/* * GRUB -- GRand Unified Bootloader * Copyright (C) 2006,2007,2008,2009 Free Software Foundation, Inc. * * GRUB is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GRUB is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GRUB. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GRUB_LINUX_CL_OFFSET 0x1000 #define GRUB_LINUX_CL_END_OFFSET 0x2000 #define NEXT_MEMORY_DESCRIPTOR(desc, size) \ ((grub_efi_memory_descriptor_t *) ((char *) (desc) + (size))) static grub_dl_t my_mod; static grub_size_t linux_mem_size; static int loaded; static void *real_mode_mem; static void *prot_mode_mem; static void *initrd_mem; static grub_efi_uintn_t real_mode_pages; static grub_efi_uintn_t prot_mode_pages; static grub_efi_uintn_t initrd_pages; static void *mmap_buf; static grub_uint8_t gdt[] __attribute__ ((aligned(16))) = { /* NULL. */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Reserved. */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Code segment. */ 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x9A, 0xCF, 0x00, /* Data segment. */ 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x92, 0xCF, 0x00 }; struct gdt_descriptor { grub_uint16_t limit; void *base; } __attribute__ ((packed)); static struct gdt_descriptor gdt_desc = { sizeof (gdt) - 1, gdt }; struct idt_descriptor { grub_uint16_t limit; void *base; } __attribute__ ((packed)); static struct idt_descriptor idt_desc = { 0, 0 }; static inline grub_size_t page_align (grub_size_t size) { return (size + (1 << 12) - 1) & (~((1 << 12) - 1)); } /* Find the optimal number of pages for the memory map. Is it better to move this code to efi/mm.c? */ static grub_efi_uintn_t find_mmap_size (void) { static grub_efi_uintn_t mmap_size = 0; if (mmap_size != 0) return mmap_size; mmap_size = (1 << 12); while (1) { int ret; grub_efi_memory_descriptor_t *mmap; grub_efi_uintn_t desc_size; mmap = grub_malloc (mmap_size); if (! mmap) return 0; ret = grub_efi_get_memory_map (&mmap_size, mmap, 0, &desc_size, 0); grub_free (mmap); if (ret < 0) grub_fatal ("cannot get memory map"); else if (ret > 0) break; mmap_size += (1 << 12); } /* Increase the size a bit for safety, because GRUB allocates more on later, and EFI itself may allocate more. */ mmap_size += (1 << 12); return page_align (mmap_size); } static void free_pages (void) { if (real_mode_mem) { grub_efi_free_pages ((grub_addr_t) real_mode_mem, real_mode_pages); real_mode_mem = 0; } if (prot_mode_mem) { grub_efi_free_pages ((grub_addr_t) prot_mode_mem, prot_mode_pages); prot_mode_mem = 0; } if (initrd_mem) { grub_efi_free_pages ((grub_addr_t) initrd_mem, initrd_pages); initrd_mem = 0; } } /* Allocate pages for the real mode code and the protected mode code for linux as well as a memory map buffer. */ static int allocate_pages (grub_size_t prot_size) { grub_efi_uintn_t desc_size; grub_efi_memory_descriptor_t *mmap, *mmap_end; grub_efi_uintn_t mmap_size, tmp_mmap_size; grub_efi_memory_descriptor_t *desc; grub_size_t real_size; /* Make sure that each size is aligned to a page boundary. */ real_size = GRUB_LINUX_CL_END_OFFSET; prot_size = page_align (prot_size); mmap_size = find_mmap_size (); grub_dprintf ("linux", "real_size = %x, prot_size = %x, mmap_size = %x\n", (unsigned) real_size, (unsigned) prot_size, (unsigned) mmap_size); /* Calculate the number of pages; Combine the real mode code with the memory map buffer