/* mpih-w-sdiv -- implement udiv_qrnnd on machines with only signed
 *	      	  division.
 * Copyright (C) 1992, 1994, 1996, 1998, 2002 Free Software Foundation, Inc.
 * Contributed by Peter L. Montgomery.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include "mpi-internal.h"
#include "longlong.h"


#if 0  /* not yet ported to MPI */

mpi_limb_t
mpihelp_udiv_w_sdiv( mpi_limp_t *rp,
		     mpi_limp_t *a1,
		     mpi_limp_t *a0,
		     mpi_limp_t *d   )
{
  mp_limb_t q, r;
  mp_limb_t c0, c1, b1;

  if ((mpi_limb_signed_t) d >= 0)
    {
      if (a1 < d - a1 - (a0 >> (BITS_PER_MP_LIMB - 1)))
	{
	  /* dividend, divisor, and quotient are nonnegative */
	  sdiv_qrnnd (q, r, a1, a0, d);
	}
      else
	{
	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (BITS_PER_MP_LIMB - 1));
	  /* Divide (c1*2^32 + c0) by d */
	  sdiv_qrnnd (q, r, c1, c0, d);
	  /* Add 2^31 to quotient */
	  q += (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1);
	}
    }
  else
    {
      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
      c1 = a1 >> 1;			/* A/2 */
      c0 = (a1 << (BITS_PER_MP_LIMB - 1)) + (a0 >> 1);

      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
	{
	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else if (c1 < b1) 		/* So 2^31 <= (A/2)/b1 < 2^32 */
	{
	  c1 = (b1 - 1) - c1;
	  c0 = ~c0;			/* logical NOT */

	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  q = ~q;			/* (A/2)/b1 */
	  r = (b1 - 1) - r;

	  r = 2*r + (a0 & 1);		/* A/(2*b1) */

	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else				/* Implies c1 = b1 */
	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
	  if (a0 >= -d)
	    {
	      q = -1;
	      r = a0 + d;
	    }
	  else
	    {
	      q = -2;
	      r = a0 + 2*d;
	    }
	}
    }

  *rp = r;
  return q;
}

#endif