ERR_BAD_FS, "invalid uberblock magic");
grub_memset (&zc, 0, sizeof (zc));
zc.zc_word[0] = grub_cpu_to_zfs64 (offset, endian);
err = zio_checksum_verify (zc, ZIO_CHECKSUM_LABEL, endian,
(char *) ub, s);
return err;
}
/*
* Find the best uberblock.
* Return:
* Success - Pointer to the best uberblock.
* Failure - NULL
*/
static uberblock_phys_t *
find_bestub (uberblock_phys_t * ub_array,
const struct grub_zfs_device_desc *desc)
{
uberblock_phys_t *ubbest = NULL, *ubptr;
int i;
grub_disk_addr_t offset;
grub_err_t err = GRUB_ERR_NONE;
int ub_shift;
ub_shift = desc->ashift;
if (ub_shift < VDEV_UBERBLOCK_SHIFT)
ub_shift = VDEV_UBERBLOCK_SHIFT;
for (i = 0; i < (VDEV_UBERBLOCK_RING >> ub_shift); i++)
{
offset = (desc->vdev_phys_sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE
+ (i << ub_shift);
ubptr = (uberblock_phys_t *) ((grub_properly_aligned_t *) ub_array
+ ((i << ub_shift)
/ sizeof (grub_properly_aligned_t)));
err = uberblock_verify (ubptr, offset, 1 << ub_shift);
if (err)
{
grub_errno = GRUB_ERR_NONE;
continue;
}
if (ubbest == NULL
|| vdev_uberblock_compare (&(ubptr->ubp_uberblock),
&(ubbest->ubp_uberblock)) > 0)
ubbest = ubptr;
}
if (!ubbest)
grub_errno = err;
return ubbest;
}
static inline grub_size_t
get_psize (blkptr_t * bp, grub_zfs_endian_t endian)
{
return ((((grub_zfs_to_cpu64 ((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
<< SPA_MINBLOCKSHIFT);
}
static grub_uint64_t
dva_get_offset (const dva_t *dva, grub_zfs_endian_t endian)
{
grub_dprintf ("zfs", "dva=%llx, %llx\n",
(unsigned long long) dva->dva_word[0],
(unsigned long long) dva->dva_word[1]);
return grub_zfs_to_cpu64 ((dva)->dva_word[1],
endian) << SPA_MINBLOCKSHIFT;
}
static grub_err_t
zfs_fetch_nvlist (struct grub_zfs_device_desc *diskdesc, char **nvlist)
{
grub_err_t err;
*nvlist = 0;
if (!diskdesc->dev)
return grub_error (GRUB_ERR_BUG, "member drive unknown");
*nvlist = grub_malloc (VDEV_PHYS_SIZE);
/* Read in the vdev name-value pair list (112K). */
err = grub_disk_read (diskdesc->dev->disk, diskdesc->vdev_phys_sector, 0,
VDEV_PHYS_SIZE, *nvlist);
if (err)
{
grub_free (*nvlist);
*nvlist = 0;
return err;
}
return GRUB_ERR_NONE;
}
static grub_err_t
fill_vdev_info_real (struct grub_zfs_data *data,
const char *nvlist,
struct grub_zfs_device_desc *fill,
struct grub_zfs_device_desc *insert,
int *inserted,
unsigned ashift)
{
char *type;
type = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_TYPE);
if (!type)
return grub_errno;
if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "id", &(fill->id)))
{
grub_free (type);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id");
}
if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "guid", &(fill->guid)))
{
grub_free (type);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id");
}
{
grub_uint64_t par;
if (grub_zfs_nvlist_lookup_uint64 (nvlist, "ashift", &par))
fill->ashift = par;
else if (ashift != 0xffffffff)
fill->ashift = ashift;
else
{
grub_free (type);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find ashift");
}
}
fill->max_children_ashift = 0;
if (grub_strcmp (type, VDEV_TYPE_DISK) == 0
|| grub_strcmp (type, VDEV_TYPE_FILE) == 0)
{
fill->type = DEVICE_LEAF;
if (!fill->dev && fill->guid == insert->guid)
{
fill->dev = insert->dev;
fill->vdev_phys_sector = insert->vdev_phys_sector;
fill->current_uberblock = insert->current_uberblock;
fill->original = insert->original;
if (!data->device_original)
data->device_original = fill;
insert->ashift = fill->ashift;
*inserted = 1;
}
grub_free (type);
return GRUB_ERR_NONE;
}
if (grub_strcmp (type, VDEV_TYPE_MIRROR) == 0
|| grub_strcmp (type, VDEV_TYPE_RAIDZ) == 0)
{
int nelm, i;
if (grub_strcmp (type, VDEV_TYPE_MIRROR) == 0)
fill->type = DEVICE_MIRROR;
else
{
grub_uint64_t par;
fill->type = DEVICE_RAIDZ;
if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "nparity", &par))
{
grub_free (type);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find raidz parity");
}
fill->nparity = par;
}
nelm = grub_zfs_nvlist_lookup_nvlist_array_get_nelm (nvlist,
ZPOOL_CONFIG_CHILDREN);
if (nelm <= 0)
{
grub_free (type);
return grub_error (GRUB_ERR_BAD_FS, "incorrect mirror VDEV");
}
if (!fill->children)
{
fill->n_children = nelm;
fill->children = grub_zalloc (fill->n_children
* sizeof (fill->children[0]));
}
for (i = 0; i < nelm; i++)
{
char *child;
grub_err_t err;
child = grub_zfs_nvlist_lookup_nvlist_array
(nvlist, ZPOOL_CONFIG_CHILDREN, i);
err = fill_vdev_info_real (data, child, &fill->children[i], insert,
inserted, fill->ashift);
grub_free (child);
if (err)
{
grub_free (type);
return err;
}
if (fill->children[i].ashift > fill->max_children_ashift)
fill->max_children_ashift = fill->children[i].ashift;
}
grub_free (type);
return GRUB_ERR_NONE;
}
grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "vdev %s isn't supported", type);
grub_free (type);
return grub_errno;
}
static grub_err_t
fill_vdev_info (struct grub_zfs_data *data,
char *nvlist, struct grub_zfs_device_desc *diskdesc,
int *inserted)
{
grub_uint64_t id;
unsigned i;
*inserted = 0;
if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "id", &id))
return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id");
for (i = 0; i < data->n_devices_attached; i++)
if (data->devices_attached[i].id == id)
return fill_vdev_info_real (data, nvlist, &data->devices_attached[i],
diskdesc, inserted, 0xffffffff);
data->n_devices_attached++;
if (data->n_devices_attached > data->n_devices_allocated)
{
void *tmp;
data->n_devices_allocated = 2 * data->n_devices_attached + 1;
data->devices_attached
= grub_realloc (tmp = data->devices_attached,
data->n_devices_allocated
* sizeof (data->devices_attached[0]));
if (!data->devices_attached)
{
data->devices_attached = tmp;
return grub_errno;
}
}
grub_memset (&data->devices_attached[data->n_devices_attached - 1],
0, sizeof (data->devices_attached[data->n_devices_attached - 1]));
return fill_vdev_info_real (data, nvlist,
&data->devices_attached[data->n_devices_attached - 1],
diskdesc, inserted, 0xffffffff);
}
/*
* For a given XDR packed nvlist, verify the first 4 bytes and move on.
*
* An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
*
* encoding method/host endian (4 bytes)
* nvl_version (4 bytes)
* nvl_nvflag (4 bytes)
* encoded nvpairs:
* encoded size of the nvpair (4 bytes)
* decoded size of the nvpair (4 bytes)
* name string size (4 bytes)
* name string data (sizeof(NV_ALIGN4(string))
* data type (4 bytes)
* # of elements in the nvpair (4 bytes)
* data
* 2 zero's for the last nvpair
* (end of the entire list) (8 bytes)
*
*/
/*
* The nvlist_next_nvpair() function returns a handle to the next nvpair in the
* list following nvpair. If nvpair is NULL, the first pair is returned. If
* nvpair is the last pair in the nvlist, NULL is returned.
*/
static const char *
nvlist_next_nvpair (const char *nvl, const char *nvpair)
{
const char *nvp;
int encode_size;
int name_len;
if (nvl == NULL)
return NULL;
if (nvpair == NULL)
{
/* skip over header, nvl_version and nvl_nvflag */
nvpair = nvl + 4 * 3;
}
else
{
/* skip to the next nvpair */
encode_size = grub_be_to_cpu32 (grub_get_unaligned32(nvpair));
nvpair += encode_size;
/*If encode_size equals 0 nvlist_next_nvpair would return
* the same pair received in input, leading to an infinite loop.
* If encode_size is less than 0, this will move the pointer
* backwards, *possibly* examinining two times the same nvpair
* and potentially getting into an infinite loop. */
if(encode_size <= 0)
{
grub_dprintf ("zfs", "nvpair with size <= 0\n");
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
return NULL;
}
}
/* 8 bytes of 0 marks the end of the list */
if (grub_get_unaligned64 (nvpair) == 0)
return NULL;
/*consistency checks*/
if (nvpair + 4 * 3 >= nvl + VDEV_PHYS_SIZE)
{
grub_dprintf ("zfs", "nvlist overflow\n");
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
return NULL;
}
encode_size = grub_be_to_cpu32 (grub_get_unaligned32(nvpair));
nvp = nvpair + 4*2;
name_len = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
nvp += 4;
nvp = nvp + ((name_len + 3) & ~3); // align
if (nvp + 4 >= nvl + VDEV_PHYS_SIZE
|| encode_size < 0
|| nvp + 4 + encode_size > nvl + VDEV_PHYS_SIZE)
{
grub_dprintf ("zfs", "nvlist overflow\n");
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
return NULL;
}
/* end consistency checks */
return nvpair;
}
/*
* This function returns 0 on success and 1 on failure. On success, a string
* containing the name of nvpair is saved in buf.
*/
static int
nvpair_name (const char *nvp, char **buf, grub_size_t *buflen)
{
/* skip over encode/decode size */
nvp += 4 * 2;
*buf = (char *) (nvp + 4);
*buflen = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
return 0;
}
/*
* This function retrieves the value of the nvpair in the form of enumerated
* type data_type_t.
*/
static int
nvpair_type (const char *nvp)
{
int name_len, type;
/* skip over encode/decode size */
nvp += 4 * 2;
/* skip over name_len */
name_len = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
nvp += 4;
/* skip over name */
nvp = nvp + ((name_len + 3) & ~3); /* align */
type = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
return type;
}
static int
nvpair_value (const char *nvp,char **val,
grub_size_t *size_out, grub_size_t *nelm_out)
{
int name_len,nelm,encode_size;
/* skip over encode/decode size */
encode_size = grub_be_to_cpu32 (grub_get_unaligned32(nvp));
nvp += 8;
/* skip over name_len */
name_len = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
nvp += 4;
/* skip over name */
nvp = nvp + ((name_len + 3) & ~3); /* align */
/* skip over type */
nvp += 4;
nelm = grub_be_to_cpu32 (grub_get_unaligned32 (nvp));
nvp +=4;
if (nelm < 1)
{
grub_error (GRUB_ERR_BAD_FS, "empty nvpair");
return 0;
}
*val = (char *) nvp;
*size_out = encode_size;
if (nelm_out)
*nelm_out = nelm;
return 1;
}
/*
* Check the disk label information and retrieve needed vdev name-value pairs.
