/* * GRUB -- GRand Unified Bootloader * Copyright (C) 1999,2000,2001,2002,2003,2004,2009,2010 Free Software Foundation, Inc. * Copyright 2010 Sun Microsystems, Inc. * * GRUB is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GRUB is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GRUB. If not, see . */ /* * The zfs plug-in routines for GRUB are: * * zfs_mount() - locates a valid uberblock of the root pool and reads * in its MOS at the memory address MOS. * * zfs_open() - locates a plain file object by following the MOS * and places its dnode at the memory address DNODE. * * zfs_read() - read in the data blocks pointed by the DNODE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ZPOOL_PROP_BOOTFS "bootfs" #define MIN(a,b) (((a) < (b)) ? (a) : (b)) /* * For nvlist manipulation. (from nvpair.h) */ #define NV_ENCODE_NATIVE 0 #define NV_ENCODE_XDR 1 #define NV_BIG_ENDIAN 0 #define NV_LITTLE_ENDIAN 1 #define DATA_TYPE_UINT64 8 #define DATA_TYPE_STRING 9 #define DATA_TYPE_NVLIST 19 #define DATA_TYPE_NVLIST_ARRAY 20 #ifndef GRUB_UTIL static grub_dl_t my_mod; #endif #define P2PHASE(x, align) ((x) & ((align) - 1)) #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) /* * FAT ZAP data structures */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) #define CHAIN_END 0xffff /* end of the chunk chain */ /* * The amount of space within the chunk available for the array is: * chunk size - space for type (1) - space for next pointer (2) */ #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) #define LEAF_HASH(bs, h) \ ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) /* * The amount of space available for chunks is: * block size shift - hash entry size (2) * number of hash * entries - header space (2*chunksize) */ #define ZAP_LEAF_NUMCHUNKS(bs) \ (((1<l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) /* * Decompression Entry - lzjb */ #ifndef NBBY #define NBBY 8 #endif extern grub_err_t lzjb_decompress (void *, void *, grub_size_t, grub_size_t); typedef grub_err_t zfs_decomp_func_t (void *s_start, void *d_start, grub_size_t s_len, grub_size_t d_len); typedef struct decomp_entry { char *name; zfs_decomp_func_t *decomp_func; } decomp_entry_t; typedef struct dnode_end { dnode_phys_t dn; grub_zfs_endian_t endian; } dnode_end_t; struct grub_zfs_device_desc { enum { DEVICE_LEAF, DEVICE_MIRROR } type; grub_uint64_t id; grub_uint64_t guid; /* Valid only for non-leafs. */ unsigned n_children; struct grub_zfs_device_desc *children; /* Valid only for leaf devices. */ grub_device_t dev; grub_disk_addr_t vdev_phys_sector; uberblock_t current_uberblock; int original; }; struct grub_zfs_data { /* cache for a file block of the currently zfs_open()-ed file */ char *file_buf; grub_uint64_t file_start; grub_uint64_t file_end; /* cache for a dnode block */ dnode_phys_t *dnode_buf; dnode_phys_t *dnode_mdn; grub_uint64_t dnode_start; grub_uint64_t dnode_end; grub_zfs_endian_t dnode_endian; dnode_end_t mos; dnode_end_t mdn; dnode_end_t dnode; struct grub_zfs_device_desc *devices_attached; unsigned n_devices_attached; unsigned n_devices_allocated; uberblock_t current_uberblock; int mounted; grub_uint64_t guid; }; static grub_err_t zlib_decompress (void *s, void *d, grub_size_t slen, grub_size_t dlen) { if (grub_zlib_decompress (s, slen, 0, d, dlen) < 0) return grub_errno; return GRUB_ERR_NONE; } decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ {"off", NULL}, /* ZIO_COMPRESS_OFF */ {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ }; static grub_err_t zio_read_data (blkptr_t * bp, grub_zfs_endian_t endian, void *buf, struct grub_zfs_data *data); /* * Our own version of log2(). Same thing as highbit()-1. */ static int zfs_log2 (grub_uint64_t num) { int i = 0; while (num > 1) { i++; num = num >> 1; } return (i); } /* Checksum Functions */ static void zio_checksum_off (const void *buf __attribute__ ((unused)), grub_uint64_t size __attribute__ ((unused)), grub_zfs_endian_t endian __attribute__ ((unused)), zio_cksum_t * zcp) { ZIO_SET_CHECKSUM (zcp, 0, 0, 0, 0); } /* Checksum Table and Values */ zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { {NULL, 0, 0, "inherit"}, {NULL, 0, 0, "on"}, {zio_checksum_off, 0, 0, "off"}, {zio_checksum_SHA256, 1, 1, "label"}, {zio_checksum_SHA256, 1, 1, "gang_header"}, {NULL, 0, 0, "zilog"}, {fletcher_2, 0, 0, "fletcher2"}, {fletcher_4, 1, 0, "fletcher4"}, {zio_checksum_SHA256, 1, 0, "SHA256"}, {NULL, 0, 0, "zilog2"}, }; /* * zio_checksum_verify: Provides support for checksum verification. * * Fletcher2, Fletcher4, and SHA256 are supported. * */ static grub_err_t zio_checksum_verify (zio_cksum_t zc, grub_uint32_t checksum, grub_zfs_endian_t endian, char *buf, int size) { zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t actual_cksum, expected_cksum; if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { grub_dprintf ("zfs", "unknown checksum function %d\n", checksum); return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "unknown checksum function %d", checksum); } if (ci->ci_eck) { expected_cksum = zec->zec_cksum; zec->zec_cksum = zc; ci->ci_func (buf, size, endian, &actual_cksum); zec->zec_cksum = expected_cksum; zc = expected_cksum; } else ci->ci_func (buf, size, endian, &actual_cksum); if ((actual_cksum.zc_word[0] != zc.zc_word[0]) || (actual_cksum.zc_word[1] != zc.zc_word[1]) || (actual_cksum.zc_word[2] != zc.zc_word[2]) || (actual_cksum.zc_word[3] != zc.zc_word[3])) { grub_dprintf ("zfs", "checksum %d verification failed\n", checksum); grub_dprintf ("zfs", "actual checksum %16llx %16llx %16llx %16llx\n", (unsigned long long) actual_cksum.zc_word[0], (unsigned long long) actual_cksum.zc_word[1], (unsigned long long) actual_cksum.zc_word[2], (unsigned long long) actual_cksum.zc_word[3]); grub_dprintf ("zfs", "expected checksum %16llx %16llx %16llx %16llx\n", (unsigned long long) zc.zc_word[0], (unsigned long long) zc.zc_word[1], (unsigned long long) zc.zc_word[2], (unsigned long long) zc.zc_word[3]); return grub_error (GRUB_ERR_BAD_FS, "checksum verification failed"); } return GRUB_ERR_NONE; } /* * vdev_uberblock_compare takes two uberblock structures and returns an integer * indicating the more recent of the two. * Return Value = 1 if ub2 is more recent * Return Value = -1 if ub1 is more recent * The most recent uberblock is determined using its transaction number and * timestamp. The uberblock with the highest transaction number is * considered "newer". If the transaction numbers of the two blocks match, the * timestamps are compared to determine the "newer" of the two. */ static int vdev_uberblock_compare (uberblock_t * ub1, uberblock_t * ub2) { grub_zfs_endian_t ub1_endian, ub2_endian; if (grub_zfs_to_cpu64 (ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) ub1_endian = LITTLE_ENDIAN; else