/* Memory management for efiemu */ /* * GRUB -- GRand Unified Bootloader * Copyright (C) 2009 Free Software Foundation, Inc. * * GRUB is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GRUB is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GRUB. If not, see <http://www.gnu.org/licenses/>. */ /* To keep efiemu runtime contiguous this mm is special. It uses deferred allocation. In the first stage you may request memory with grub_efiemu_request_memalign It will give you a handle with which in the second phase you can access your memory with grub_efiemu_mm_obtain_request (handle). It's guaranteed that subsequent calls with the same handle return the same result. You can't request any additional memory once you're in the second phase */ #include <grub/err.h> #include <grub/normal.h> #include <grub/mm.h> #include <grub/misc.h> #include <grub/efiemu/efiemu.h> #include <grub/memory.h> struct grub_efiemu_memrequest { struct grub_efiemu_memrequest *next; grub_efi_memory_type_t type; grub_size_t size; grub_size_t align_overhead; int handle; void *val; }; /* Linked list of requested memory. */ static struct grub_efiemu_memrequest *memrequests = 0; /* Memory map. */ static grub_efi_memory_descriptor_t *efiemu_mmap = 0; /* Pointer to allocated memory */ static void *resident_memory = 0; /* Size of requested memory per type */ static grub_size_t requested_memory[GRUB_EFI_MAX_MEMORY_TYPE]; /* How many slots is allocated for memory_map and how many are already used */ static int mmap_reserved_size = 0, mmap_num = 0; /* Add a memory region to map*/ static grub_err_t grub_efiemu_add_to_mmap (grub_uint64_t start, grub_uint64_t size, grub_efi_memory_type_t type) { grub_uint64_t page_start, npages; /* Extend map if necessary*/ if (mmap_num >= mmap_reserved_size) { void *old; mmap_reserved_size = 2 * (mmap_reserved_size + 1); old = efiemu_mmap; efiemu_mmap = (grub_efi_memory_descriptor_t *) grub_realloc (efiemu_mmap, mmap_reserved_size * sizeof (grub_efi_memory_descriptor_t)); if (!efiemu_mmap) { grub_free (old); return grub_errno; } } /* Fill slot*/ page_start = start - (start % GRUB_EFIEMU_PAGESIZE); npages = (size + (start % GRUB_EFIEMU_PAGESIZE) + GRUB_EFIEMU_PAGESIZE - 1) / GRUB_EFIEMU_PAGESIZE; efiemu_mmap[mmap_num].physical_start = page_start; efiemu_mmap[mmap_num].virtual_start = page_start; efiemu_mmap[mmap_num].num_pages = npages; efiemu_mmap[mmap_num].type = type; mmap_num++; return GRUB_ERR_NONE; } /* Request a resident memory of type TYPE of size SIZE aligned at ALIGN ALIGN must be a divisor of page size (if it's a divisor of 4096 it should be ok on all platforms) */ int grub_efiemu_request_memalign (grub_size_t align, grub_size_t size, grub_efi_memory_type_t type) { grub_size_t align_overhead; struct grub_efiemu_memrequest *ret, *cur, *prev; /* Check that the request is correct */ if (type >= GRUB_EFI_MAX_MEMORY_TYPE || type <= GRUB_EFI_LOADER_CODE) return -2; /* Add new size to requested size */ align_overhead = align - (requested_memory[type]%align); if (align_overhead == align) align_overhead = 0; requested_memory[type] += align_overhead + size; /* Remember the request */ ret = grub_zalloc (sizeof (*ret)); if (!ret) return -1; ret->type = type; ret->size = size; ret->align_overhead = align_overhead; prev = 0; /* Add request to the end of the chain. It should be at the end because otherwise alignment isn't guaranteed */ for (cur = memrequests; cur; prev = cur, cur = cur->next); if (prev) { ret->handle = prev->handle + 1; prev->next = ret; } else { ret->handle = 1; /* Avoid 0 handle*/ memrequests = ret; } return ret->handle; } /* Really allocate the memory */ static grub_err_t efiemu_alloc_requests (void) { grub_size_t align_overhead = 0; grub_uint8_t *curptr, *typestart; struct grub_efiemu_memrequest *cur; grub_size_t total_alloc = 0; unsigned i; /* Order of memory regions */ grub_efi_memory_type_t reqorder[] = { /* First come regions usable by OS*/ GRUB_EFI_LOADER_CODE, GRUB_EFI_LOADER_DATA, GRUB_EFI_BOOT_SERVICES_CODE, GRUB_EFI_BOOT_SERVICES_DATA, GRUB_EFI_CONVENTIONAL_MEMORY, GRUB_EFI_ACPI_RECLAIM_MEMORY, /* Then