*
*/
static grub_err_t
check_pool_label (struct grub_zfs_data *data,
struct grub_zfs_device_desc *diskdesc,
int *inserted, int original)
{
grub_uint64_t pool_state, txg = 0;
char *nvlist,*features;
#if 0
char *nv;
#endif
grub_uint64_t poolguid;
grub_uint64_t version;
int found;
grub_err_t err;
grub_zfs_endian_t endian;
vdev_phys_t *phys;
zio_cksum_t emptycksum;
*inserted = 0;
err = zfs_fetch_nvlist (diskdesc, &nvlist);
if (err)
return err;
phys = (vdev_phys_t*) nvlist;
if (grub_zfs_to_cpu64 (phys->vp_zbt.zec_magic,
GRUB_ZFS_LITTLE_ENDIAN)
== ZEC_MAGIC)
endian = GRUB_ZFS_LITTLE_ENDIAN;
else if (grub_zfs_to_cpu64 (phys->vp_zbt.zec_magic,
GRUB_ZFS_BIG_ENDIAN)
== ZEC_MAGIC)
endian = GRUB_ZFS_BIG_ENDIAN;
else
{
grub_free (nvlist);
return grub_error (GRUB_ERR_BAD_FS,
"bad vdev_phys_t.vp_zbt.zec_magic number");
}
/* Now check the integrity of the vdev_phys_t structure though checksum. */
ZIO_SET_CHECKSUM(&emptycksum, diskdesc->vdev_phys_sector << 9, 0, 0, 0);
err = zio_checksum_verify (emptycksum, ZIO_CHECKSUM_LABEL, endian,
nvlist, VDEV_PHYS_SIZE);
if (err)
return err;
grub_dprintf ("zfs", "check 2 passed\n");
found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_STATE,
&pool_state);
if (! found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_STATE " not found");
return grub_errno;
}
grub_dprintf ("zfs", "check 3 passed\n");
if (pool_state == POOL_STATE_DESTROYED)
{
grub_free (nvlist);
return grub_error (GRUB_ERR_BAD_FS, "zpool is marked as destroyed");
}
grub_dprintf ("zfs", "check 4 passed\n");
found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_TXG, &txg);
if (!found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_TXG " not found");
return grub_errno;
}
grub_dprintf ("zfs", "check 6 passed\n");
/* not an active device */
if (txg == 0)
{
grub_free (nvlist);
return grub_error (GRUB_ERR_BAD_FS, "zpool isn't active");
}
grub_dprintf ("zfs", "check 7 passed\n");
found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_VERSION,
&version);
if (! found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_VERSION " not found");
return grub_errno;
}
grub_dprintf ("zfs", "check 8 passed\n");
if (!SPA_VERSION_IS_SUPPORTED(version))
{
grub_free (nvlist);
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"too new version %llu > %llu",
(unsigned long long) version,
(unsigned long long) SPA_VERSION_BEFORE_FEATURES);
}
grub_dprintf ("zfs", "check 9 passed\n");
found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_GUID,
&(diskdesc->guid));
if (! found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_GUID " not found");
return grub_errno;
}
found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_GUID,
&poolguid);
if (! found)
{
grub_free (nvlist);
if (! grub_errno)
grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_GUID " not found");
return grub_errno;
}
grub_dprintf ("zfs", "check 11 passed\n");
if (original)
data->guid = poolguid;
if (data->guid != poolguid)
return grub_error (GRUB_ERR_BAD_FS, "another zpool");
{
char *nv;
nv = grub_zfs_nvlist_lookup_nvlist (nvlist, ZPOOL_CONFIG_VDEV_TREE);
if (!nv)
{
grub_free (nvlist);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev tree");
}
err = fill_vdev_info (data, nv, diskdesc, inserted);
if (err)
{
grub_free (nv);
grub_free (nvlist);
return err;
}
grub_free (nv);
}
grub_dprintf ("zfs", "check 10 passed\n");
features = grub_zfs_nvlist_lookup_nvlist(nvlist,
ZPOOL_CONFIG_FEATURES_FOR_READ);
if (features)
{
const char *nvp=NULL;
char name[MAX_SUPPORTED_FEATURE_STRLEN + 1];
char *nameptr;
grub_size_t namelen;
while ((nvp = nvlist_next_nvpair(features, nvp)) != NULL)
{
nvpair_name (nvp, &nameptr, &namelen);
if(namelen > MAX_SUPPORTED_FEATURE_STRLEN)
namelen = MAX_SUPPORTED_FEATURE_STRLEN;
grub_memcpy (name, nameptr, namelen);
name[namelen] = '\0';
grub_dprintf("zfs","str=%s\n",name);
if (check_feature(name,1, NULL) != 0)
{
grub_dprintf("zfs","feature missing in check_pool_label:%s\n",name);
err= grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET," check_pool_label missing feature '%s' for read",name);
return err;
}
}
}
grub_dprintf ("zfs", "check 12 passed (feature flags)\n");
grub_free (nvlist);
return GRUB_ERR_NONE;
}
static grub_err_t
scan_disk (grub_device_t dev, struct grub_zfs_data *data,
int original, int *inserted)
{
int label = 0;
uberblock_phys_t *ub_array, *ubbest = NULL;
vdev_boot_header_t *bh;
grub_err_t err;
int vdevnum;
struct grub_zfs_device_desc desc;
ub_array = grub_malloc (VDEV_UBERBLOCK_RING);
if (!ub_array)
return grub_errno;
bh = grub_malloc (VDEV_BOOT_HEADER_SIZE);
if (!bh)
{
grub_free (ub_array);
return grub_errno;
}
vdevnum = VDEV_LABELS;
desc.dev = dev;
desc.original = original;
/* Don't check back labels on CDROM. */
if (grub_disk_get_size (dev->disk) == GRUB_DISK_SIZE_UNKNOWN)
vdevnum = VDEV_LABELS / 2;
for (label = 0; ubbest == NULL && label < vdevnum; label++)
{
desc.vdev_phys_sector
= label * (sizeof (vdev_label_t) >> SPA_MINBLOCKSHIFT)
+ ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SPA_MINBLOCKSHIFT)
+ (label < VDEV_LABELS / 2 ? 0 :
ALIGN_DOWN (grub_disk_get_size (dev->disk), sizeof (vdev_label_t))
- VDEV_LABELS * (sizeof (vdev_label_t) >> SPA_MINBLOCKSHIFT));
/* Read in the uberblock ring (128K). */
err = grub_disk_read (dev->disk, desc.vdev_phys_sector
+ (VDEV_PHYS_SIZE >> SPA_MINBLOCKSHIFT),
0, VDEV_UBERBLOCK_RING, (char *) ub_array);
if (err)
{
grub_errno = GRUB_ERR_NONE;
continue;
}
grub_dprintf ("zfs", "label ok %d\n", label);
err = check_pool_label (data, &desc, inserted, original);
if (err || !*inserted)
{
grub_errno = GRUB_ERR_NONE;
continue;
}
ubbest = find_bestub (ub_array, &desc);
if (!ubbest)
{
grub_dprintf ("zfs", "No uberblock found\n");
grub_errno = GRUB_ERR_NONE;
continue;
}
grub_memmove (&(desc.current_uberblock),
&ubbest->ubp_uberblock, sizeof (uberblock_t));
if (original)
grub_memmove (&(data->current_uberblock),
&ubbest->ubp_uberblock, sizeof (uberblock_t));
#if 0
if (find_best_root &&
vdev_uberblock_compare (&ubbest->ubp_uberblock,
&(current_uberblock)) <= 0)
continue;
#endif
grub_free (ub_array);
grub_free (bh);
return GRUB_ERR_NONE;
}
grub_free (ub_array);
grub_free (bh);
return grub_error (GRUB_ERR_BAD_FS, "couldn't find a valid label");
}
/* Helper for scan_devices. */
static int
scan_devices_iter (const char *name, void *hook_data)
{
struct grub_zfs_data *data = hook_data;
grub_device_t dev;
grub_err_t err;
int inserted;
dev = grub_device_open (name);
if (!dev)
return 0;
if (!dev->disk)
{
grub_device_close (dev);
return 0;
}
err = scan_disk (dev, data, 0, &inserted);
if (err == GRUB_ERR_BAD_FS)
{
grub_device_close (dev);
grub_errno = GRUB_ERR_NONE;
return 0;
}
if (err)
{
grub_device_close (dev);
grub_print_error ();
return 0;
}
if (!inserted)
grub_device_close (dev);
return 0;
}
static grub_err_t
scan_devices (struct grub_zfs_data *data)
{
grub_device_iterate (scan_devices_iter, data);
return GRUB_ERR_NONE;
}
/* x**y. */
static grub_uint8_t powx[255 * 2];
/* Such an s that x**s = y */
static int powx_inv[256];
static const grub_uint8_t poly = 0x1d;
/* perform the operation a ^= b * (x ** (known_idx * recovery_pow) ) */
static inline void
xor_out (grub_uint8_t *a, const grub_uint8_t *b, grub_size_t s,
unsigned known_idx, unsigned recovery_pow)
{
unsigned add;
/* Simple xor. */
if (known_idx == 0 || recovery_pow == 0)
{
grub_crypto_xor (a, a, b, s);
return;
}
add = (known_idx * recovery_pow) % 255;
for (;s--; b++, a++)
if (*b)
*a ^= powx[powx_inv[*b] + add];
}
static inline grub_uint8_t
gf_mul (grub_uint8_t a, grub_uint8_t b)
{
if (a == 0 || b == 0)
return 0;
return powx[powx_inv[a] + powx_inv[b]];
}
#define MAX_NBUFS 4
static grub_err_t
recovery (grub_uint8_t *bufs[4], grub_size_t s, const int nbufs,
const unsigned *powers,
const unsigned *idx)
{
grub_dprintf ("zfs", "recovering %u buffers\n", nbufs);
/* Now we have */
/* b_i = sum (r_j* (x ** (powers[i] * idx[j])))*/
/* Let's invert the matrix in question. */
switch (nbufs)
{
/* Easy: r_0 = bufs[0] / (x << (powers[i] * idx[j])). */
case 1:
{
int add;
grub_uint8_t *a;
if (powers[0] == 0 || idx[0] == 0)
return GRUB_ERR_NONE;
add = 255 - ((powers[0] * idx[0]) % 255);
for (a = bufs[0]; s--; a++)
if (*a)
*a = powx[powx_inv[*a] + add];
return GRUB_ERR_NONE;
}
/* Case 2x2: Let's use the determinant formula. */
case 2:
{
grub_uint8_t det, det_inv;
grub_uint8_t matrixinv[2][2];
unsigned i;
/* The determinant is: */
det = (powx[(powers[0] * idx[0] + powers[1] * idx[1]) % 255]
^ powx[(powers[0] * idx[1] + powers[1] * idx[0]) % 255]);
if (det == 0)
return grub_error (GRUB_ERR_BAD_FS, "singular recovery matrix");
det_inv = powx[255 - powx_inv[det]];
matrixinv[0][0] = gf_mul (powx[(powers[1] * idx[1]) % 255], det_inv);
matrixinv[1][1] = gf_mul (powx[(powers[0] * idx[0]) % 255], det_inv);
matrixinv[0][1] = gf_mul (powx[(powers[0] * idx[1]) % 255], det_inv);
matrixinv[1][0] = gf_mul (powx[(powers[1] * idx[0]) % 255], det_inv);
for (i = 0; i < s; i++)
{
grub_uint8_t b0, b1;
b0 = bufs[0][i];
b1 = bufs[1][i];
bufs[0][i] = (gf_mul (b0, matrixinv[0][0])
^ gf_mul (b1, matrixinv[0][1]));
bufs[1][i] = (gf_mul (b0, matrixinv[1][0])
^ gf_mul (b1, matrixinv[1][1]));
}
return GRUB_ERR_NONE;
}
/* Otherwise use Gauss. */
case 3:
{
grub_uint8_t matrix1[MAX_NBUFS][MAX_NBUFS], matrix2[MAX_NBUFS][MAX_NBUFS];
int i, j, k;
for (i = 0; i < nbufs; i++)
for (j = 0; j < nbufs; j++)
matrix1[i][j] = powx[(powers[i] * idx[j]) % 255];
for (i = 0; i < nbufs; i++)
for (j = 0; j < nbufs; j++)
matrix2[i][j] = 0;
for (i = 0; i < nbufs; i++)
matrix2[i][i] = 1;
for (i = 0; i < nbufs; i++)
{
grub_uint8_t mul;
for (j = i; j < nbufs; j++)
if (matrix1[i][j])
break;
if (j == nbufs)
return grub_error (GRUB_ERR_BAD_FS, "singular recovery matrix");
if (j != i)
{
int xchng;
xchng = j;
for (j = 0; j < nbufs; j++)
{
grub_uint8_t t;
t = matrix1[xchng][j];
matrix1[xchng][j] = matrix1[i][j];
matrix1[i][j] = t;
}
for (j = 0; j < nbufs; j++)
{
grub_uint8_t t;
t = matrix2[xchng][j];
matrix2[xchng][j] = matrix2[i][j];
matrix2[i][j] = t;
}
}
mul = powx[255 - powx_inv[matrix1[i][i]]];
for (j = 0; j < nbufs; j++)
matrix1[i][j] = gf_mul (matrix1[i][j], mul);
for (j = 0; j < nbufs; j++)
matrix2[i][j] = gf_mul (matrix2[i][j], mul);
for (j = i + 1; j < nbufs; j++)
{
mul = matrix1[j][i];
for (k = 0; k < nbufs; k++)
matrix1[j][k] ^= gf_mul (matrix1[i][k], mul);
for (k = 0; k < nbufs; k++)
matrix2[j][k] ^= gf_mul (matrix2[i][k], mul);
}
}
for (i = nbufs - 1; i >= 0; i--)
{
for (j = 0; j < i; j++)
{
grub_uint8_t mul;
mul = matrix1[j][i];
for (k = 0; k < nbufs; k++)
matrix1[j][k] ^= gf_mul (matrix1[i][k], mul);
for (k = 0; k < nbufs; k++)
matrix2[j][k] ^= gf_mul (matrix2[i][k], mul);
}
}
for (i = 0; i < (int) s; i++)
{
grub_uint8_t b[MAX_NBUFS];
for (j = 0; j < nbufs; j++)
b[j] = bufs[j][i];
for (j = 0; j < nbufs; j++)
{
bufs[j][i] = 0;
for (k = 0; k < nbufs; k++)
bufs[j][i] ^= gf_mul (matrix2[j][k], b[k]);
}
}
return GRUB_ERR_NONE;
}
default:
return grub_error (GRUB_ERR_BUG, "too big matrix");
}
}
static grub_err_t