for simplicity. */ real_mode_pages = ((real_size + mmap_size) >> 12); prot_mode_pages = (prot_size >> 12); /* Initialize the memory pointers with NULL for convenience. */ real_mode_mem = 0; prot_mode_mem = 0; /* Read the memory map temporarily, to find free space. */ mmap = grub_malloc (mmap_size); if (! mmap) return 0; tmp_mmap_size = mmap_size; if (grub_efi_get_memory_map (&tmp_mmap_size, mmap, 0, &desc_size, 0) <= 0) grub_fatal ("cannot get memory map"); mmap_end = NEXT_MEMORY_DESCRIPTOR (mmap, tmp_mmap_size); /* First, find free pages for the real mode code and the memory map buffer. */ for (desc = mmap; desc < mmap_end; desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) { /* Probably it is better to put the real mode code in the traditional space for safety. */ if (desc->type == GRUB_EFI_CONVENTIONAL_MEMORY && desc->physical_start <= 0x90000 && desc->num_pages >= real_mode_pages) { grub_efi_physical_address_t physical_end; grub_efi_physical_address_t addr; physical_end = desc->physical_start + (desc->num_pages << 12); if (physical_end > 0x90000) physical_end = 0x90000; grub_dprintf ("linux", "physical_start = %x, physical_end = %x\n", (unsigned) desc->physical_start, (unsigned) physical_end); addr = physical_end - real_size - mmap_size; if (addr < 0x10000) continue; grub_dprintf ("linux", "trying to allocate %u pages at %lx\n", (unsigned) real_mode_pages, (unsigned long) addr); real_mode_mem = grub_efi_allocate_pages (addr, real_mode_pages); if (! real_mode_mem) grub_fatal ("cannot allocate pages"); desc->num_pages -= real_mode_pages; break; } } if (! real_mode_mem) { grub_error (GRUB_ERR_OUT_OF_MEMORY, "cannot allocate real mode pages"); goto fail; } mmap_buf = (void *) ((char *) real_mode_mem + real_size); /* Next, find free pages for the protected mode code. */ /* XXX what happens if anything is using this address? */ prot_mode_mem = grub_efi_allocate_pages (0x100000, prot_mode_pages); if (! prot_mode_mem) { grub_error (GRUB_ERR_OUT_OF_MEMORY, "cannot allocate protected mode pages"); goto fail; } grub_dprintf ("linux", "real_mode_mem = %lx, real_mode_pages = %x, " "prot_mode_mem = %lx, prot_mode_pages = %x\n", (unsigned long) real_mode_mem, (unsigned) real_mode_pages, (unsigned long) prot_mode_mem, (unsigned) prot_mode_pages); grub_free (mmap); return 1; fail: grub_free (mmap); free_pages (); return 0; } static void grub_e820_add_region (struct grub_e820_mmap *e820_map, int *e820_num, grub_uint64_t start, grub_uint64_t size, grub_uint32_t type) { int n = *e820_num; if (n >= GRUB_E820_MAX_ENTRY) grub_fatal ("Too many e820 memory map entries"); if ((n > 0) && (e820_map[n - 1].addr + e820_map[n - 1].size == start) && (e820_map[n - 1].type == type)) e820_map[n - 1].size += size; else { e820_map[n].addr = start; e820_map[n].size = size; e820_map[n].type = type; (*e820_num)++; } } #ifdef __x86_64__ struct { grub_uint32_t kernel_entry; grub_uint32_t kernel_cs; } jumpvector; #endif static grub_err_t grub_linux_boot (void) { struct linux_kernel_params *params; grub_efi_uintn_t mmap_size; grub_efi_uintn_t map_key; grub_efi_uintn_t desc_size; grub_efi_uint32_t desc_version; grub_efi_memory_descriptor_t *desc; int e820_num; params = real_mode_mem; grub_dprintf ("linux", "code32_start = %x, idt_desc = %lx, gdt_desc = %lx\n", (unsigned) params->code32_start, (unsigned long) &(idt_desc.limit), (unsigned