memory used by runtime */ /* This way all our regions are in a single block */ GRUB_EFI_RUNTIME_SERVICES_CODE, GRUB_EFI_RUNTIME_SERVICES_DATA, GRUB_EFI_ACPI_MEMORY_NVS, /* And then unavailable memory types. This is more for a completeness. You should double think before allocating memory of any of these types */ GRUB_EFI_UNUSABLE_MEMORY, GRUB_EFI_MEMORY_MAPPED_IO, GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE, GRUB_EFI_PAL_CODE }; /* Compute total memory needed */ for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++) { align_overhead = GRUB_EFIEMU_PAGESIZE - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE); if (align_overhead == GRUB_EFIEMU_PAGESIZE) align_overhead = 0; total_alloc += requested_memory[reqorder[i]] + align_overhead; } /* Allocate the whole memory in one block */ resident_memory = grub_memalign (GRUB_EFIEMU_PAGESIZE, total_alloc); if (!resident_memory) return grub_errno; /* Split the memory into blocks by type */ curptr = resident_memory; for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++) { if (!requested_memory[reqorder[i]]) continue; typestart = curptr; /* Write pointers to requests */ for (cur = memrequests; cur; cur = cur->next) if (cur->type == reqorder[i]) { curptr = ((grub_uint8_t *)curptr) + cur->align_overhead; cur->val = curptr; curptr = ((grub_uint8_t *)curptr) + cur->size; } /* Ensure that the regions are page-aligned */ align_overhead = GRUB_EFIEMU_PAGESIZE - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE); if (align_overhead == GRUB_EFIEMU_PAGESIZE) align_overhead = 0; curptr = ((grub_uint8_t *) curptr) + align_overhead; /* Add the region to memory map */ grub_efiemu_add_to_mmap ((grub_addr_t) typestart, curptr - typestart, reqorder[i]); } return GRUB_ERR_NONE; } /* Get a pointer to requested memory from handle */ void * grub_efiemu_mm_obtain_request (int handle) { struct grub_efiemu_memrequest *cur; for (cur = memrequests; cur; cur = cur->next) if (cur->handle == handle) return cur->val; return 0; } /* Get type of requested memory by handle */ grub_efi_memory_type_t grub_efiemu_mm_get_type (int handle) { struct grub_efiemu_memrequest *cur; for (cur = memrequests; cur; cur = cur->next) if (cur->handle == handle) return cur->type; return 0; } /* Free a request */ void grub_efiemu_mm_return_request (int handle) { struct grub_efiemu_memrequest *cur, *prev; /* Remove head if necessary */ while (memrequests && memrequests->handle == handle) { cur = memrequests->next; grub_free (memrequests); memrequests = cur; } if (!memrequests) return; /* Remove request from a middle of chain*/ for (prev = memrequests, cur = prev->next; cur;) if (cur->handle == handle) { prev->next = cur->next; grub_free (cur); cur = prev->next; } else { prev = cur; cur = prev->next; } } /* Reserve space for memory map */ static grub_err_t grub_efiemu_mmap_init (void) { auto int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t, grub_uint64_t, grub_memory_type_t); int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t addr __attribute__ ((unused)), grub_uint64_t size __attribute__ ((unused)), grub_memory_type_t type __attribute__ ((unused))) { mmap_reserved_size++; return 0; } // the place for memory used by efiemu itself mmap_reserved_size = GRUB_EFI_MAX_MEMORY_TYPE + 1; #ifndef GRUB_MACHINE_EMU grub_machine_mmap_iterate (bounds_hook); #endif return GRUB_ERR_NONE; } /* This is a drop-in replacement of grub_efi_get_memory_map */ /* Get the memory map as defined in the EFI spec. Return 1 if successful, return 0 if partial, or return -1 if an error occurs. */ int grub_efiemu_get_memory_map (grub_efi_uintn_t *memory_map_size, grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t *map_key, grub_efi_uintn_t *descriptor_size, grub_efi_uint32_t *descriptor_version) { if (!efiemu_mmap) { grub_error (GRUB_ERR_INVALID_COMMAND, "you need to first launch efiemu_prepare"); return -1; } if (*memory_map_size < mmap_num * sizeof (grub_efi_memory_descriptor_t)) { *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t); return 0; } *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t); grub_memcpy (memory_map, efiemu_mmap, *memory_map_size); if (descriptor_size) *descriptor_size = sizeof (grub_efi_memory_descriptor_t); if (descriptor_version) *descriptor_version = 1; if (map_key) *map_key = 0; return 1; } grub_err_t grub_efiemu_finish_boot_services (grub_efi_uintn_t *memory_map_size, grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t *map_key, grub_efi_uintn_t *descriptor_size, grub_efi_uint32_t *descriptor_version) { int val = grub_efiemu_get_memory_map (memory_map_size, memory_map, map_key, descriptor_size, descriptor_version); if (val == 1) return GRUB_ERR_NONE; if (val == -1) return grub_errno; return grub_error (GRUB_ERR_IO, "memory map buffer is too small"); } /* Free everything */ grub_err_t grub_efiemu_mm_unload (void) { struct grub_efiemu_memrequest *cur, *d; for (cur = memrequests; cur;) { d = cur->next; grub_free (cur); cur = d; } memrequests = 0; grub_memset (&requested_memory, 0, sizeof (requested_memory)); grub_free (resident_memory); resident_memory = 0; grub_free (efiemu_mmap); efiemu_mmap = 0; mmap_reserved_size = mmap_num = 0; return GRUB_ERR_NONE; } /* This function should be called before doing any requests */ grub_err_t grub_efiemu_mm_init (void) { grub_err_t err; err = grub_efiemu_mm_unload (); if (err) return err; grub_efiemu_mmap_init (); return GRUB_ERR_NONE; } /* Copy host memory map */ static grub_err_t grub_efiemu_mmap_fill (void) { auto int NESTED_FUNC_ATTR fill_hook (grub_uint64_t, grub_uint64_t, grub_memory_type_t); int NESTED_FUNC_ATTR fill_hook (grub_uint64_t addr, grub_uint64_t size, grub_memory_type_t type) { switch (type) { case GRUB_MEMORY_AVAILABLE: return grub_efiemu_add_to_mmap (addr, size, GRUB_EFI_CONVENTIONAL_MEMORY); case GRUB_MEMORY_ACPI: return grub_efiemu_add_to_mmap (addr, size, GRUB_EFI_ACPI_RECLAIM_MEMORY); case GRUB_MEMORY_NVS: return grub_efiemu_add_to_mmap (addr, size, GRUB_EFI_ACPI_MEMORY_NVS); default: grub_dprintf ("efiemu", "Unknown memory type %d. Assuming unusable\n", type); case GRUB_MEMORY_RESERVED: return grub_efiemu_add_to_mmap (addr, size, GRUB_EFI_UNUSABLE_MEMORY); } } #ifndef GRUB_MACHINE_EMU grub_machine_mmap_iterate (fill_hook); #endif return GRUB_ERR_NONE; } grub_err_t grub_efiemu_mmap_iterate (grub_memory_hook_t hook) { unsigned i; for (i = 0; i < (unsigned) mmap_num; i++) switch (efiemu_mmap[i].type) { case GRUB_EFI_RUNTIME_SERVICES_CODE: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_CODE); break; case GRUB_EFI_UNUSABLE_MEMORY: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_BADRAM); break; case GRUB_EFI_RESERVED_MEMORY_TYPE: case GRUB_EFI_RUNTIME_SERVICES_DATA: case GRUB_EFI_MEMORY_MAPPED_IO: case GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE: case GRUB_EFI_PAL_CODE: case GRUB_EFI_MAX_MEMORY_TYPE: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_RESERVED); break; case GRUB_EFI_LOADER_CODE: case GRUB_EFI_LOADER_DATA: case GRUB_EFI_BOOT_SERVICES_CODE: case GRUB_EFI_BOOT_SERVICES_DATA: case GRUB_EFI_CONVENTIONAL_MEMORY: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_AVAILABLE); break; case GRUB_EFI_ACPI_RECLAIM_MEMORY: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_ACPI); break; case GRUB_EFI_ACPI_MEMORY_NVS: hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096, GRUB_MEMORY_NVS); break; } return 0; } /* This function resolves overlapping regions and sorts the memory map It uses scanline (sweeping) algorithm */ static grub_err_t grub_efiemu_mmap_sort_and_uniq (void) { /* If same page is used by multiple types it's resolved according to priority 0 - free memory 1 - memory immediately usable after ExitBootServices 2 - memory usable after loading ACPI tables 3 - efiemu memory 4 - unusable memory */ int priority[GRUB_EFI_MAX_MEMORY_TYPE] = { [GRUB_EFI_RESERVED_MEMORY_TYPE] = 4, [GRUB_EFI_LOADER_CODE] = 1, [GRUB_EFI_LOADER_DATA] = 1, [GRUB_EFI_BOOT_SERVICES_CODE] = 1, [GRUB_EFI_BOOT_SERVICES_DATA] = 1, [GRUB_EFI_RUNTIME_SERVICES_CODE] = 3, [GRUB_EFI_RUNTIME_SERVICES_DATA] = 3, [GRUB_EFI_CONVENTIONAL_MEMORY] = 0, [GRUB_EFI_UNUSABLE_MEMORY] = 4, [GRUB_EFI_ACPI_RECLAIM_MEMORY] = 