read_device (grub_uint64_t offset, struct grub_zfs_device_desc *desc,
grub_size_t len, void *buf)
{
switch (desc->type)
{
case DEVICE_LEAF:
{
grub_uint64_t sector;
sector = DVA_OFFSET_TO_PHYS_SECTOR (offset);
if (!desc->dev)
{
return grub_error (GRUB_ERR_BAD_FS,
N_("couldn't find a necessary member device "
"of multi-device filesystem"));
}
/* read in a data block */
return grub_disk_read (desc->dev->disk, sector, 0, len, buf);
}
case DEVICE_MIRROR:
{
grub_err_t err = GRUB_ERR_NONE;
unsigned i;
if (desc->n_children <= 0)
return grub_error (GRUB_ERR_BAD_FS,
"non-positive number of mirror children");
for (i = 0; i < desc->n_children; i++)
{
err = read_device (offset, &desc->children[i],
len, buf);
if (!err)
break;
grub_errno = GRUB_ERR_NONE;
}
grub_errno = err;
return err;
}
case DEVICE_RAIDZ:
{
unsigned c = 0;
grub_uint64_t high;
grub_uint64_t devn;
grub_uint64_t m;
grub_uint32_t s, orig_s;
void *orig_buf = buf;
grub_size_t orig_len = len;
grub_uint8_t *recovery_buf[4];
grub_size_t recovery_len[4];
unsigned recovery_idx[4];
unsigned failed_devices = 0;
int idx, orig_idx;
if (desc->nparity < 1 || desc->nparity > 3)
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"raidz%d is not supported", desc->nparity);
if (desc->n_children <= desc->nparity || desc->n_children < 1)
return grub_error(GRUB_ERR_BAD_FS, "too little devices for given parity");
orig_s = (((len + (1 << desc->ashift) - 1) >> desc->ashift)
+ (desc->n_children - desc->nparity) - 1);
s = orig_s;
high = grub_divmod64 ((offset >> desc->ashift),
desc->n_children, &m);
if (desc->nparity == 2)
c = 2;
if (desc->nparity == 3)
c = 3;
if (((len + (1 << desc->ashift) - 1) >> desc->ashift)
>= (desc->n_children - desc->nparity))
idx = (desc->n_children - desc->nparity - 1);
else
idx = ((len + (1 << desc->ashift) - 1) >> desc->ashift) - 1;
orig_idx = idx;
while (len > 0)
{
grub_size_t csize;
grub_uint32_t bsize;
grub_err_t err;
bsize = s / (desc->n_children - desc->nparity);
if (desc->nparity == 1
&& ((offset >> (desc->ashift + 20 - desc->max_children_ashift))
& 1) == c)
c++;
high = grub_divmod64 ((offset >> desc->ashift) + c,
desc->n_children, &devn);
csize = bsize << desc->ashift;
if (csize > len)
csize = len;
grub_dprintf ("zfs", "RAIDZ mapping 0x%" PRIxGRUB_UINT64_T
"+%u (%" PRIxGRUB_SIZE ", %" PRIxGRUB_UINT32_T
") -> (0x%" PRIxGRUB_UINT64_T ", 0x%"
PRIxGRUB_UINT64_T ")\n",
offset >> desc->ashift, c, len, bsize, high,
devn);
err = read_device ((high << desc->ashift)
| (offset & ((1 << desc->ashift) - 1)),
&desc->children[devn],
csize, buf);
if (err && failed_devices < desc->nparity)
{
recovery_buf[failed_devices] = buf;
recovery_len[failed_devices] = csize;
recovery_idx[failed_devices] = idx;
failed_devices++;
grub_errno = err = 0;
}
if (err)
return err;
c++;
idx--;
s--;
buf = (char *) buf + csize;
len -= csize;
}
if (failed_devices)
{
unsigned redundancy_pow[4];
unsigned cur_redundancy_pow = 0;
unsigned n_redundancy = 0;
unsigned i, j;
grub_err_t err;
/* Compute mul. x**s has a period of 255. */
if (powx[0] == 0)
{
grub_uint8_t cur = 1;
for (i = 0; i < 255; i++)
{
powx[i] = cur;
powx[i + 255] = cur;
powx_inv[cur] = i;
if (cur & 0x80)
cur = (cur << 1) ^ poly;
else
cur <<= 1;
}
}
/* Read redundancy data. */
for (n_redundancy = 0, cur_redundancy_pow = 0;
n_redundancy < failed_devices;
cur_redundancy_pow++)
{
high = grub_divmod64 ((offset >> desc->ashift)
+ cur_redundancy_pow
+ ((desc->nparity == 1)
&& ((offset >> (desc->ashift + 20
- desc->max_children_ashift))
& 1)),
desc->n_children, &devn);
err = read_device ((high << desc->ashift)
| (offset & ((1 << desc->ashift) - 1)),
&desc->children[devn],
recovery_len[n_redundancy],
recovery_buf[n_redundancy]);
/* Ignore error if we may still have enough devices. */
if (err && n_redundancy + desc->nparity - cur_redundancy_pow - 1
>= failed_devices)
{
grub_errno = GRUB_ERR_NONE;
continue;
}
if (err)
return err;
redundancy_pow[n_redundancy] = cur_redundancy_pow;
n_redundancy++;
}
/* Now xor-our the parts we already know. */
buf = orig_buf;
len = orig_len;
s = orig_s;
idx = orig_idx;
while (len > 0)
{
grub_size_t csize;
csize = ((s / (desc->n_children - desc->nparity))
<< desc->ashift);
if (csize > len)
csize = len;
for (j = 0; j < failed_devices; j++)
if (buf == recovery_buf[j])
break;
if (j == failed_devices)
for (j = 0; j < failed_devices; j++)
xor_out (recovery_buf[j], buf,
csize < recovery_len[j] ? csize : recovery_len[j],
idx, redundancy_pow[j]);
s--;
buf = (char *) buf + csize;
len -= csize;
idx--;
}
for (i = 0; i < failed_devices
&& recovery_len[i] == recovery_len[0];
i++);
/* Since the chunks have variable length handle the last block
separately. */
if (i != failed_devices)
{
grub_uint8_t *tmp_recovery_buf[4];
for (j = 0; j < i; j++)
tmp_recovery_buf[j] = recovery_buf[j] + recovery_len[failed_devices - 1];
err = recovery (tmp_recovery_buf, recovery_len[0] - recovery_len[failed_devices - 1], i, redundancy_pow,
recovery_idx);
if (err)
return err;
}
err = recovery (recovery_buf, recovery_len[failed_devices - 1],
failed_devices, redundancy_pow, recovery_idx);
if (err)
return err;
}
return GRUB_ERR_NONE;
}
}
return grub_error (GRUB_ERR_BAD_FS, "unsupported device type");
}
static grub_err_t
read_dva (const dva_t *dva,
grub_zfs_endian_t endian, struct grub_zfs_data *data,
void *buf, grub_size_t len)
{
grub_uint64_t offset;
unsigned i;
grub_err_t err = 0;
int try = 0;
offset = dva_get_offset (dva, endian);
for (try = 0; try < 2; try++)
{
for (i = 0; i < data->n_devices_attached; i++)
if (data->devices_attached[i].id == DVA_GET_VDEV (dva))
{
err = read_device (offset, &data->devices_attached[i], len, buf);
if (!err)
return GRUB_ERR_NONE;
break;
}
if (try == 1)
break;
err = scan_devices (data);
if (err)
return err;
}
if (!err)
return grub_error (GRUB_ERR_BAD_FS, "unknown device %d",
(int) DVA_GET_VDEV (dva));
return err;
}
/*
* Read a block of data based on the gang block address dva,
* and put its data in buf.
*
*/
static grub_err_t
zio_read_gang (blkptr_t * bp, grub_zfs_endian_t endian, dva_t * dva, void *buf,
struct grub_zfs_data *data)
{
zio_gbh_phys_t *zio_gb;
unsigned i;
grub_err_t err;
zio_cksum_t zc;
grub_memset (&zc, 0, sizeof (zc));
zio_gb = grub_malloc (SPA_GANGBLOCKSIZE);
if (!zio_gb)
return grub_errno;
grub_dprintf ("zfs", endian == GRUB_ZFS_LITTLE_ENDIAN ? "little-endian gang\n"
:"big-endian gang\n");
err = read_dva (dva, endian, data, zio_gb, SPA_GANGBLOCKSIZE);
if (err)
{
grub_free (zio_gb);
return err;
}
/* XXX */
/* self checksuming the gang block header */
ZIO_SET_CHECKSUM (&zc, DVA_GET_VDEV (dva),
dva_get_offset (dva, endian), bp->blk_birth, 0);
err = zio_checksum_verify (zc, ZIO_CHECKSUM_GANG_HEADER, endian,
(char *) zio_gb, SPA_GANGBLOCKSIZE);
if (err)
{
grub_free (zio_gb);
return err;
}
endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1;
for (i = 0; i < SPA_GBH_NBLKPTRS; i++)
{
if (zio_gb->zg_blkptr[i].blk_birth == 0)
continue;
err = zio_read_data (&zio_gb->zg_blkptr[i], endian, buf, data);
if (err)
{
grub_free (zio_gb);
return err;
}
buf = (char *) buf + get_psize (&zio_gb->zg_blkptr[i], endian);
}
grub_free (zio_gb);
return GRUB_ERR_NONE;
}
/*
* Read in a block of raw data to buf.
*/
static grub_err_t
zio_read_data (blkptr_t * bp, grub_zfs_endian_t endian, void *buf,
struct grub_zfs_data *data)
{
int i, psize;
grub_err_t err = GRUB_ERR_NONE;
psize = get_psize (bp, endian);
/* pick a good dva from the block pointer */
for (i = 0; i < SPA_DVAS_PER_BP; i++)
{
if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
continue;
if ((grub_zfs_to_cpu64 (bp->blk_dva[i].dva_word[1], endian)>>63) & 1)
err = zio_read_gang (bp, endian, &bp->blk_dva[i], buf, data);
else
err = read_dva (&bp->blk_dva[i], endian, data, buf, psize);
if (!err)
return GRUB_ERR_NONE;
grub_errno = GRUB_ERR_NONE;
}
if (!err)
err = grub_error (GRUB_ERR_BAD_FS, "couldn't find a valid DVA");
grub_errno = err;
return err;
}
/*
* Read in a block of data, verify its checksum, decompress if needed,
* and put the uncompressed data in buf.
*/
static grub_err_t
zio_read (blkptr_t *bp, grub_zfs_endian_t endian, void **buf,
grub_size_t *size, struct grub_zfs_data *data)
{
grub_size_t lsize, psize;
unsigned int comp, encrypted;
char *compbuf = NULL;
grub_err_t err;
zio_cksum_t zc = bp->blk_cksum;
grub_uint32_t checksum;
*buf = NULL;
checksum = (grub_zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
comp = (grub_zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
encrypted = ((grub_zfs_to_cpu64((bp)->blk_prop, endian) >> 60) & 3);
lsize = (BP_IS_HOLE(bp) ? 0 :
(((grub_zfs_to_cpu64 ((bp)->blk_prop, endian) & 0xffff) + 1)
<< SPA_MINBLOCKSHIFT));
psize = get_psize (bp, endian);
if (size)
*size = lsize;
if (comp >= ZIO_COMPRESS_FUNCTIONS)
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"compression algorithm %u not supported\n", (unsigned int) comp);
if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL)
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"compression algorithm %s not supported\n", decomp_table[comp].name);
if (comp != ZIO_COMPRESS_OFF)
{
/* It's not really necessary to align to 16, just for safety. */
compbuf = grub_malloc (ALIGN_UP (psize, 16));
if (! compbuf)
return grub_errno;
}
else
compbuf = *buf = grub_malloc (lsize);
grub_dprintf ("zfs", "endian = %d\n", endian);
err = zio_read_data (bp, endian, compbuf, data);
if (err)
{
grub_free (compbuf);
*buf = NULL;
return err;
}
grub_memset (compbuf, 0, ALIGN_UP (psize, 16) - psize);
err = zio_checksum_verify (zc, checksum, endian,
compbuf, psize);
if (err)
{
grub_dprintf ("zfs", "incorrect checksum\n");
grub_free (compbuf);
*buf = NULL;
return err;
}
if (encrypted)
{
if (!grub_zfs_decrypt)
err = grub_error (GRUB_ERR_BAD_FS,
N_("module `%s' isn't loaded"),
"zfscrypt");
else
{
unsigned i, besti = 0;
grub_uint64_t bestval = 0;
for (i = 0; i < data->subvol.nkeys; i++)
if (data->subvol.keyring[i].txg <= grub_zfs_to_cpu64 (bp->blk_birth,
endian)
&& data->subvol.keyring[i].txg > bestval)
{
besti = i;
bestval = data->subvol.keyring[i].txg;
}
if (bestval == 0)
{
grub_free (compbuf);
*buf = NULL;
grub_dprintf ("zfs", "no key for txg %" PRIxGRUB_UINT64_T "\n",
grub_zfs_to_cpu64 (bp->blk_birth,
endian));
return grub_error (GRUB_ERR_BAD_FS, "no key found in keychain");
}
grub_dprintf ("zfs", "using key %u (%" PRIxGRUB_UINT64_T
", %p) for txg %" PRIxGRUB_UINT64_T "\n",
besti, data->subvol.keyring[besti].txg,
data->subvol.keyring[besti].cipher,
grub_zfs_to_cpu64 (bp->blk_birth,
endian));
err = grub_zfs_decrypt (data->subvol.keyring[besti].cipher,
data->subvol.keyring[besti].algo,
&(bp)->blk_dva[encrypted],
compbuf, psize, zc.zc_mac,
endian);
}
if (err)
{
grub_free (compbuf);
*buf = NULL;
return err;
}
}
if (comp != ZIO_COMPRESS_OFF)
{
*buf = grub_malloc (lsize);
if (!*buf)
{
grub_free (compbuf);
return grub_errno;
}
err = decomp_table[comp].decomp_func (compbuf, *buf, psize, lsize);
grub_free (compbuf);
if (err)
{
grub_free (*buf);
*buf = NULL;
return err;
}
}
return GRUB_ERR_NONE;
}
/*
* Get the block from a block id.