ub1_endian = BIG_ENDIAN; if (grub_zfs_to_cpu64 (ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) ub2_endian = LITTLE_ENDIAN; else ub2_endian = BIG_ENDIAN; if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian) < grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian)) return (-1); if (grub_zfs_to_cpu64 (ub1->ub_txg, ub1_endian) > grub_zfs_to_cpu64 (ub2->ub_txg, ub2_endian)) return (1); if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian) < grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian)) return (-1); if (grub_zfs_to_cpu64 (ub1->ub_timestamp, ub1_endian) > grub_zfs_to_cpu64 (ub2->ub_timestamp, ub2_endian)) return (1); return (0); } /* * Three pieces of information are needed to verify an uberblock: the magic * number, the version number, and the checksum. * * Currently Implemented: version number, magic number * Need to Implement: checksum * */ static grub_err_t uberblock_verify (uberblock_phys_t * ub, int offset) { uberblock_t *uber = &ub->ubp_uberblock; grub_err_t err; grub_zfs_endian_t endian = UNKNOWN_ENDIAN; zio_cksum_t zc; if (grub_zfs_to_cpu64 (uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC && grub_zfs_to_cpu64 (uber->ub_version, LITTLE_ENDIAN) > 0 && grub_zfs_to_cpu64 (uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) endian = LITTLE_ENDIAN; if (grub_zfs_to_cpu64 (uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC && grub_zfs_to_cpu64 (uber->ub_version, BIG_ENDIAN) > 0 && grub_zfs_to_cpu64 (uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) endian = BIG_ENDIAN; if (endian == UNKNOWN_ENDIAN) return grub_error (GRUB_ERR_BAD_FS, "invalid uberblock magic"); grub_memset (&zc, 0, sizeof (zc)); zc.zc_word[0] = grub_cpu_to_zfs64 (offset, endian); err = zio_checksum_verify (zc, ZIO_CHECKSUM_LABEL, endian, (char *) ub, UBERBLOCK_SIZE); return err; } /* * Find the best uberblock. * Return: * Success - Pointer to the best uberblock. * Failure - NULL */ static uberblock_phys_t * find_bestub (uberblock_phys_t * ub_array, grub_disk_addr_t sector) { uberblock_phys_t *ubbest = NULL; int i; grub_disk_addr_t offset; grub_err_t err = GRUB_ERR_NONE; for (i = 0; i < (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT); i++) { offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i << VDEV_UBERBLOCK_SHIFT); err = uberblock_verify (&ub_array[i], offset); if (err) { grub_errno = GRUB_ERR_NONE; continue; } if (ubbest == NULL || vdev_uberblock_compare (&(ub_array[i].ubp_uberblock), &(ubbest->ubp_uberblock)) > 0) ubbest = &ub_array[i]; } if (!ubbest) grub_errno = err; return (ubbest); } static inline grub_size_t get_psize (blkptr_t * bp, grub_zfs_endian_t endian) { return ((((grub_zfs_to_cpu64 ((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) << SPA_MINBLOCKSHIFT); } static grub_uint64_t dva_get_offset (const dva_t *dva, grub_zfs_endian_t endian) { grub_dprintf ("zfs", "dva=%llx, %llx\n", (unsigned long long) dva->dva_word[0], (unsigned long long) dva->dva_word[1]); return grub_zfs_to_cpu64 ((dva)->dva_word[1], endian) << SPA_MINBLOCKSHIFT; } static grub_err_t zfs_fetch_nvlist (struct grub_zfs_device_desc *diskdesc, char **nvlist) { grub_err_t err; *nvlist = grub_malloc (VDEV_PHYS_SIZE); if (!diskdesc->dev) return grub_error (GRUB_ERR_BAD_FS, "member drive unknown"); /* Read in the vdev name-value pair list (112K). */ err = grub_disk_read (diskdesc->dev->disk, diskdesc->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); if (err) { grub_free (*nvlist); *nvlist = 0; return err; } return GRUB_ERR_NONE; } static grub_err_t fill_vdev_info_real (const char *nvlist, struct grub_zfs_device_desc *fill, struct grub_zfs_device_desc *insert) { char *type; type = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_TYPE); if (!type) return grub_errno; if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "id", &(fill->id))) return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id"); if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "guid", &(fill->guid))) return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id"); if (grub_strcmp (type, VDEV_TYPE_DISK) == 0 || grub_strcmp (type, VDEV_TYPE_FILE) == 0) { fill->type = DEVICE_LEAF; if (!fill->dev && fill->guid == insert->guid) { fill->dev = insert->dev; fill->vdev_phys_sector = insert->vdev_phys_sector; fill->current_uberblock = insert->current_uberblock; fill->original = insert->original; } return GRUB_ERR_NONE; } if (grub_strcmp (type, VDEV_TYPE_MIRROR) == 0) { int nelm, i; fill->type = DEVICE_MIRROR; nelm = grub_zfs_nvlist_lookup_nvlist_array_get_nelm (nvlist, ZPOOL_CONFIG_CHILDREN); if (nelm <= 0) return grub_error (GRUB_ERR_BAD_FS, "incorrect mirror VDEV"); fill->n_children = nelm; fill->children = grub_zalloc (fill->n_children * sizeof (fill->children[0])); for (i = 0; i < nelm; i++) { char *child; grub_err_t err; child = grub_zfs_nvlist_lookup_nvlist_array (nvlist, ZPOOL_CONFIG_CHILDREN, i); err = fill_vdev_info_real (child, &fill->children[i], insert); grub_free (child); if (err) return err; } return GRUB_ERR_NONE; } return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "vdev %s isn't supported", type); } static grub_err_t fill_vdev_info (struct grub_zfs_data *data, char *nvlist, struct grub_zfs_device_desc *diskdesc) { grub_uint64_t id; unsigned i; if (!grub_zfs_nvlist_lookup_uint64 (nvlist, "id", &id)) return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev id"); for (i = 0; i < data->n_devices_attached; i++) if (data->devices_attached[i].id == id) return fill_vdev_info_real (nvlist, &data->devices_attached[i], diskdesc); data->n_devices_attached++; if (data->n_devices_attached > data->n_devices_allocated) { void *tmp; data->n_devices_allocated = 2 * data->n_devices_attached + 1; data->devices_attached = grub_realloc (tmp = data->devices_attached, data->n_devices_allocated * sizeof (data->devices_attached[0])); if (!data->devices_attached) { data->devices_attached = tmp; return grub_errno; } } grub_memset (&data->devices_attached[data->n_devices_attached - 1], 0, sizeof (data->devices_attached[data->n_devices_attached - 1])); return fill_vdev_info_real (nvlist, &data->devices_attached[data->n_devices_attached - 1], diskdesc); } /* * Check the disk label information and retrieve needed vdev name-value pairs. * */ static grub_err_t check_pool_label (struct grub_zfs_data *data, struct grub_zfs_device_desc *diskdesc) { grub_uint64_t pool_state, txg = 0; char *nvlist; #if 0 char *nv; #endif grub_uint64_t poolguid; grub_uint64_t version; int found; grub_err_t err; err = zfs_fetch_nvlist (diskdesc, &nvlist); if (err) return err; grub_dprintf ("zfs", "check 2 passed\n"); found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state); if (! found) { grub_free (nvlist); if (! grub_errno) grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_STATE " not found"); return grub_errno; } grub_dprintf ("zfs", "check 3 passed\n"); if (pool_state == POOL_STATE_DESTROYED) { grub_free (nvlist); return grub_error (GRUB_ERR_BAD_FS, "zpool is marked as destroyed"); } grub_dprintf ("zfs", "check 4 passed\n"); found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_TXG, &txg); if (!found) { grub_free (nvlist); if (! grub_errno) grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_TXG " not found"); return grub_errno; } grub_dprintf ("zfs", "check 6 passed\n"); /* not an active device */ if (txg == 0) { grub_free (nvlist); return grub_error (GRUB_ERR_BAD_FS, "zpool isn't active"); } grub_dprintf ("zfs", "check 7 passed\n"); found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_VERSION, &version); if (! found) { grub_free (nvlist); if (! grub_errno) grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_VERSION " not found"); return grub_errno; } grub_dprintf ("zfs", "check 8 passed\n"); if (version > SPA_VERSION) { grub_free (nvlist); return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "too new version %llu > %llu", (unsigned long long) version, (unsigned long long) SPA_VERSION); } grub_dprintf ("zfs", "check 9 passed\n"); found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_GUID, &(diskdesc->guid)); if (! found) { grub_free (nvlist); if (! grub_errno) grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_GUID " not found"); return grub_errno; } found = grub_zfs_nvlist_lookup_uint64 (nvlist, ZPOOL_CONFIG_POOL_GUID, &poolguid); if (! found) { grub_free (nvlist); if (! grub_errno) grub_error (GRUB_ERR_BAD_FS, ZPOOL_CONFIG_POOL_GUID " not found"); return grub_errno; } grub_dprintf ("zfs", "check 11 passed\n"); if (data->mounted && data->guid != poolguid) return grub_error (GRUB_ERR_BAD_FS, "another zpool"); else data->guid = poolguid; { char *nv; nv = grub_zfs_nvlist_lookup_nvlist (nvlist, ZPOOL_CONFIG_VDEV_TREE); if (!nv) { grub_free (nvlist); return grub_error (GRUB_ERR_BAD_FS, "couldn't find vdev tree"); } err = fill_vdev_info (data, nv, diskdesc); if (err) { grub_free (nvlist); return err; } } grub_dprintf ("zfs", "check 10 passed\n"); grub_free (nvlist); return GRUB_ERR_NONE; } static grub_err_t scan_disk (grub_device_t dev, struct grub_zfs_data *data, int original) { int label = 0; uberblock_phys_t *ub_array, *ubbest = NULL; vdev_boot_header_t *bh; grub_err_t err; int vdevnum; struct grub_zfs_device_desc desc; ub_array = grub_malloc (VDEV_UBERBLOCK_RING); if (!ub_array) return grub_errno; bh = grub_malloc (VDEV_BOOT_HEADER_SIZE); if (!bh) { grub_free (ub_array); return grub_errno; } vdevnum = VDEV_LABELS; desc.dev = dev; desc.original = original; /* Don't check back labels on CDROM. */ if (grub_disk_get_size (dev->disk) == GRUB_DISK_SIZE_UNKNOWN) vdevnum = VDEV_LABELS / 2; for (label = 0; ubbest == NULL && label < vdevnum; label++) { desc.vdev_phys_sector = label * (sizeof (vdev_label_t) >> SPA_MINBLOCKSHIFT) + ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SPA_MINBLOCKSHIFT) + (label < VDEV_LABELS / 2 ? 