2, [GRUB_EFI_ACPI_MEMORY_NVS] = 3, [GRUB_EFI_MEMORY_MAPPED_IO] = 4, [GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE] = 4, [GRUB_EFI_PAL_CODE] = 4 }; int i, j, k, done; /* Scanline events */ struct grub_efiemu_mmap_scan { /* At which memory address*/ grub_uint64_t pos; /* 0 = region starts, 1 = region ends */ int type; /* Which type of memory region */ grub_efi_memory_type_t memtype; }; struct grub_efiemu_mmap_scan *scanline_events; struct grub_efiemu_mmap_scan t; /* Previous scanline event */ grub_uint64_t lastaddr; int lasttype; /* Current scanline event */ int curtype; /* how many regions of given type overlap at current location */ int present[GRUB_EFI_MAX_MEMORY_TYPE]; /* Here is stored the resulting memory map*/ grub_efi_memory_descriptor_t *result; /* Initialize variables*/ grub_memset (present, 0, sizeof (int) * GRUB_EFI_MAX_MEMORY_TYPE); scanline_events = (struct grub_efiemu_mmap_scan *) grub_malloc (sizeof (struct grub_efiemu_mmap_scan) * 2 * mmap_num); /* Number of chunks can't increase more than by factor of 2 */ result = (grub_efi_memory_descriptor_t *) grub_malloc (sizeof (grub_efi_memory_descriptor_t) * 2 * mmap_num); if (!result || !scanline_events) { grub_free (result); grub_free (scanline_events); return grub_errno; } /* Register scanline events */ for (i = 0; i < mmap_num; i++) { scanline_events[2 * i].pos = efiemu_mmap[i].physical_start; scanline_events[2 * i].type = 0; scanline_events[2 * i].memtype = efiemu_mmap[i].type; scanline_events[2 * i + 1].pos = efiemu_mmap[i].physical_start + efiemu_mmap[i].num_pages * GRUB_EFIEMU_PAGESIZE; scanline_events[2 * i + 1].type = 1; scanline_events[2 * i + 1].memtype = efiemu_mmap[i].type; } /* Primitive bubble sort. It has complexity O(n^2) but since we're unlikely to have more than 100 chunks it's probably one of the fastest for one purpose */ done = 1; while (done) { done = 0; for (i = 0; i < 2 * mmap_num - 1; i++) if (scanline_events[i + 1].pos < scanline_events[i].pos) { t = scanline_events[i + 1]; scanline_events[i + 1] = scanline_events[i]; scanline_events[i] = t; done = 1; } } /* Pointer in resulting memory map */ j = 0; lastaddr = scanline_events[0].pos; lasttype = scanline_events[0].memtype; for (i = 0; i < 2 * mmap_num; i++) { /* Process event */ if (scanline_events[i].type) present[scanline_events[i].memtype]--; else present[scanline_events[i].memtype]++; /* Determine current region type */ curtype = -1; for (k = 0; k < GRUB_EFI_MAX_MEMORY_TYPE; k++) if (present[k] && (curtype == -1 || priority[k] > priority[curtype])) curtype = k; /* Add memory region to resulting map if necessary */ if ((curtype == -1 || curtype != lasttype) && lastaddr != scanline_events[i].pos && lasttype != -1) { result[j].virtual_start = result[j].physical_start = lastaddr; result[j].num_pages = (scanline_events[i].pos - lastaddr) / GRUB_EFIEMU_PAGESIZE; result[j].type = lasttype; /* We set runtime attribute on pages we need to be mapped */ result[j].attribute = (lasttype == GRUB_EFI_RUNTIME_SERVICES_CODE || lasttype == GRUB_EFI_RUNTIME_SERVICES_DATA) ? GRUB_EFI_MEMORY_RUNTIME : 0; grub_dprintf ("efiemu", "mmap entry: type %d start 0x%llx 0x%llx pages\n", result[j].type, result[j].physical_start, result[j].num_pages); j++; } /* Update last values if necessary */ if (curtype == -1 || curtype != lasttype) { lasttype = curtype; lastaddr = scanline_events[i].pos; } } grub_free (scanline_events); /* Shrink resulting memory map to really used size and replace efiemu_mmap by new value */ grub_free (efiemu_mmap); efiemu_mmap = grub_realloc (result, j * sizeof (*result)); return GRUB_ERR_NONE; } /* This function is called to switch from first to second phase */ grub_err_t grub_efiemu_mm_do_alloc (void) { grub_err_t err; /* Preallocate mmap */ efiemu_mmap = (grub_efi_memory_descriptor_t *) grub_malloc (mmap_reserved_size * sizeof (grub_efi_memory_descriptor_t)); if (!efiemu_mmap) { grub_efiemu_unload (); return grub_errno; } err = efiemu_alloc_requests (); if (err) return err; err = grub_efiemu_mmap_fill (); if (err) return err; return grub_efiemu_mmap_sort_and_uniq (); }