* push the block onto the stack.
*
*/
static grub_err_t
dmu_read (dnode_end_t * dn, grub_uint64_t blkid, void **buf,
grub_zfs_endian_t *endian_out, struct grub_zfs_data *data)
{
int level;
grub_off_t idx;
blkptr_t *bp_array = dn->dn.dn_blkptr;
int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
blkptr_t *bp;
void *tmpbuf = 0;
grub_zfs_endian_t endian;
grub_err_t err = GRUB_ERR_NONE;
bp = grub_malloc (sizeof (blkptr_t));
if (!bp)
return grub_errno;
endian = dn->endian;
for (level = dn->dn.dn_nlevels - 1; level >= 0; level--)
{
grub_dprintf ("zfs", "endian = %d\n", endian);
idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
*bp = bp_array[idx];
if (bp_array != dn->dn.dn_blkptr)
{
grub_free (bp_array);
bp_array = 0;
}
if (BP_IS_HOLE (bp))
{
grub_size_t size = grub_zfs_to_cpu16 (dn->dn.dn_datablkszsec,
dn->endian)
<< SPA_MINBLOCKSHIFT;
*buf = grub_malloc (size);
if (!*buf)
{
err = grub_errno;
break;
}
grub_memset (*buf, 0, size);
endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1;
break;
}
if (level == 0)
{
grub_dprintf ("zfs", "endian = %d\n", endian);
err = zio_read (bp, endian, buf, 0, data);
endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1;
break;
}
grub_dprintf ("zfs", "endian = %d\n", endian);
err = zio_read (bp, endian, &tmpbuf, 0, data);
endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1;
if (err)
break;
bp_array = tmpbuf;
}
if (bp_array != dn->dn.dn_blkptr)
grub_free (bp_array);
if (endian_out)
*endian_out = endian;
grub_free (bp);
return err;
}
/*
* mzap_lookup: Looks up property described by "name" and returns the value
* in "value".
*/
static grub_err_t
mzap_lookup (mzap_phys_t * zapobj, grub_zfs_endian_t endian,
int objsize, const char *name, grub_uint64_t * value,
int case_insensitive)
{
int i, chunks;
mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
chunks = objsize / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++)
{
if (case_insensitive ? (grub_strcasecmp (mzap_ent[i].mze_name, name) == 0)
: (grub_strcmp (mzap_ent[i].mze_name, name) == 0))
{
*value = grub_zfs_to_cpu64 (mzap_ent[i].mze_value, endian);
return GRUB_ERR_NONE;
}
}
return grub_error (GRUB_ERR_FILE_NOT_FOUND, N_("file `%s' not found"), name);
}
static int
mzap_iterate (mzap_phys_t * zapobj, grub_zfs_endian_t endian, int objsize,
int (*hook) (const char *name, grub_uint64_t val,
struct grub_zfs_dir_ctx *ctx),
struct grub_zfs_dir_ctx *ctx)
{
int i, chunks;
mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
chunks = objsize / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++)
{
grub_dprintf ("zfs", "zap: name = %s, value = %llx, cd = %x\n",
mzap_ent[i].mze_name, (long long)mzap_ent[i].mze_value,
(int)mzap_ent[i].mze_cd);
if (hook (mzap_ent[i].mze_name,
grub_zfs_to_cpu64 (mzap_ent[i].mze_value, endian), ctx))
return 1;
}
return 0;
}
static grub_uint64_t
zap_hash (grub_uint64_t salt, const char *name,
int case_insensitive)
{
static grub_uint64_t table[256];
const grub_uint8_t *cp;
grub_uint8_t c;
grub_uint64_t crc = salt;
if (table[128] == 0)
{
grub_uint64_t *ct;
int i, j;
for (i = 0; i < 256; i++)
{
for (ct = table + i, *ct = i, j = 8; j > 0; j--)
*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
}
}
if (case_insensitive)
for (cp = (const grub_uint8_t *) name; (c = *cp) != '\0'; cp++)
crc = (crc >> 8) ^ table[(crc ^ grub_toupper (c)) & 0xFF];
else
for (cp = (const grub_uint8_t *) name; (c = *cp) != '\0'; cp++)
crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
/*
* Only use 28 bits, since we need 4 bits in the cookie for the
* collision differentiator. We MUST use the high bits, since
* those are the onces that we first pay attention to when
* chosing the bucket.
*/
crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
return crc;
}
/*
* Only to be used on 8-bit arrays.
* array_len is actual len in bytes (not encoded le_value_length).
* buf is null-terminated.
*/
static inline int
name_cmp (const char *s1, const char *s2, grub_size_t n,
int case_insensitive)
{
const char *t1 = (const char *) s1;
const char *t2 = (const char *) s2;
if (!case_insensitive)
return grub_memcmp (t1, t2, n);
while (n--)
{
if (grub_toupper (*t1) != grub_toupper (*t2))
return (int) grub_toupper (*t1) - (int) grub_toupper (*t2);
t1++;
t2++;
}
return 0;
}
/* XXX */
static int
zap_leaf_array_equal (zap_leaf_phys_t * l, grub_zfs_endian_t endian,
int blksft, int chunk, grub_size_t array_len,
const char *buf, int case_insensitive)
{
grub_size_t bseen = 0;
while (bseen < array_len)
{
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK (l, blksft, chunk)->l_array;
grub_size_t toread = array_len - bseen;
if (toread > ZAP_LEAF_ARRAY_BYTES)
toread = ZAP_LEAF_ARRAY_BYTES;
if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft))
return 0;
if (name_cmp ((char *) la->la_array, buf + bseen, toread,
case_insensitive) != 0)
break;
chunk = grub_zfs_to_cpu16 (la->la_next, endian);
bseen += toread;
}
return (bseen == array_len);
}
/* XXX */
static grub_err_t
zap_leaf_array_get (zap_leaf_phys_t * l, grub_zfs_endian_t endian, int blksft,
int chunk, grub_size_t array_len, char *buf)
{
grub_size_t bseen = 0;
while (bseen < array_len)
{
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK (l, blksft, chunk)->l_array;
grub_size_t toread = array_len - bseen;
if (toread > ZAP_LEAF_ARRAY_BYTES)
toread = ZAP_LEAF_ARRAY_BYTES;
if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft))
/* Don't use grub_error because this error is to be ignored. */
return GRUB_ERR_BAD_FS;
grub_memcpy (buf + bseen,la->la_array, toread);
chunk = grub_zfs_to_cpu16 (la->la_next, endian);
bseen += toread;
}
return GRUB_ERR_NONE;
}
/*
* Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
* value for the property "name".
*
*/
/* XXX */
static grub_err_t
zap_leaf_lookup (zap_leaf_phys_t * l, grub_zfs_endian_t endian,
int blksft, grub_uint64_t h,
const char *name, grub_uint64_t * value,
int case_insensitive)
{
grub_uint16_t chunk;
struct zap_leaf_entry *le;
/* Verify if this is a valid leaf block */
if (grub_zfs_to_cpu64 (l->l_hdr.lh_block_type, endian) != ZBT_LEAF)
return grub_error (GRUB_ERR_BAD_FS, "invalid leaf type");
if (grub_zfs_to_cpu32 (l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC)
return grub_error (GRUB_ERR_BAD_FS, "invalid leaf magic");
for (chunk = grub_zfs_to_cpu16 (l->l_hash[LEAF_HASH (blksft, h, l)], endian);
chunk != CHAIN_END; chunk = grub_zfs_to_cpu16 (le->le_next, endian))
{
if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft))
return grub_error (GRUB_ERR_BAD_FS, "invalid chunk number");
le = ZAP_LEAF_ENTRY (l, blksft, chunk);
/* Verify the chunk entry */
if (le->le_type != ZAP_CHUNK_ENTRY)
return grub_error (GRUB_ERR_BAD_FS, "invalid chunk entry");
if (grub_zfs_to_cpu64 (le->le_hash,endian) != h)
continue;
grub_dprintf ("zfs", "fzap: length %d\n", (int) le->le_name_length);
if (zap_leaf_array_equal (l, endian, blksft,
grub_zfs_to_cpu16 (le->le_name_chunk,endian),
grub_zfs_to_cpu16 (le->le_name_length, endian),
name, case_insensitive))
{
struct zap_leaf_array *la;
if (le->le_int_size != 8 || grub_zfs_to_cpu16 (le->le_value_length,
endian) != 1)
return grub_error (GRUB_ERR_BAD_FS, "invalid leaf chunk entry");
/* get the uint64_t property value */
la = &ZAP_LEAF_CHUNK (l, blksft, le->le_value_chunk)->l_array;
*value = grub_be_to_cpu64 (la->la_array64);
return GRUB_ERR_NONE;
}
}
return grub_error (GRUB_ERR_FILE_NOT_FOUND, N_("file `%s' not found"), name);
}
/* Verify if this is a fat zap header block */
static grub_err_t
zap_verify (zap_phys_t *zap, grub_zfs_endian_t endian)
{
if (grub_zfs_to_cpu64 (zap->zap_magic, endian) != (grub_uint64_t) ZAP_MAGIC)
return grub_error (GRUB_ERR_BAD_FS, "bad ZAP magic");
if (zap->zap_salt == 0)
return grub_error (GRUB_ERR_BAD_FS, "bad ZAP salt");
return GRUB_ERR_NONE;
}
/*
* Fat ZAP lookup
*
*/
/* XXX */
static grub_err_t
fzap_lookup (dnode_end_t * zap_dnode, zap_phys_t * zap,
const char *name, grub_uint64_t * value,
struct grub_zfs_data *data, int case_insensitive)
{
void *l;
grub_uint64_t hash, idx, blkid;
int blksft = zfs_log2 (grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << DNODE_SHIFT);
grub_err_t err;
grub_zfs_endian_t leafendian;
err = zap_verify (zap, zap_dnode->endian);
if (err)
return err;
hash = zap_hash (zap->zap_salt, name, case_insensitive);
/* get block id from index */
if (zap->zap_ptrtbl.zt_numblks != 0)
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"external pointer tables not supported");
idx = ZAP_HASH_IDX (hash, zap->zap_ptrtbl.zt_shift);
blkid = grub_zfs_to_cpu64 (((grub_uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))], zap_dnode->endian);
/* Get the leaf block */
if ((1U << blksft) < sizeof (zap_leaf_phys_t))
return grub_error (GRUB_ERR_BAD_FS, "ZAP leaf is too small");
err = dmu_read (zap_dnode, blkid, &l, &leafendian, data);
if (err)
return err;
err = zap_leaf_lookup (l, leafendian, blksft, hash, name, value,
case_insensitive);
grub_free (l);
return err;
}
/* XXX */
static int
fzap_iterate (dnode_end_t * zap_dnode, zap_phys_t * zap,
grub_size_t name_elem_length,
int (*hook) (const void *name, grub_size_t name_length,
const void *val_in,
grub_size_t nelem, grub_size_t elemsize,
void *data),
void *hook_data, struct grub_zfs_data *data)
{
zap_leaf_phys_t *l;
void *l_in;
grub_uint64_t idx, idx2, blkid;
grub_uint16_t chunk;
int blksft = zfs_log2 (grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << DNODE_SHIFT);
grub_err_t err;
grub_zfs_endian_t endian;
if (zap_verify (zap, zap_dnode->endian))
return 0;
/* get block id from index */
if (zap->zap_ptrtbl.zt_numblks != 0)
{
grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"external pointer tables not supported");
return 0;
}
/* Get the leaf block */
if ((1U << blksft) < sizeof (zap_leaf_phys_t))
{
grub_error (GRUB_ERR_BAD_FS, "ZAP leaf is too small");
return 0;
}
for (idx = 0; idx < (1ULL << zap->zap_ptrtbl.zt_shift); idx++)
{
blkid = grub_zfs_to_cpu64 (((grub_uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))],
zap_dnode->endian);
for (idx2 = 0; idx2 < idx; idx2++)
if (blkid == grub_zfs_to_cpu64 (((grub_uint64_t *) zap)[idx2 + (1 << (blksft - 3 - 1))],
zap_dnode->endian))
break;
if (idx2 != idx)
continue;
err = dmu_read (zap_dnode, blkid, &l_in, &endian, data);
l = l_in;
if (err)
{
grub_errno = GRUB_ERR_NONE;
continue;
}
/* Verify if this is a valid leaf block */
if (grub_zfs_to_cpu64 (l->l_hdr.lh_block_type, endian) != ZBT_LEAF)
{
grub_free (l);
continue;
}
if (grub_zfs_to_cpu32 (l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC)
{
grub_free (l);
continue;
}
for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS (blksft); chunk++)
{
char *buf;
struct zap_leaf_entry *le;
char *val;
grub_size_t val_length;
le = ZAP_LEAF_ENTRY (l, blksft, chunk);
/* Verify the chunk entry */
if (le->le_type != ZAP_CHUNK_ENTRY)
continue;
buf = grub_malloc (grub_zfs_to_cpu16 (le->le_name_length, endian)
* name_elem_length + 1);
if (zap_leaf_array_get (l, endian, blksft,
grub_zfs_to_cpu16 (le->le_name_chunk,
endian),
grub_zfs_to_cpu16 (le->le_name_length,
endian)
* name_elem_length, buf))
{
grub_free (buf);
continue;
}
buf[le->le_name_length * name_elem_length] = 0;
val_length = ((int) le->le_value_length
* (int) le->le_int_size);
val = grub_malloc (grub_zfs_to_cpu16 (val_length, endian));
if (zap_leaf_array_get (l, endian, blksft,
grub_zfs_to_cpu16 (le->le_value_chunk,
endian),
val_length, val))
{
grub_free (buf);
grub_free (val);
continue;
}
if (hook (buf, le->le_name_length,
val, le->le_value_length, le->le_int_size, hook_data))
{
grub_free (l);
return 1;
}
grub_free (buf);
grub_free (val);
}
grub_free (l);
}
return 0;
}
/*
* Read in the data of a zap object and find the value for a matching
* property name.