long) &(gdt_desc.limit)); grub_dprintf ("linux", "idt = %x:%lx, gdt = %x:%lx\n", (unsigned) idt_desc.limit, (unsigned long) idt_desc.base, (unsigned) gdt_desc.limit, (unsigned long) gdt_desc.base); mmap_size = find_mmap_size (); if (grub_efi_get_memory_map (&mmap_size, mmap_buf, &map_key, &desc_size, &desc_version) <= 0) grub_fatal ("cannot get memory map"); e820_num = 0; for (desc = mmap_buf; desc < NEXT_MEMORY_DESCRIPTOR (mmap_buf, mmap_size); desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) { switch (desc->type) { case GRUB_EFI_ACPI_RECLAIM_MEMORY: grub_e820_add_region (params->e820_map, &e820_num, desc->physical_start, desc->num_pages << 12, GRUB_E820_ACPI); break; case GRUB_EFI_ACPI_MEMORY_NVS: grub_e820_add_region (params->e820_map, &e820_num, desc->physical_start, desc->num_pages << 12, GRUB_E820_NVS); break; case GRUB_EFI_RUNTIME_SERVICES_CODE: grub_e820_add_region (params->e820_map, &e820_num, desc->physical_start, desc->num_pages << 12, GRUB_E820_EXEC_CODE); break; case GRUB_EFI_LOADER_CODE: case GRUB_EFI_LOADER_DATA: case GRUB_EFI_BOOT_SERVICES_CODE: case GRUB_EFI_BOOT_SERVICES_DATA: case GRUB_EFI_CONVENTIONAL_MEMORY: { grub_uint64_t start, size, end; start = desc->physical_start; size = desc->num_pages << 12; end = start + size; /* Skip A0000 - 100000 region. */ if ((start < 0x100000ULL) && (end > 0xA0000ULL)) { if (start < 0xA0000ULL) { grub_e820_add_region (params->e820_map, &e820_num, start, 0xA0000ULL - start, GRUB_E820_RAM); } if (end <= 0x100000ULL) continue; start = 0x100000ULL; size = end - start; } grub_e820_add_region (params->e820_map, &e820_num, start, size, GRUB_E820_RAM); break; } default: grub_e820_add_region (params->e820_map, &e820_num, desc->physical_start, desc->num_pages << 12, GRUB_E820_RESERVED); } } params->mmap_size = e820_num; if (! grub_efi_exit_boot_services (map_key)) grub_fatal ("cannot exit boot services"); /* Note that no boot services are available from here. */ /* Pass EFI parameters. */ if (grub_le_to_cpu16 (params->version) >= 0x0206) { params->v0206.efi_mem_desc_size = desc_size; params->v0206.efi_mem_desc_version = desc_version; params->v0206.efi_mmap = (grub_uint32_t) (unsigned long) mmap_buf; params->v0206.efi_mmap_size = mmap_size; #ifdef __x86_64__ params->v0206.efi_mmap_hi = (grub_uint32_t) ((grub_uint64_t) mmap_buf >> 32); #endif } else if (grub_le_to_cpu16 (params->version) >= 0x0204) { params->v0204.efi_mem_desc_size = desc_size; params->v0204.efi_mem_desc_version = desc_version; params->v0204.efi_mmap = (grub_uint32_t) (unsigned long) mmap_buf; params->v0204.efi_mmap_size = mmap_size; } /* Hardware interrupts are not safe any longer. */ asm volatile ("cli" : : ); /* Load the IDT and the GDT for the bootstrap. */ asm volatile ("lidt %0" : : "m" (idt_desc)); asm volatile ("lgdt %0" : : "m" (gdt_desc)); #ifdef __x86_64__ jumpvector.kernel_entry = (grub_uint64_t) grub_linux_real_boot; jumpvector.kernel_cs = 0x10; asm volatile ( "mov %0, %%rbx" : : "m" (params->code32_start)); asm volatile ( "mov %0, %%rsi" : : "m" (real_mode_mem)); asm volatile ( "ljmp *%0" : : "m" (jumpvector)); #else /* Pass parameters. */ asm volatile ("movl %0, %%ecx" : : "m" (params->code32_start)); asm volatile ("movl %0, %%esi" : : "m" (real_mode_mem)); asm volatile ("xorl %%ebx, %%ebx" : : ); /* Enter Linux. */ asm volatile ("jmp *%%ecx" : : ); #endif /* Never reach here. */ return