*
*/
static grub_err_t
zap_lookup (dnode_end_t * zap_dnode, const char *name, grub_uint64_t *val,
struct grub_zfs_data *data, int case_insensitive)
{
grub_uint64_t block_type;
int size;
void *zapbuf;
grub_err_t err;
grub_zfs_endian_t endian;
grub_dprintf ("zfs", "looking for '%s'\n", name);
/* Read in the first block of the zap object data. */
size = grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec,
zap_dnode->endian) << SPA_MINBLOCKSHIFT;
err = dmu_read (zap_dnode, 0, &zapbuf, &endian, data);
if (err)
return err;
block_type = grub_zfs_to_cpu64 (*((grub_uint64_t *) zapbuf), endian);
grub_dprintf ("zfs", "zap read\n");
if (block_type == ZBT_MICRO)
{
grub_dprintf ("zfs", "micro zap\n");
err = mzap_lookup (zapbuf, endian, size, name, val,
case_insensitive);
grub_dprintf ("zfs", "returned %d\n", err);
grub_free (zapbuf);
return err;
}
else if (block_type == ZBT_HEADER)
{
grub_dprintf ("zfs", "fat zap\n");
/* this is a fat zap */
err = fzap_lookup (zap_dnode, zapbuf, name, val, data,
case_insensitive);
grub_dprintf ("zfs", "returned %d\n", err);
grub_free (zapbuf);
return err;
}
return grub_error (GRUB_ERR_BAD_FS, "unknown ZAP type");
}
/* Context for zap_iterate_u64. */
struct zap_iterate_u64_ctx
{
int (*hook) (const char *, grub_uint64_t, struct grub_zfs_dir_ctx *);
struct grub_zfs_dir_ctx *dir_ctx;
};
/* Helper for zap_iterate_u64. */
static int
zap_iterate_u64_transform (const void *name,
grub_size_t namelen __attribute__ ((unused)),
const void *val_in,
grub_size_t nelem,
grub_size_t elemsize,
void *data)
{
struct zap_iterate_u64_ctx *ctx = data;
if (elemsize != sizeof (grub_uint64_t) || nelem != 1)
return 0;
return ctx->hook (name, grub_be_to_cpu64 (*(const grub_uint64_t *) val_in),
ctx->dir_ctx);
}
static int
zap_iterate_u64 (dnode_end_t * zap_dnode,
int (*hook) (const char *name, grub_uint64_t val,
struct grub_zfs_dir_ctx *ctx),
struct grub_zfs_data *data, struct grub_zfs_dir_ctx *ctx)
{
grub_uint64_t block_type;
int size;
void *zapbuf;
grub_err_t err;
int ret;
grub_zfs_endian_t endian;
/* Read in the first block of the zap object data. */
size = grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
err = dmu_read (zap_dnode, 0, &zapbuf, &endian, data);
if (err)
return 0;
block_type = grub_zfs_to_cpu64 (*((grub_uint64_t *) zapbuf), endian);
grub_dprintf ("zfs", "zap iterate\n");
if (block_type == ZBT_MICRO)
{
grub_dprintf ("zfs", "micro zap\n");
ret = mzap_iterate (zapbuf, endian, size, hook, ctx);
grub_free (zapbuf);
return ret;
}
else if (block_type == ZBT_HEADER)
{
struct zap_iterate_u64_ctx transform_ctx = {
.hook = hook,
.dir_ctx = ctx
};
grub_dprintf ("zfs", "fat zap\n");
/* this is a fat zap */
ret = fzap_iterate (zap_dnode, zapbuf, 1,
zap_iterate_u64_transform, &transform_ctx, data);
grub_free (zapbuf);
return ret;
}
grub_error (GRUB_ERR_BAD_FS, "unknown ZAP type");
return 0;
}
static int
zap_iterate (dnode_end_t * zap_dnode,
grub_size_t nameelemlen,
int (*hook) (const void *name, grub_size_t namelen,
const void *val_in,
grub_size_t nelem, grub_size_t elemsize,
void *data),
void *hook_data, struct grub_zfs_data *data)
{
grub_uint64_t block_type;
void *zapbuf;
grub_err_t err;
int ret;
grub_zfs_endian_t endian;
/* Read in the first block of the zap object data. */
err = dmu_read (zap_dnode, 0, &zapbuf, &endian, data);
if (err)
return 0;
block_type = grub_zfs_to_cpu64 (*((grub_uint64_t *) zapbuf), endian);
grub_dprintf ("zfs", "zap iterate\n");
if (block_type == ZBT_MICRO)
{
grub_error (GRUB_ERR_BAD_FS, "micro ZAP where FAT ZAP expected");
return 0;
}
if (block_type == ZBT_HEADER)
{
grub_dprintf ("zfs", "fat zap\n");
/* this is a fat zap */
ret = fzap_iterate (zap_dnode, zapbuf, nameelemlen, hook, hook_data,
data);
grub_free (zapbuf);
return ret;
}
grub_error (GRUB_ERR_BAD_FS, "unknown ZAP type");
return 0;
}
/*
* Get the dnode of an object number from the metadnode of an object set.
*
* Input
* mdn - metadnode to get the object dnode
* objnum - object number for the object dnode
* buf - data buffer that holds the returning dnode
*/
static grub_err_t
dnode_get (dnode_end_t * mdn, grub_uint64_t objnum, grub_uint8_t type,
dnode_end_t * buf, struct grub_zfs_data *data)
{
grub_uint64_t blkid, blksz; /* the block id this object dnode is in */
int epbs; /* shift of number of dnodes in a block */
int idx; /* index within a block */
void *dnbuf;
grub_err_t err;
grub_zfs_endian_t endian;
blksz = grub_zfs_to_cpu16 (mdn->dn.dn_datablkszsec,
mdn->endian) << SPA_MINBLOCKSHIFT;
epbs = zfs_log2 (blksz) - DNODE_SHIFT;
blkid = objnum >> epbs;
idx = objnum & ((1 << epbs) - 1);
if (data->dnode_buf != NULL && grub_memcmp (data->dnode_mdn, mdn,
sizeof (*mdn)) == 0
&& objnum >= data->dnode_start && objnum < data->dnode_end)
{
grub_memmove (&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
buf->endian = data->dnode_endian;
if (type && buf->dn.dn_type != type)
return grub_error(GRUB_ERR_BAD_FS, "incorrect dnode type");
return GRUB_ERR_NONE;
}
grub_dprintf ("zfs", "endian = %d, blkid=%llx\n", mdn->endian,
(unsigned long long) blkid);
err = dmu_read (mdn, blkid, &dnbuf, &endian, data);
if (err)
return err;
grub_dprintf ("zfs", "alive\n");
grub_free (data->dnode_buf);
grub_free (data->dnode_mdn);
data->dnode_mdn = grub_malloc (sizeof (*mdn));
if (! data->dnode_mdn)
{
grub_errno = GRUB_ERR_NONE;
data->dnode_buf = 0;
}
else
{
grub_memcpy (data->dnode_mdn, mdn, sizeof (*mdn));
data->dnode_buf = dnbuf;
data->dnode_start = blkid << epbs;
data->dnode_end = (blkid + 1) << epbs;
data->dnode_endian = endian;
}
grub_memmove (&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
buf->endian = endian;
if (type && buf->dn.dn_type != type)
return grub_error(GRUB_ERR_BAD_FS, "incorrect dnode type");
return GRUB_ERR_NONE;
}
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
/*
* Get the file dnode for a given file name where mdn is the meta dnode
* for this ZFS object set. When found, place the file dnode in dn.
* The 'path' argument will be mangled.
*
*/
static grub_err_t
dnode_get_path (struct subvolume *subvol, const char *path_in, dnode_end_t *dn,
struct grub_zfs_data *data)
{
grub_uint64_t objnum, version;
char *cname, ch;
grub_err_t err = GRUB_ERR_NONE;
char *path, *path_buf;
struct dnode_chain
{
struct dnode_chain *next;
dnode_end_t dn;
};
struct dnode_chain *dnode_path = 0, *dn_new, *root;
dn_new = grub_malloc (sizeof (*dn_new));
if (! dn_new)
return grub_errno;
dn_new->next = 0;
dnode_path = root = dn_new;
err = dnode_get (&subvol->mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
&(dnode_path->dn), data);
if (err)
{
grub_free (dn_new);
return err;
}
err = zap_lookup (&(dnode_path->dn), ZPL_VERSION_STR, &version,
data, 0);
if (err)
{
grub_free (dn_new);
return err;
}
if (version > ZPL_VERSION)
{
grub_free (dn_new);
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "too new ZPL version");
}
err = zap_lookup (&(dnode_path->dn), "casesensitivity",
&subvol->case_insensitive,
data, 0);
if (err == GRUB_ERR_FILE_NOT_FOUND)
{
grub_errno = GRUB_ERR_NONE;
subvol->case_insensitive = 0;
}
err = zap_lookup (&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data, 0);
if (err)
{
grub_free (dn_new);
return err;
}
err = dnode_get (&subvol->mdn, objnum, 0, &(dnode_path->dn), data);
if (err)
{
grub_free (dn_new);
return err;
}
path = path_buf = grub_strdup (path_in);
if (!path_buf)
{
grub_free (dn_new);
return grub_errno;
}
while (1)
{
/* skip leading slashes */
while (*path == '/')
path++;
if (!*path)
break;
/* get the next component name */
cname = path;
while (*path && *path != '/')
path++;
/* Skip dot. */
if (cname + 1 == path && cname[0] == '.')