GRUB_ERR_NONE; } static grub_err_t grub_linux_unload (void) { free_pages (); grub_dl_unref (my_mod); loaded = 0; return GRUB_ERR_NONE; } static grub_efi_guid_t uga_draw_guid = GRUB_EFI_UGA_DRAW_GUID; #define RGB_MASK 0xffffff #define RGB_MAGIC 0x121314 #define LINE_MIN 800 #define LINE_MAX 4096 #define FBTEST_STEP (0x10000 >> 2) #define FBTEST_COUNT 8 static int find_line_len (grub_uint32_t *fb_base, grub_uint32_t *line_len) { grub_uint32_t *base = (grub_uint32_t *) (grub_target_addr_t) *fb_base; int i; for (i = 0; i < FBTEST_COUNT; i++, base += FBTEST_STEP) { if ((*base & RGB_MASK) == RGB_MAGIC) { int j; for (j = LINE_MIN; j <= LINE_MAX; j++) { if ((base[j] & RGB_MASK) == RGB_MAGIC) { *fb_base = (grub_uint32_t) (grub_target_addr_t) base; *line_len = j << 2; return 1; } } break; } } return 0; } static int find_framebuf (grub_uint32_t *fb_base, grub_uint32_t *line_len) { int found = 0; auto int NESTED_FUNC_ATTR find_card (int bus, int dev, int func, grub_pci_id_t pciid); int NESTED_FUNC_ATTR find_card (int bus, int dev, int func, grub_pci_id_t pciid) { grub_pci_address_t addr; addr = grub_pci_make_address (bus, dev, func, 2); if (grub_pci_read (addr) >> 24 == 0x3) { int i; grub_printf ("Display controller: %d:%d.%d\nDevice id: %x\n", bus, dev, func, pciid); addr += 8; for (i = 0; i < 6; i++, addr += 4) { grub_uint32_t old_bar1, old_bar2, type; grub_uint64_t base64; old_bar1 = grub_pci_read (addr); if ((! old_bar1) || (old_bar1 & GRUB_PCI_ADDR_SPACE_IO)) continue; type = old_bar1 & GRUB_PCI_ADDR_MEM_TYPE_MASK; if (type == GRUB_PCI_ADDR_MEM_TYPE_64) { if (i == 5) break; old_bar2 = grub_pci_read (addr + 4); } else old_bar2 = 0; base64 = old_bar2; base64 <<= 32; base64 |= (old_bar1 & GRUB_PCI_ADDR_MEM_MASK); grub_printf ("%s(%d): 0x%llx\n", ((old_bar1 & GRUB_PCI_ADDR_MEM_PREFETCH) ? "VMEM" : "MMIO"), i, (unsigned long long) base64); if ((old_bar1 & GRUB_PCI_ADDR_MEM_PREFETCH) && (! found)) { *fb_base = base64; if (find_line_len (fb_base, line_len)) found++; } if (type == GRUB_PCI_ADDR_MEM_TYPE_64) { i++; addr += 4; } } } return found; } grub_pci_iterate (find_card); return found; } static int grub_linux_setup_video (struct linux_kernel_params *params) { grub_efi_uga_draw_protocol_t *c; grub_uint32_t width, height, depth, rate, pixel, fb_base, line_len; int ret; c = grub_efi_locate_protocol (&uga_draw_guid, 0); if (! c) return 1; if (efi_call_5 (c->get_mode, c, &width, &height, &depth, &rate)) return 1; grub_printf ("Video mode: %ux%u-%u@%u\n", width, height, depth, rate); grub_efi_set_text_mode (0); pixel = RGB_MAGIC; efi_call_10 (c->blt, c, (struct grub_efi_uga_pixel *) &pixel, GRUB_EFI_UGA_VIDEO_FILL, 0, 0, 0, 0, 1, height, 0); ret = find_framebuf (&fb_base, &line_len); grub_efi_set_text_mode (1); if (! ret) { grub_printf ("Can\'t find frame buffer address\n"); return 1; } grub_printf ("Frame buffer base: 0x%x\n", fb_base); grub_printf ("Video line length: %d\n", line_len); params->lfb_width = width; params->lfb_height = height; params->lfb_depth = depth; params->lfb_line_len = line_len; params->lfb_base = fb_base; params->lfb_size = (line_len * params->lfb_height + 65535) >> 16; params->red_mask_size = 8; params->red_field_pos = 16; params->green_mask_size = 8; params->green_field_pos = 8; params->blue_mask_size = 8; params->blue_field_pos = 0; params->reserved_mask_size = 8; params->reserved_field_pos = 24; params->have_vga = GRUB_VIDEO_TYPE_VLFB; params->vid_mode = 0x338; /* 1024x768x32 */ return 0; } static grub_err_t grub_cmd_linux (grub_command_t cmd __attribute__ ((unused)), int argc, char *argv[]) { grub_file_t file = 0; struct linux_kernel_header lh; struct linux_kernel_params *params; grub_uint8_t setup_sects; grub_size_t real_size, prot_size; grub_ssize_t len; int i; char *dest; grub_dl_ref (my_mod); if (argc == 0) { grub_error (GRUB_ERR_BAD_ARGUMENT, "no kernel specified"); goto fail; } file = grub_file_open (argv[0]); if (! file) goto fail; if (grub_file_read (file, (char *) &lh, sizeof (lh)) != sizeof (lh)) { grub_error (GRUB_ERR_READ_ERROR, "cannot read the linux header"); goto fail; } if (lh.boot_flag != grub_cpu_to_le16 (0xaa55)) { grub_error (GRUB_ERR_BAD_OS, "invalid magic number"); goto fail; } if (lh.setup_sects > GRUB_LINUX_MAX_SETUP_SECTS) { grub_error (GRUB_ERR_BAD_OS, "too many setup sectors"); goto fail; } /* EFI support is quite new, so reject old versions. */ if (lh.header != grub_cpu_to_le32 (GRUB_LINUX_MAGIC_SIGNATURE) || grub_le_to_cpu16 (lh.version) < 0x0203) { grub_error (GRUB_ERR_BAD_OS, "too old version"); goto fail; } /* I'm not sure how to support zImage on EFI. */ if (! (lh.loadflags & GRUB_LINUX_FLAG_BIG_KERNEL)) { grub_error (GRUB_ERR_BAD_OS, "zImage is not supported"); goto fail; } setup_sects = lh.setup_sects; /* If SETUP_SECTS is not set, set it to the default (4). */ if (! setup_sects) setup_sects = GRUB_LINUX_DEFAULT_SETUP_SECTS; real_size = setup_sects << GRUB_DISK_SECTOR_BITS; prot_size = grub_file_size (file) - real_size - GRUB_DISK_SECTOR_SIZE; if (! allocate_pages (prot_size)) goto fail; params = (struct linux_kernel_params *) real_mode_mem; grub_memset (params, 0, GRUB_LINUX_CL_END_OFFSET); grub_memcpy (¶ms->setup_sects, &lh.setup_sects, sizeof (lh) - 0x1F1); params->ps_mouse = params->padding10 = 0; len = 0x400 - sizeof (lh); if (grub_file_read (file, (char *) real_mode_mem + sizeof (lh), len) != len) { grub_error (GRUB_ERR_FILE_READ_ERROR, "Couldn't read file"); goto fail; } /* XXX Linux assumes that only elilo can boot Linux on EFI!!! */ params->type_of_loader = (LINUX_LOADER_ID_ELILO << 4); params->cl_magic = GRUB_LINUX_CL_MAGIC; params->cl_offset = 0x1000; params->cmd_line_ptr = (unsigned long) real_mode_mem + 0x1000; params->ramdisk_image = 0; params->ramdisk_size = 0; params->heap_end_ptr = GRUB_LINUX_HEAP_END_OFFSET; params->loadflags |= GRUB_LINUX_FLAG_CAN_USE_HEAP; /* These are not needed to be precise, because Linux uses these values only to raise an error when the decompression code cannot find good space. */ params->ext_mem = ((32 * 0x100000) >> 10); params->alt_mem = ((32 * 0x100000) >> 10); params->video_cursor_x = grub_getxy () >> 8; params->video_cursor_y = grub_getxy () & 0xff; params->video_page = 0; /* ??? */ params->video_mode = grub_efi_system_table->con_out->mode->mode; params->video_width = (grub_getwh () >> 8); params->video_ega_bx = 0; params->video_height = (grub_getwh () & 0xff); params->have_vga = 0; params->font_size = 16; /* XXX */ if (grub_le_to_cpu16 (params->version) >= 0x0206) { params->v0206.efi_signature = GRUB_LINUX_EFI_SIGNATURE; params->v0206.efi_system_table = (grub_uint32_t) (unsigned long) grub_efi_system_table; #ifdef __x86_64__ params->v0206.efi_system_table_hi = (grub_uint32_t) ((grub_uint64_t) grub_efi_system_table >> 32); #endif } else