continue;
/* Handle double dot. */
if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')
{
if (dn_new->next)
{
dn_new = dnode_path;
dnode_path = dn_new->next;
grub_free (dn_new);
}
else
{
err = grub_error (GRUB_ERR_FILE_NOT_FOUND,
"can't resolve ..");
break;
}
continue;
}
ch = *path;
*path = 0; /* ensure null termination */
if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS)
{
grub_free (path_buf);
return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("not a directory"));
}
err = zap_lookup (&(dnode_path->dn), cname, &objnum,
data, subvol->case_insensitive);
if (err)
break;
dn_new = grub_malloc (sizeof (*dn_new));
if (! dn_new)
{
err = grub_errno;
break;
}
dn_new->next = dnode_path;
dnode_path = dn_new;
objnum = ZFS_DIRENT_OBJ (objnum);
err = dnode_get (&subvol->mdn, objnum, 0, &(dnode_path->dn), data);
if (err)
break;
*path = ch;
if (dnode_path->dn.dn.dn_bonustype == DMU_OT_ZNODE
&& ((grub_zfs_to_cpu64(((znode_phys_t *) DN_BONUS (&dnode_path->dn.dn))->zp_mode, dnode_path->dn.endian) >> 12) & 0xf) == 0xa)
{
char *sym_value;
grub_size_t sym_sz;
int free_symval = 0;
char *oldpath = path, *oldpathbuf = path_buf;
sym_value = ((char *) DN_BONUS (&dnode_path->dn.dn) + sizeof (struct znode_phys));
sym_sz = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dnode_path->dn.dn))->zp_size, dnode_path->dn.endian);
if (dnode_path->dn.dn.dn_flags & 1)
{
grub_size_t block;
grub_size_t blksz;
blksz = (grub_zfs_to_cpu16 (dnode_path->dn.dn.dn_datablkszsec,
dnode_path->dn.endian)
<< SPA_MINBLOCKSHIFT);
if (blksz == 0)
return grub_error(GRUB_ERR_BAD_FS, "0-sized block");
sym_value = grub_malloc (sym_sz);
if (!sym_value)
return grub_errno;
for (block = 0; block < (sym_sz + blksz - 1) / blksz; block++)
{
void *t;
grub_size_t movesize;
err = dmu_read (&(dnode_path->dn), block, &t, 0, data);
if (err)
return err;
movesize = sym_sz - block * blksz;
if (movesize > blksz)
movesize = blksz;
grub_memcpy (sym_value + block * blksz, t, movesize);
grub_free (t);
}
free_symval = 1;
}
path = path_buf = grub_malloc (sym_sz + grub_strlen (oldpath) + 1);
if (!path_buf)
{
grub_free (oldpathbuf);
if (free_symval)
grub_free (sym_value);
return grub_errno;
}
grub_memcpy (path, sym_value, sym_sz);
if (free_symval)
grub_free (sym_value);
path [sym_sz] = 0;
grub_memcpy (path + grub_strlen (path), oldpath,
grub_strlen (oldpath) + 1);
grub_free (oldpathbuf);
if (path[0] != '/')
{
dn_new = dnode_path;
dnode_path = dn_new->next;
grub_free (dn_new);
}
else while (dnode_path != root)
{
dn_new = dnode_path;
dnode_path = dn_new->next;
grub_free (dn_new);
}
}
if (dnode_path->dn.dn.dn_bonustype == DMU_OT_SA)
{
void *sahdrp;
int hdrsize;
if (dnode_path->dn.dn.dn_bonuslen != 0)
{
sahdrp = DN_BONUS (&dnode_path->dn.dn);
}
else if (dnode_path->dn.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
{
blkptr_t *bp = &dnode_path->dn.dn.dn_spill;
err = zio_read (bp, dnode_path->dn.endian, &sahdrp, NULL, data);
if (err)
return err;
}
else
{
return grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
}
hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
if (((grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp
+ hdrsize
+ SA_TYPE_OFFSET),
dnode_path->dn.endian) >> 12) & 0xf) == 0xa)
{
char *sym_value = (char *) sahdrp + hdrsize + SA_SYMLINK_OFFSET;
grub_size_t sym_sz =
grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp
+ hdrsize
+ SA_SIZE_OFFSET),
dnode_path->dn.endian);
char *oldpath = path, *oldpathbuf = path_buf;
path = path_buf = grub_malloc (sym_sz + grub_strlen (oldpath) + 1);
if (!path_buf)
{
grub_free (oldpathbuf);
return grub_errno;
}
grub_memcpy (path, sym_value, sym_sz);
path [sym_sz] = 0;
grub_memcpy (path + grub_strlen (path), oldpath,
grub_strlen (oldpath) + 1);
grub_free (oldpathbuf);
if (path[0] != '/')
{
dn_new = dnode_path;
dnode_path = dn_new->next;
grub_free (dn_new);
}
else while (dnode_path != root)
{
dn_new = dnode_path;
dnode_path = dn_new->next;
grub_free (dn_new);
}
}
}
}
if (!err)
grub_memcpy (dn, &(dnode_path->dn), sizeof (*dn));
while (dnode_path)
{
dn_new = dnode_path->next;
grub_free (dnode_path);
dnode_path = dn_new;
}
grub_free (path_buf);
return err;
}
#if 0
/*
* Get the default 'bootfs' property value from the rootpool.
*
*/
static grub_err_t
get_default_bootfsobj (dnode_phys_t * mosmdn, grub_uint64_t * obj,
struct grub_zfs_data *data)
{
grub_uint64_t objnum = 0;
dnode_phys_t *dn;
if (!dn)
return grub_errno;
if ((grub_errno = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT,
DMU_OT_OBJECT_DIRECTORY, dn, data)))
{
grub_free (dn);
return (grub_errno);
}
/*
* find the object number for 'pool_props', and get the dnode
* of the 'pool_props'.
*/
if (zap_lookup (dn, DMU_POOL_PROPS, &objnum, data))
{
grub_free (dn);
return (GRUB_ERR_BAD_FS);
}
if ((grub_errno = dnode_get (mosmdn, objnum, DMU_OT_POOL_PROPS, dn, data)))
{
grub_free (dn);
return (grub_errno);
}
if (zap_lookup (dn, ZPOOL_PROP_BOOTFS, &objnum, data))
{
grub_free (dn);
return (GRUB_ERR_BAD_FS);
}
if (!objnum)
{
grub_free (dn);
return (GRUB_ERR_BAD_FS);
}
*obj = objnum;
return (0);
}
#endif
/*
* Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
* e.g. pool/rootfs, or a given object number (obj), e.g. the object number
* of pool/rootfs.
*
* If no fsname and no obj are given, return the DSL_DIR metadnode.
* If fsname is given, return its metadnode and its matching object number.
* If only obj is given, return the metadnode for this object number.
*
*/
static grub_err_t
get_filesystem_dnode (dnode_end_t * mosmdn, char *fsname,
dnode_end_t * mdn, struct grub_zfs_data *data)
{
grub_uint64_t objnum;
grub_err_t err;
grub_dprintf ("zfs", "endian = %d\n", mosmdn->endian);
err = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT,
DMU_OT_OBJECT_DIRECTORY, mdn, data);
if (err)
return err;
grub_dprintf ("zfs", "alive\n");
err = zap_lookup (mdn, DMU_POOL_ROOT_DATASET, &objnum, data, 0);
if (err)
return err;
grub_dprintf ("zfs", "alive\n");
err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
if (err)
return err;
grub_dprintf ("zfs", "alive\n");
while (*fsname)
{
grub_uint64_t childobj;
char *cname, ch;
while (*fsname == '/')
fsname++;
if (! *fsname || *fsname == '@')
break;
cname = fsname;
while (*fsname && *fsname != '/')
fsname++;
ch = *fsname;
*fsname = 0;
childobj = grub_zfs_to_cpu64 ((((dsl_dir_phys_t *) DN_BONUS (&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
err = dnode_get (mosmdn, childobj,
DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
if (err)
return err;
err = zap_lookup (mdn, cname, &objnum, data, 0);
if (err)
return err;
err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
if (err)
return err;
*fsname = ch;
}
return GRUB_ERR_NONE;
}
static grub_err_t
make_mdn (dnode_end_t * mdn, struct grub_zfs_data *data)
{
void *osp;
blkptr_t *bp;
grub_size_t ospsize;
grub_err_t err;
grub_dprintf ("zfs", "endian = %d\n", mdn->endian);
bp = &(((dsl_dataset_phys_t *) DN_BONUS (&mdn->dn))->ds_bp);
err = zio_read (bp, mdn->endian, &osp, &ospsize, data);
if (err)
return err;
if (ospsize < OBJSET_PHYS_SIZE_V14)
{
grub_free (osp);
return grub_error (GRUB_ERR_BAD_FS, "too small osp");
}
mdn->endian = (grub_zfs_to_cpu64 (bp->blk_prop, mdn->endian)>>63) & 1;
grub_memmove ((char *) &(mdn->dn),
(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
grub_free (osp);
return GRUB_ERR_NONE;
}
/* Context for dnode_get_fullpath. */
struct dnode_get_fullpath_ctx
{
struct subvolume *subvol;
grub_uint64_t salt;
int keyn;
};
/* Helper for dnode_get_fullpath. */
static int
count_zap_keys (const void *name __attribute__ ((unused)),
grub_size_t namelen __attribute__ ((unused)),
const void *val_in __attribute__ ((unused)),
grub_size_t nelem __attribute__ ((unused)),
grub_size_t elemsize __attribute__ ((unused)),
void *data)
{
struct dnode_get_fullpath_ctx *ctx = data;
ctx->subvol->nkeys++;
return 0;
}
/* Helper for dnode_get_fullpath. */
static int
load_zap_key (const void *name, grub_size_t namelen, const void *val_in,
grub_size_t nelem, grub_size_t elemsize, void *data)
{
struct dnode_get_fullpath_ctx *ctx = data;
if (namelen != 1)
{
grub_dprintf ("zfs", "Unexpected key index size %" PRIuGRUB_SIZE "\n",
namelen);
return 0;
}
if (elemsize != 1)
{
grub_dprintf ("zfs", "Unexpected key element size %" PRIuGRUB_SIZE "\n",
elemsize);
return 0;
}
ctx->subvol->keyring[ctx->keyn].txg =
grub_be_to_cpu64 (*(grub_uint64_t *) name);
ctx->subvol->keyring[ctx->keyn].algo =
grub_le_to_cpu64 (*(grub_uint64_t *) val_in);
ctx->subvol->keyring[ctx->keyn].cipher =
grub_zfs_load_key (val_in, nelem, ctx->salt,
ctx->subvol->keyring[ctx->keyn].algo);
ctx->keyn++;
return 0;
}
static grub_err_t
dnode_get_fullpath (const char *fullpath, struct subvolume *subvol,
dnode_end_t * dn, int *isfs,
struct grub_zfs_data *data)
{
char *fsname, *snapname;
const char *ptr_at, *filename;
grub_uint64_t headobj;
grub_uint64_t keychainobj;
grub_err_t err;
ptr_at = grub_strchr (fullpath, '@');
if (! ptr_at)
{
*isfs = 1;
filename = 0;
snapname = 0;
fsname = grub_strdup (fullpath);
}
else
{
const char *ptr_slash = grub_strchr (ptr_at, '/');
*isfs = 0;
fsname = grub_malloc (ptr_at - fullpath + 1);
if (!fsname)
return grub_errno;
grub_memcpy (fsname, fullpath, ptr_at - fullpath);
fsname[ptr_at - fullpath] = 0;
if (ptr_at[1] && ptr_at[1] != '/')
{
snapname = grub_malloc (ptr_slash - ptr_at);
if (!snapname)
{
grub_free (fsname);
return grub_errno;
}
grub_memcpy (snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
snapname[ptr_slash - ptr_at - 1] = 0;
}
else
snapname = 0;
if (ptr_slash)
filename = ptr_slash;
else
filename = "/";
grub_dprintf ("zfs", "fsname = '%s' snapname='%s' filename = '%s'\n",
fsname, snapname, filename);
}
grub_dprintf ("zfs", "alive\n");
err = get_filesystem_dnode (&(data->mos), fsname, dn, data);
if (err)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
grub_dprintf ("zfs", "alive\n");
headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_head_dataset_obj, dn->endian);
grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);
err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &subvol->mdn,
data);
if (err)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);
keychainobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->keychain, dn->endian);
if (grub_zfs_load_key && keychainobj)
{
struct dnode_get_fullpath_ctx ctx = {
.subvol = subvol,
.keyn = 0
};
dnode_end_t keychain_dn, props_dn;
grub_uint64_t propsobj;
propsobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_props_zapobj, dn->endian);
err = dnode_get (&(data->mos), propsobj, DMU_OT_DSL_PROPS,
&props_dn, data);
if (err)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
err = zap_lookup (&props_dn, "salt", &ctx.salt, data, 0);
if (err == GRUB_ERR_FILE_NOT_FOUND)
{
err = 0;
grub_errno = 0;
ctx.salt = 0;
}
if (err)
{
grub_dprintf ("zfs", "failed here\n");
return err;
}
err = dnode_get (&(data->mos), keychainobj, DMU_OT_DSL_KEYCHAIN,
&keychain_dn, data);
if (err)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
subvol->nkeys = 0;
zap_iterate (&keychain_dn, 8, count_zap_keys, &ctx, data);
subvol->keyring = grub_zalloc (subvol->nkeys * sizeof (subvol->keyring[0]));
if (!subvol->keyring)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
zap_iterate (&keychain_dn, 8, load_zap_key, &ctx, data);
}
if (snapname)
{
grub_uint64_t snapobj;
snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&subvol->mdn.dn))->ds_snapnames_zapobj, subvol->mdn.endian);
err = dnode_get (&(data->mos), snapobj,
DMU_OT_DSL_DS_SNAP_MAP, &subvol->mdn, data);
if (!err)
err = zap_lookup (&subvol->mdn, snapname, &headobj, data, 0);
if (!err)
err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET,
&subvol->mdn, data);
if (err)
{
grub_free (fsname);
grub_free (snapname);
return err;
}
}
subvol->obj = headobj;
make_mdn (&subvol->mdn, data);
grub_dprintf ("zfs", "endian = %d\n", subvol->mdn.endian);
if (*isfs)
{
grub_free (fsname);
grub_free (snapname);
return GRUB_ERR_NONE;
}
err = dnode_get_path (subvol, filename, dn, data);
grub_free (fsname);
grub_free (snapname);
return err;
}
static int
nvlist_find_value (const char *nvlist_in, const char *name,
int valtype, char **val,
grub_size_t *size_out, grub_size_t *nelm_out)
{
grub_size_t nvp_name_len, name_len = grub_strlen(name);
int type;
const char *nvpair=NULL,*nvlist=nvlist_in;
char *nvp_name;
/* Verify if the 1st and 2nd byte in the nvlist are valid. */
/* NOTE: independently of what endianness header announces all
subsequent values are big-endian. */
if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
&& nvlist[1] != NV_BIG_ENDIAN))
{
grub_dprintf ("zfs", "incorrect nvlist header\n");
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist");
return 0;
}
/*
* Loop thru the nvpair list
* The XDR representation of an integer is in big-endian byte order.
*/
while ((nvpair=nvlist_next_nvpair(nvlist,nvpair)))
{
nvpair_name(nvpair,&nvp_name, &nvp_name_len);
type = nvpair_type(nvpair);
if (type == valtype
&& (nvp_name_len == name_len
|| (nvp_name_len > name_len && nvp_name[name_len] == '\0'))
&& grub_memcmp (nvp_name, name, name_len) == 0)
{
return nvpair_value(nvpair,val,size_out,nelm_out);
}
}
return 0;
}
int
grub_zfs_nvlist_lookup_uint64 (const char *nvlist, const char *name,
grub_uint64_t * out)
{
char *nvpair;
grub_size_t size;
int found;
found = nvlist_find_value (nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
if (!found)
return 0;
if (size < sizeof (grub_uint64_t))
{
grub_error (GRUB_ERR_BAD_FS, "invalid uint64");
return 0;
}
*out = grub_be_to_cpu64 (grub_get_unaligned64 (nvpair));
return 1;
}
char *
grub_zfs_nvlist_lookup_string (const char *nvlist, const char *name)
{
char *nvpair;
char *ret;
grub_size_t slen;
grub_size_t size;
int found;
found = nvlist_find_value (nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
if (!found)
return 0;
if (size < 4)
{
grub_error (GRUB_ERR_BAD_FS, "invalid string");
return 0;
}
slen = grub_be_to_cpu32 (grub_get_unaligned32 (nvpair));
if (slen > size - 4)
slen = size - 4;
ret = grub_malloc (slen + 1);
if (!ret)
return 0;
grub_memcpy (ret, nvpair + 4, slen);
ret[slen] = 0;
return ret;
}
char *
grub_zfs_nvlist_lookup_nvlist (const char *nvlist, const char *name)
{
char *nvpair;
char *ret;
grub_size_t size;
int found;
found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST, &nvpair,
&size, 0);
if (!found)
return 0;
ret = grub_zalloc (size + 3 * sizeof (grub_uint32_t));
if (!ret)
return 0;
grub_memcpy (ret, nvlist, sizeof (grub_uint32_t));
grub_memcpy (ret + sizeof (grub_uint32_t), nvpair, size);
return ret;
}
int
grub_zfs_nvlist_lookup_nvlist_array_get_nelm (const char *nvlist,
const char *name)
{
char *nvpair;
grub_size_t nelm, size;
int found;
found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair,
&size, &nelm);
if (! found)
return -1;
return nelm;
}
static int
get_nvlist_size (const char *beg, const char *limit)
{
const char *ptr;
grub_uint32_t encode_size;
ptr = beg + 8;
while (ptr < limit
&& (encode_size = grub_be_to_cpu32 (grub_get_unaligned32 (ptr))))
ptr += encode_size; /* goto the next nvpair */
ptr += 8;
return (ptr > limit) ? -1 : (ptr - beg);
}
char *
grub_zfs_nvlist_lookup_nvlist_array (const char *nvlist, const char *name,
grub_size_t index)
{
char *nvpair, *nvpairptr;
int found;
char *ret;
grub_size_t size;
unsigned i;
grub_size_t nelm;
int elemsize = 0;
found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair,
&size, &nelm);
if (!found)
return 0;
if (index >= nelm)
{
grub_error (GRUB_ERR_OUT_OF_RANGE, "trying to lookup past nvlist array");
return 0;
}
nvpairptr = nvpair;
for (i = 0; i < index; i++)
{
int r;
r = get_nvlist_size (nvpairptr, nvpair + size);
if (r < 0)
{
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array");
return NULL;
}
nvpairptr += r;
}
elemsize = get_nvlist_size (nvpairptr, nvpair + size);
if (elemsize < 0)
{
grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array");
return 0;
}
ret = grub_zalloc (elemsize + sizeof (grub_uint32_t));
if (!ret)
return 0;
grub_memcpy (ret, nvlist, sizeof (grub_uint32_t));
grub_memcpy (ret + sizeof (grub_uint32_t), nvpairptr, elemsize);
return ret;
}
static void
unmount_device (struct grub_zfs_device_desc *desc)
{
unsigned i;
switch (desc->type)
{
case DEVICE_LEAF:
if (!desc->original && desc->dev)
grub_device_close (desc->dev);
return;
case DEVICE_RAIDZ:
case DEVICE_MIRROR:
for (i = 0; i < desc->n_children; i++)
unmount_device (&desc->children[i]);
grub_free (desc->children);
return;
}
}
static void
zfs_unmount (struct grub_zfs_data *data)
{
unsigned i;
for (i = 0; i < data->n_devices_attached; i++)
unmount_device (&data->devices_attached[i]);
grub_free (data->devices_attached);
grub_free (data->dnode_buf);
grub_free (data->dnode_mdn);
grub_free (data->file_buf);
for (i = 0; i < data->subvol.nkeys; i++)
grub_crypto_cipher_close (data->subvol.keyring[i].cipher);
grub_free (data->subvol.keyring);
grub_free (data);
}
/*
* zfs_mount() locates a valid uberblock of the root pool and read in its MOS
* to the memory address MOS.
*
*/
static struct grub_zfs_data *
zfs_mount (grub_device_t dev)
{
struct grub_zfs_data *data = 0;
grub_err_t err;
void *osp = 0;
grub_size_t ospsize;
grub_zfs_endian_t ub_endian = GRUB_ZFS_UNKNOWN_ENDIAN;
uberblock_t *ub;
int inserted;
if (! dev->disk)
{
grub_error (GRUB_ERR_BAD_DEVICE, "not a disk");
return 0;
}
data = grub_zalloc (sizeof (*data));
if (!data)
return 0;
#if 0
/* if it's our first time here, zero the best uberblock out */
if (data->best_drive == 0 && data->best_part == 0 && find_best_root)
grub_memset (¤t_uberblock, 0, sizeof (uberblock_t));
#endif
data->n_devices_allocated = 16;
data->devices_attached = grub_malloc (sizeof (data->devices_attached[0])
* data->n_devices_allocated);
data->n_devices_attached = 0;
err = scan_disk (dev, data, 1, &inserted);
if (err)
{
zfs_unmount (data);
return NULL;
}
ub = &(data->current_uberblock);
ub_endian = (grub_zfs_to_cpu64 (ub->ub_magic,
GRUB_ZFS_LITTLE_ENDIAN) == UBERBLOCK_MAGIC
? GRUB_ZFS_LITTLE_ENDIAN : GRUB_ZFS_BIG_ENDIAN);
err = zio_read (&ub->ub_rootbp, ub_endian,
&osp, &ospsize, data);
if (err)
{
zfs_unmount (data);
return NULL;
}
if (ospsize < OBJSET_PHYS_SIZE_V14)
{
grub_error (GRUB_ERR_BAD_FS, "OSP too small");
grub_free (osp);
zfs_unmount (data);
return NULL;
}
if (ub->ub_version >= SPA_VERSION_FEATURES &&
check_mos_features(&((objset_phys_t *) osp)->os_meta_dnode,ub_endian,
data) != 0)
return NULL;
/* Got the MOS. Save it at the memory addr MOS. */
grub_memmove (&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode,
DNODE_SIZE);
data->mos.endian = (grub_zfs_to_cpu64 (ub->ub_rootbp.blk_prop,
ub_endian) >> 63) & 1;
grub_free (osp);
return data;
}
grub_err_t
grub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist)
{
struct grub_zfs_data *zfs;
grub_err_t err;
zfs = zfs_mount (dev);
if (!zfs)
return grub_errno;
err = zfs_fetch_nvlist (zfs->device_original, nvlist);
zfs_unmount (zfs);
return err;
}
static grub_err_t
zfs_label (grub_device_t device, char **label)
{
char *nvlist;
grub_err_t err;
struct grub_zfs_data *data;
data = zfs_mount (device);
if (! data)
return grub_errno;
err = zfs_fetch_nvlist (data->device_original, &nvlist);
if (err)
{
zfs_unmount (data);
return err;
}
*label = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_POOL_NAME);
grub_free (nvlist);
zfs_unmount (data);
return grub_errno;
}
static grub_err_t
zfs_uuid (grub_device_t device, char **uuid)
{
struct grub_zfs_data *data;
*uuid = 0;
data = zfs_mount (device);
if (! data)
return grub_errno;
*uuid = grub_xasprintf ("%016llx", (long long unsigned) data->guid);
zfs_unmount (data);
if (! *uuid)
return grub_errno;
return GRUB_ERR_NONE;
}
static grub_err_t
zfs_mtime (grub_device_t device, grub_int32_t *mt)
{
struct grub_zfs_data *data;
grub_zfs_endian_t ub_endian = GRUB_ZFS_UNKNOWN_ENDIAN;
uberblock_t *ub;
*mt = 0;
data = zfs_mount (device);
if (! data)
return grub_errno;
ub = &(data->current_uberblock);
ub_endian = (grub_zfs_to_cpu64 (ub->ub_magic,
GRUB_ZFS_LITTLE_ENDIAN) == UBERBLOCK_MAGIC
? GRUB_ZFS_LITTLE_ENDIAN : GRUB_ZFS_BIG_ENDIAN);
*mt = grub_zfs_to_cpu64 (ub->ub_timestamp, ub_endian);
zfs_unmount (data);
return GRUB_ERR_NONE;
}
/*
* zfs_open() locates a file in the rootpool by following the
* MOS and places the dnode of the file in the memory address DNODE.
*/
static grub_err_t
grub_zfs_open (struct grub_file *file, const char *fsfilename)
{
struct grub_zfs_data *data;
grub_err_t err;
int isfs;
data = zfs_mount (file->device);
if (! data)
return grub_errno;
err = dnode_get_fullpath (fsfilename, &(data->subvol),
&(data->dnode), &isfs, data);
if (err)
{
zfs_unmount (data);
return err;
}
if (isfs)
{
zfs_unmount (data);
return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("missing `%c' symbol"), '@');
}
/* We found the dnode for this file. Verify if it is a plain file. */
if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS)
{
zfs_unmount (data);
return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("not a regular file"));
}
/* get the file size and set the file position to 0 */
/*
* For DMU_OT_SA we will need to locate the SIZE attribute
* attribute, which could be either in the bonus buffer
* or the "spill" block.
*/
if (data->dnode.dn.dn_bonustype == DMU_OT_SA)
{
void *sahdrp;
int hdrsize;
if (data->dnode.dn.dn_bonuslen != 0)
{
sahdrp = (sa_hdr_phys_t *) DN_BONUS (&data->dnode.dn);
}
else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
{
blkptr_t *bp = &data->dnode.dn.dn_spill;
err = zio_read (bp, data->dnode.endian, &sahdrp, NULL, data);
if (err)
return err;
}
else
{
return grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
}
hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
file->size = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET), data->dnode.endian);
}
else if (data->dnode.dn.dn_bonustype == DMU_OT_ZNODE)
{
file->size = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&data->dnode.dn))->zp_size, data->dnode.endian);
}
else
return grub_error (GRUB_ERR_BAD_FS, "bad bonus type");
file->data = data;
file->offset = 0;
#ifndef GRUB_UTIL
grub_dl_ref (my_mod);
#endif
return GRUB_ERR_NONE;
}
static grub_ssize_t
grub_zfs_read (grub_file_t file, char *buf, grub_size_t len)
{
struct grub_zfs_data *data = (struct grub_zfs_data *) file->data;
grub_size_t blksz, movesize;
grub_size_t length;
grub_size_t read;
grub_err_t err;
/*
* If offset is in memory, move it into the buffer provided and return.