if (grub_le_to_cpu16 (params->version) >= 0x0204) { params->v0204.efi_signature = GRUB_LINUX_EFI_SIGNATURE_0204; params->v0204.efi_system_table = (grub_uint32_t) (unsigned long) grub_efi_system_table; } #if 0 /* The structure is zeroed already. */ /* No VBE on EFI. */ params->lfb_width = 0; params->lfb_height = 0; params->lfb_depth = 0; params->lfb_base = 0; params->lfb_size = 0; params->lfb_line_len = 0; params->red_mask_size = 0; params->red_field_pos = 0; params->green_mask_size = 0; params->green_field_pos = 0; params->blue_mask_size = 0; params->blue_field_pos = 0; params->reserved_mask_size = 0; params->reserved_field_pos = 0; params->vesapm_segment = 0; params->vesapm_offset = 0; params->lfb_pages = 0; params->vesa_attrib = 0; /* No APM on EFI. */ params->apm_version = 0; params->apm_code_segment = 0; params->apm_entry = 0; params->apm_16bit_code_segment = 0; params->apm_data_segment = 0; params->apm_flags = 0; params->apm_code_len = 0; params->apm_data_len = 0; /* XXX is there any way to use SpeedStep on EFI? */ params->ist_signature = 0; params->ist_command = 0; params->ist_event = 0; params->ist_perf_level = 0; /* Let the kernel probe the information. */ grub_memset (params->hd0_drive_info, 0, sizeof (params->hd0_drive_info)); grub_memset (params->hd1_drive_info, 0, sizeof (params->hd1_drive_info)); /* No MCA on EFI. */ params->rom_config_len = 0; /* No need to fake the BIOS's memory map. */ params->mmap_size = 0; /* Let the kernel probe the information. */ params->ps_mouse = 0; /* Clear padding for future compatibility. */ grub_memset (params->padding1, 0, sizeof (params->padding1)); grub_memset (params->padding2, 0, sizeof (params->padding2)); grub_memset (params->padding3, 0, sizeof (params->padding3)); grub_memset (params->padding4, 0, sizeof (params->padding4)); grub_memset (params->padding5, 0, sizeof (params->padding5)); grub_memset (params->padding6, 0, sizeof (params->padding6)); grub_memset (params->padding7, 0, sizeof (params->padding7)); grub_memset (params->padding8, 0, sizeof (params->padding8)); grub_memset (params->padding9, 0, sizeof (params->padding9)); #endif /* The other EFI parameters are filled when booting. */ grub_file_seek (file, real_size + GRUB_DISK_SECTOR_SIZE); /* XXX there is no way to know if the kernel really supports EFI. */ grub_printf (" [Linux-bzImage, setup=0x%x, size=0x%x]\n", (unsigned) real_size, (unsigned) prot_size); grub_linux_setup_video (params); /* Detect explicitly specified memory size, if any. */ linux_mem_size = 0; for (i = 1; i < argc; i++) if (grub_memcmp (argv[i], "mem=", 4) == 0) { char *val = argv[i] + 4; linux_mem_size = grub_strtoul (val, &val, 0); if (grub_errno) { grub_errno = GRUB_ERR_NONE; linux_mem_size = 0; } else { int shift = 0; switch (grub_tolower (val[0])) { case 'g': shift += 10; case 'm': shift += 10; case 'k': shift += 10; default: break; } /* Check an overflow. */ if (linux_mem_size > (~0UL >> shift)) linux_mem_size = 0; else linux_mem_size <<= shift; } } else if (grub_memcmp (argv[i], "video=efifb", 11) == 0) { if (params->have_vga) params->have_vga = GRUB_VIDEO_TYPE_EFI; } /* Specify the boot file. */ dest = grub_stpcpy ((char *) real_mode_mem + GRUB_LINUX_CL_OFFSET, "BOOT_IMAGE="); dest = grub_stpcpy (dest, argv[0]); /* Copy kernel parameters. */ for (i = 1; i < argc && dest + grub_strlen (argv[i]) + 1 < ((char *) real_mode_mem + GRUB_LINUX_CL_END_OFFSET); i++) { *dest++ = ' '; dest = grub_stpcpy (dest, argv[i]); } len = prot_size; if (grub_file_read (file, (char *) GRUB_LINUX_BZIMAGE_ADDR, len) != len) grub_error (GRUB_ERR_FILE_READ_ERROR, "Couldn't read file"); if (grub_errno == GRUB_ERR_NONE) { grub_loader_set (grub_linux_boot, grub_linux_unload, 1); loaded = 1; } fail: if (file) grub_file_close (file); if (grub_errno != GRUB_ERR_NONE) { grub_dl_unref (my_mod); loaded = 0; } return grub_errno; } static grub_err_t grub_cmd_initrd (grub_command_t cmd __attribute__ ((unused)), int argc, char *argv[]) { grub_file_t file = 0; grub_ssize_t size; grub_addr_t addr_min, addr_max; grub_addr_t addr; grub_efi_uintn_t mmap_size; grub_efi_memory_descriptor_t *desc; grub_efi_uintn_t desc_size; struct linux_kernel_header *lh; if (argc == 0) { grub_error (GRUB_ERR_BAD_ARGUMENT, "No module specified"); goto fail; } if (! loaded) { grub_error (GRUB_ERR_BAD_ARGUMENT, "You need to load the kernel first."); goto fail; } file = grub_file_open (argv[0]); if (! file) goto fail; size = grub_file_size (file); initrd_pages = (page_align (size) >> 12); lh = (struct linux_kernel_header *) real_mode_mem; addr_max = (grub_cpu_to_le32 (lh->initrd_addr_max) << 10); if (linux_mem_size != 0 && linux_mem_size < addr_max) addr_max = linux_mem_size; /* Linux 2.3.xx has a bug in the memory range check, so avoid the last page. Linux 2.2.xx has a bug in the memory range check, which is worse than that of Linux 2.3.xx, so avoid the last 64kb. */ addr_max -= 0x10000; /* Usually, the compression ratio is about 50%. */ addr_min = (grub_addr_t) prot_mode_mem + ((prot_mode_pages * 3) << 12) + page_align (size); /* Find the highest address to put the initrd. */ mmap_size = find_mmap_size (); if (grub_efi_get_memory_map (&mmap_size, mmap_buf, 0, &desc_size, 0) <= 0) grub_fatal ("cannot get memory map"); addr = 0; for (desc = mmap_buf; desc < NEXT_MEMORY_DESCRIPTOR (mmap_buf, mmap_size); desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) { if (desc->type == GRUB_EFI_CONVENTIONAL_MEMORY && desc->num_pages >= initrd_pages) { grub_efi_physical_address_t physical_end; physical_end = desc->physical_start + (desc->num_pages << 12); if (physical_end > addr_max) physical_end = addr_max; if (physical_end < page_align (size)) continue; physical_end -= page_align (size); if ((physical_end >= addr_min) && (physical_end >= desc->physical_start) && (physical_end > addr)) addr = physical_end; } } if (addr == 0) { grub_error (GRUB_ERR_OUT_OF_MEMORY, "no free pages available"); goto fail; } initrd_mem = grub_efi_allocate_pages (addr, initrd_pages); if (! initrd_mem) grub_fatal ("cannot allocate pages"); if (grub_file_read (file, initrd_mem, size) != size) { grub_error (GRUB_ERR_FILE_READ_ERROR, "Couldn't read file"); goto fail; } grub_printf (" [Initrd, addr=0x%x, size=0x%x]\n", (unsigned) addr, (unsigned) size); lh->ramdisk_image = addr; lh->ramdisk_size = size; lh->root_dev = 0x0100; /* XXX */ fail: if (file) grub_file_close (file); return grub_errno; } static grub_command_t cmd_linux, cmd_initrd; GRUB_MOD_INIT(linux) { cmd_linux = grub_register_command ("linux", grub_cmd_linux, 0, "load linux"); cmd_initrd = grub_register_command ("initrd", grub_cmd_initrd, 0, "load initrd"); my_mod = mod; } GRUB_MOD_FINI(linux) { grub_unregister_command (cmd_linux); grub_unregister_command (cmd_initrd); }