*/
if (file->offset >= data->file_start
&& file->offset + len <= data->file_end)
{
grub_memmove (buf, data->file_buf + file->offset - data->file_start,
len);
return len;
}
blksz = grub_zfs_to_cpu16 (data->dnode.dn.dn_datablkszsec,
data->dnode.endian) << SPA_MINBLOCKSHIFT;
if (blksz == 0)
{
grub_error (GRUB_ERR_BAD_FS, "0-sized block");
return -1;
}
/*
* Entire Dnode is too big to fit into the space available. We
* will need to read it in chunks. This could be optimized to
* read in as large a chunk as there is space available, but for
* now, this only reads in one data block at a time.
*/
length = len;
read = 0;
while (length)
{
void *t;
/*
* Find requested blkid and the offset within that block.
*/
grub_uint64_t blkid = grub_divmod64 (file->offset + read, blksz, 0);
grub_free (data->file_buf);
data->file_buf = 0;
err = dmu_read (&(data->dnode), blkid, &t,
0, data);
data->file_buf = t;
if (err)
{
data->file_buf = NULL;
data->file_start = data->file_end = 0;
return -1;
}
data->file_start = blkid * blksz;
data->file_end = data->file_start + blksz;
movesize = data->file_end - file->offset - read;
if (movesize > length)
movesize = length;
grub_memmove (buf, data->file_buf + file->offset + read
- data->file_start, movesize);
buf += movesize;
length -= movesize;
read += movesize;
}
return len;
}
static grub_err_t
grub_zfs_close (grub_file_t file)
{
zfs_unmount ((struct grub_zfs_data *) file->data);
#ifndef GRUB_UTIL
grub_dl_unref (my_mod);
#endif
return GRUB_ERR_NONE;
}
grub_err_t
grub_zfs_getmdnobj (grub_device_t dev, const char *fsfilename,
grub_uint64_t *mdnobj)
{
struct grub_zfs_data *data;
grub_err_t err;
int isfs;
data = zfs_mount (dev);
if (! data)
return grub_errno;
err = dnode_get_fullpath (fsfilename, &(data->subvol),
&(data->dnode), &isfs, data);
*mdnobj = data->subvol.obj;
zfs_unmount (data);
return err;
}
static grub_err_t
fill_fs_info (struct grub_dirhook_info *info,
dnode_end_t mdn, struct grub_zfs_data *data)
{
grub_err_t err;
dnode_end_t dn;
grub_uint64_t objnum;
grub_uint64_t headobj;
grub_memset (info, 0, sizeof (*info));
info->dir = 1;
if (mdn.dn.dn_type == DMU_OT_DSL_DIR)
{
headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&mdn.dn))->dd_head_dataset_obj, mdn.endian);
err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
if (err)
{
grub_dprintf ("zfs", "failed here\n");
return err;
}
}
err = make_mdn (&mdn, data);
if (err)
return err;
err = dnode_get (&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
&dn, data);
if (err)
{
grub_dprintf ("zfs", "failed here\n");
return err;
}
err = zap_lookup (&dn, ZFS_ROOT_OBJ, &objnum, data, 0);
if (err)
{
grub_dprintf ("zfs", "failed here\n");
return err;
}
err = dnode_get (&mdn, objnum, 0, &dn, data);
if (err)
{
grub_dprintf ("zfs", "failed here\n");
return err;
}
if (dn.dn.dn_bonustype == DMU_OT_SA)
{
void *sahdrp;
int hdrsize;
if (dn.dn.dn_bonuslen != 0)
{
sahdrp = (sa_hdr_phys_t *) DN_BONUS (&dn.dn);
}
else if (dn.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
{
blkptr_t *bp = &dn.dn.dn_spill;
err = zio_read (bp, dn.endian, &sahdrp, NULL, data);
if (err)
return err;
}
else
{
grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
return grub_errno;
}
hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
info->mtimeset = 1;
info->mtime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + hdrsize + SA_MTIME_OFFSET), dn.endian);
}
if (dn.dn.dn_bonustype == DMU_OT_ZNODE)
{
info->mtimeset = 1;
info->mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp_mtime[0], dn.endian);
}
return 0;
}
/* Helper for grub_zfs_dir. */
static int
iterate_zap (const char *name, grub_uint64_t val, struct grub_zfs_dir_ctx *ctx)
{
grub_err_t err;
struct grub_dirhook_info info;
dnode_end_t dn;
grub_memset (&info, 0, sizeof (info));
err = dnode_get (&(ctx->data->subvol.mdn), val, 0, &dn, ctx->data);
if (err)
{
grub_print_error ();
return 0;
}
if (dn.dn.dn_bonustype == DMU_OT_SA)
{
void *sahdrp;
int hdrsize;
if (dn.dn.dn_bonuslen != 0)
{
sahdrp = (sa_hdr_phys_t *) DN_BONUS (&ctx->data->dnode.dn);
}
else if (dn.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)
{
blkptr_t *bp = &dn.dn.dn_spill;
err = zio_read (bp, dn.endian, &sahdrp, NULL, ctx->data);
if (err)
{
grub_print_error ();
return 0;
}
}
else
{
grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt");
grub_print_error ();
return 0;
}
hdrsize = SA_HDR_SIZE (((sa_hdr_phys_t *) sahdrp));
info.mtimeset = 1;
info.mtime = grub_zfs_to_cpu64 (grub_get_unaligned64 ((char *) sahdrp + hdrsize + SA_MTIME_OFFSET), dn.endian);
info.case_insensitive = ctx->data->subvol.case_insensitive;
}
if (dn.dn.dn_bonustype == DMU_OT_ZNODE)
{
info.mtimeset = 1;
info.mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp_mtime[0],
dn.endian);
}
info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
grub_dprintf ("zfs", "type=%d, name=%s\n",
(int)dn.dn.dn_type, (char *)name);
return ctx->hook (name, &info, ctx->hook_data);
}
/* Helper for grub_zfs_dir. */
static int
iterate_zap_fs (const char *name, grub_uint64_t val,
struct grub_zfs_dir_ctx *ctx)
{
grub_err_t err;
struct grub_dirhook_info info;
dnode_end_t mdn;
err = dnode_get (&(ctx->data->mos), val, 0, &mdn, ctx->data);
if (err)
{
grub_errno = 0;
return 0;
}
if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
return 0;
err = fill_fs_info (&info, mdn, ctx->data);
if (err)
{
grub_errno = 0;
return 0;
}
return ctx->hook (name, &info, ctx->hook_data);
}
/* Helper for grub_zfs_dir. */
static int
iterate_zap_snap (const char *name, grub_uint64_t val,
struct grub_zfs_dir_ctx *ctx)
{
grub_err_t err;
struct grub_dirhook_info info;
char *name2;
int ret;
dnode_end_t mdn;
err = dnode_get (&(ctx->data->mos), val, 0, &mdn, ctx->data);
if (err)
{
grub_errno = 0;
return 0;
}
if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
return 0;
err = fill_fs_info (&info, mdn, ctx->data);
if (err)
{
grub_errno = 0;
return 0;
}
name2 = grub_malloc (grub_strlen (name) + 2);
name2[0] = '@';
grub_memcpy (name2 + 1, name, grub_strlen (name) + 1);
ret = ctx->hook (name2, &info, ctx->hook_data);
grub_free (name2);
return ret;
}
static grub_err_t
grub_zfs_dir (grub_device_t device, const char *path,
grub_fs_dir_hook_t hook, void *hook_data)
{
struct grub_zfs_dir_ctx ctx = {
.hook = hook,
.hook_data = hook_data
};
struct grub_zfs_data *data;
grub_err_t err;
int isfs;
data = zfs_mount (device);
if (! data)
return grub_errno;
err = dnode_get_fullpath (path, &(data->subvol), &(data->dnode), &isfs, data);
if (err)
{
zfs_unmount (data);
return err;
}
ctx.data = data;
if (isfs)
{
grub_uint64_t childobj, headobj;
grub_uint64_t snapobj;
dnode_end_t dn;
struct grub_dirhook_info info;
err = fill_fs_info (&info, data->dnode, data);
if (err)
{
zfs_unmount (data);
return err;
}
if (hook ("@", &info, hook_data))
{
zfs_unmount (data);
return GRUB_ERR_NONE;
}
childobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
err = dnode_get (&(data->mos), childobj,
DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
if (err)
{
zfs_unmount (data);
return err;
}
zap_iterate_u64 (&dn, iterate_zap_fs, data, &ctx);
err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
if (err)
{
zfs_unmount (data);
return err;
}
snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&dn.dn))->ds_snapnames_zapobj, dn.endian);
err = dnode_get (&(data->mos), snapobj,
DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
if (err)
{
zfs_unmount (data);
return err;
}
zap_iterate_u64 (&dn, iterate_zap_snap, data, &ctx);
}
else
{
if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS)
{
zfs_unmount (data);
return grub_error (GRUB_ERR_BAD_FILE_TYPE, N_("not a directory"));
}
zap_iterate_u64 (&(data->dnode), iterate_zap, data, &ctx);
}
zfs_unmount (data);
return grub_errno;
}
static int
check_feature (const char *name, grub_uint64_t val,
struct grub_zfs_dir_ctx *ctx __attribute__((unused)))
{
int i;
if (val == 0)
return 0;
if (name[0] == 0)
return 0;
for (i = 0; spa_feature_names[i] != NULL; i++)
if (grub_strcmp (name, spa_feature_names[i]) == 0)
return 0;
return 1;
}
/*
* Checks whether the MOS features that are active are supported by this
* (GRUB's) implementation of ZFS.
*
* Return:
* 0: Success.
* errnum: Failure.
*/
static grub_err_t
check_mos_features(dnode_phys_t *mosmdn_phys,grub_zfs_endian_t endian,struct grub_zfs_data* data )
{
grub_uint64_t objnum;
grub_err_t errnum = 0;
dnode_end_t dn,mosmdn;
mzap_phys_t* mzp;
grub_zfs_endian_t endianzap;
int size;
grub_memmove(&(mosmdn.dn),mosmdn_phys,sizeof(dnode_phys_t));
mosmdn.endian=endian;
errnum = dnode_get(&mosmdn, DMU_POOL_DIRECTORY_OBJECT,
DMU_OT_OBJECT_DIRECTORY, &dn,data);
if (errnum != 0)
return errnum;
/*
* Find the object number for 'features_for_read' and retrieve its
* corresponding dnode. Note that we don't check features_for_write
* because GRUB is not opening the pool for write.
*/
errnum = zap_lookup(&dn, DMU_POOL_FEATURES_FOR_READ, &objnum, data,0);
if (errnum != 0)
return errnum;
errnum = dnode_get(&mosmdn, objnum, DMU_OTN_ZAP_METADATA, &dn, data);
if (errnum != 0)
return errnum;
errnum = dmu_read(&dn, 0, (void**)&mzp, &endianzap,data);
if (errnum != 0)
return errnum;
size = grub_zfs_to_cpu16 (dn.dn.dn_datablkszsec, dn.endian) << SPA_MINBLOCKSHIFT;
return mzap_iterate (mzp,endianzap, size, check_feature,NULL);
}
#ifdef GRUB_UTIL
static grub_err_t
grub_zfs_embed (grub_device_t device __attribute__ ((unused)),
unsigned int *nsectors,
unsigned int max_nsectors,
grub_embed_type_t embed_type,
grub_disk_addr_t **sectors)
{
unsigned i;
if (embed_type != GRUB_EMBED_PCBIOS)
return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET,
"ZFS currently supports only PC-BIOS embedding");
if ((VDEV_BOOT_SIZE >> GRUB_DISK_SECTOR_BITS) < *nsectors)
return grub_error (GRUB_ERR_OUT_OF_RANGE,
N_("your core.img is unusually large. "
"It won't fit in the embedding area"));
*nsectors = (VDEV_BOOT_SIZE >> GRUB_DISK_SECTOR_BITS);
if (*nsectors > max_nsectors)
*nsectors = max_nsectors;
*sectors = grub_malloc (*nsectors * sizeof (**sectors));
if (!*sectors)
return grub_errno;
for (i = 0; i < *nsectors; i++)
(*sectors)[i] = i + (VDEV_BOOT_OFFSET >> GRUB_DISK_SECTOR_BITS);
return GRUB_ERR_NONE;
}
#endif
static struct grub_fs grub_zfs_fs = {
.name = "zfs",
.dir = grub_zfs_dir,
.open = grub_zfs_open,
.read = grub_zfs_read,
.close = grub_zfs_close,
.label = zfs_label,
.uuid = zfs_uuid,
.mtime = zfs_mtime,
#ifdef GRUB_UTIL
.embed = grub_zfs_embed,
.reserved_first_sector = 1,
.blocklist_install = 0,
#endif
.next = 0
};
GRUB_MOD_INIT (zfs)
{
COMPILE_TIME_ASSERT (sizeof (zap_leaf_chunk_t) == ZAP_LEAF_CHUNKSIZE);
grub_fs_register (&grub_zfs_fs);
#ifndef GRUB_UTIL
my_mod = mod;
#endif
}
GRUB_MOD_FINI (zfs)
{
grub_fs_unregister (&grub_zfs_fs);
}