0 : grub_disk_get_size (dev->disk) - VDEV_LABELS * (sizeof (vdev_label_t) >> SPA_MINBLOCKSHIFT)); /* Read in the uberblock ring (128K). */ err = grub_disk_read (dev->disk, desc.vdev_phys_sector + (VDEV_PHYS_SIZE >> SPA_MINBLOCKSHIFT), 0, VDEV_UBERBLOCK_RING, (char *) ub_array); if (err) { grub_errno = GRUB_ERR_NONE; continue; } grub_dprintf ("zfs", "label ok %d\n", label); ubbest = find_bestub (ub_array, desc.vdev_phys_sector); if (!ubbest) { grub_dprintf ("zfs", "No uberblock found\n"); grub_errno = GRUB_ERR_NONE; continue; } grub_memmove (&(desc.current_uberblock), &ubbest->ubp_uberblock, sizeof (uberblock_t)); if (original) grub_memmove (&(data->current_uberblock), &ubbest->ubp_uberblock, sizeof (uberblock_t)); err = check_pool_label (data, &desc); if (err) { grub_errno = GRUB_ERR_NONE; continue; } #if 0 if (find_best_root && vdev_uberblock_compare (&ubbest->ubp_uberblock, &(current_uberblock)) <= 0) continue; #endif grub_free (ub_array); grub_free (bh); return GRUB_ERR_NONE; } grub_free (ub_array); grub_free (bh); return grub_error (GRUB_ERR_BAD_FS, "couldn't find a valid label"); } static grub_err_t scan_devices (struct grub_zfs_data *data, grub_uint64_t id) { grub_device_t dev_found = NULL; auto int hook (const char *name); int hook (const char *name) { grub_device_t dev; grub_err_t err; dev = grub_device_open (name); if (!dev) return 0; if (!dev->disk) { grub_device_close (dev); return 0; } err = scan_disk (dev, data, 0); if (err == GRUB_ERR_BAD_FS) { grub_device_close (dev); grub_errno = GRUB_ERR_NONE; return 0; } if (err) { grub_device_close (dev); grub_print_error (); return 0; } dev_found = dev; return 1; } grub_device_iterate (hook); if (!dev_found) return grub_error (GRUB_ERR_BAD_FS, "couldn't find device 0x%" PRIxGRUB_UINT64_T, id); return GRUB_ERR_NONE; } static grub_err_t read_device (grub_uint64_t sector, struct grub_zfs_device_desc *desc, grub_size_t len, void *buf) { switch (desc->type) { case DEVICE_LEAF: if (!desc->dev) return grub_error (GRUB_ERR_BAD_FS, "member drive unknown"); /* read in a data block */ return grub_disk_read (desc->dev->disk, sector, 0, len, buf); case DEVICE_MIRROR: { grub_err_t err; unsigned i; if (desc->n_children <= 0) return grub_error (GRUB_ERR_BAD_FS, "non-positive number of mirror children"); for (i = 0; i < desc->n_children; i++) { err = read_device (sector, &desc->children[i], len, buf); if (!err) break; grub_errno = GRUB_ERR_NONE; } return (grub_errno = err); } default: return grub_error (GRUB_ERR_BAD_FS, "unsupported device type"); } } static grub_err_t read_dva (const dva_t *dva, grub_zfs_endian_t endian, struct grub_zfs_data *data, void *buf, grub_size_t len) { grub_uint64_t offset, sector; unsigned i; grub_err_t err; int try = 0; offset = dva_get_offset (dva, endian); sector = DVA_OFFSET_TO_PHYS_SECTOR (offset); for (try = 0; try < 1; try++) { for (i = 0; i < data->n_devices_attached; i++) if (data->devices_attached[i].id == DVA_GET_VDEV (dva)) return read_device (sector, &data->devices_attached[i], len, buf); err = scan_devices (data, DVA_GET_VDEV (dva)); if (err) return err; } return grub_error (GRUB_ERR_BAD_FS, "couldn't find device 0x%" PRIxGRUB_UINT64_T, DVA_GET_VDEV (dva)); } /* * Read a block of data based on the gang block address dva, * and put its data in buf. * */ static grub_err_t zio_read_gang (blkptr_t * bp, grub_zfs_endian_t endian, dva_t * dva, void *buf, struct grub_zfs_data *data) { zio_gbh_phys_t *zio_gb; unsigned i; grub_err_t err; zio_cksum_t zc; grub_memset (&zc, 0, sizeof (zc)); zio_gb = grub_malloc (SPA_GANGBLOCKSIZE); if (!zio_gb) return grub_errno; grub_dprintf ("zfs", endian == LITTLE_ENDIAN ? "little-endian gang\n" :"big-endian gang\n"); err = read_dva (dva, endian, data, zio_gb, SPA_GANGBLOCKSIZE); if (err) { grub_free (zio_gb); return err; } /* XXX */ /* self checksuming the gang block header */ ZIO_SET_CHECKSUM (&zc, DVA_GET_VDEV (dva), dva_get_offset (dva, endian), bp->blk_birth, 0); err = zio_checksum_verify (zc, ZIO_CHECKSUM_GANG_HEADER, endian, (char *) zio_gb, SPA_GANGBLOCKSIZE); if (err) { grub_free (zio_gb); return err; } endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1; for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { if (zio_gb->zg_blkptr[i].blk_birth == 0) continue; err = zio_read_data (&zio_gb->zg_blkptr[i], endian, buf, data); if (err) { grub_free (zio_gb); return err; } buf = (char *) buf + get_psize (&zio_gb->zg_blkptr[i], endian); } grub_free (zio_gb); return GRUB_ERR_NONE; } /* * Read in a block of raw data to buf. */ static grub_err_t zio_read_data (blkptr_t * bp, grub_zfs_endian_t endian, void *buf, struct grub_zfs_data *data) { int i, psize; grub_err_t err = GRUB_ERR_NONE; psize = get_psize (bp, endian); /* pick a good dva from the block pointer */ for (i = 0; i < SPA_DVAS_PER_BP; i++) { if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) continue; if ((grub_zfs_to_cpu64 (bp->blk_dva[i].dva_word[1], endian)>>63) & 1) err = zio_read_gang (bp, endian, &bp->blk_dva[i], buf, data); else err = read_dva (&bp->blk_dva[i], endian, data, buf, psize); if (!err) return GRUB_ERR_NONE; grub_errno = GRUB_ERR_NONE; } if (!err) err = grub_error (GRUB_ERR_BAD_FS, "couldn't find a valid DVA"); grub_errno = err; return err; } /* * Read in a block of data, verify its checksum, decompress if needed, * and put the uncompressed data in buf. */ static grub_err_t zio_read (blkptr_t * bp, grub_zfs_endian_t endian, void **buf, grub_size_t *size, struct grub_zfs_data *data) { grub_size_t lsize, psize; unsigned int comp; char *compbuf = NULL; grub_err_t err; zio_cksum_t zc = bp->blk_cksum; grub_uint32_t checksum; *buf = NULL; checksum = (grub_zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; comp = (grub_zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; lsize = (BP_IS_HOLE(bp) ? 0 : (((grub_zfs_to_cpu64 ((bp)->blk_prop, endian) & 0xffff) + 1) << SPA_MINBLOCKSHIFT)); psize = get_psize (bp, endian); if (size) *size = lsize; if (comp >= ZIO_COMPRESS_FUNCTIONS) return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "compression algorithm %u not supported\n", (unsigned int) comp); if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "compression algorithm %s not supported\n", decomp_table[comp].name); if (comp != ZIO_COMPRESS_OFF) { compbuf = grub_malloc (psize); if (! compbuf) return grub_errno; } else compbuf = *buf = grub_malloc (lsize); grub_dprintf ("zfs", "endian = %d\n", endian); err = zio_read_data (bp, endian, compbuf, data); if (err) { grub_free (compbuf); *buf = NULL; return err; } err = zio_checksum_verify (zc, checksum, endian, compbuf, psize); if (err) { grub_dprintf ("zfs", "incorrect checksum\n"); grub_free (compbuf); *buf = NULL; return err; } if (comp != ZIO_COMPRESS_OFF) { *buf = grub_malloc (lsize); if (!*buf) { grub_free (compbuf); return grub_errno; } err = decomp_table[comp].decomp_func (compbuf, *buf, psize, lsize); grub_free (compbuf); if (err) { grub_free (*buf); *buf = NULL; return err; } } return GRUB_ERR_NONE; } /* * Get the block from a block id. * push the block onto the stack. * */ static grub_err_t dmu_read (dnode_end_t * dn, grub_uint64_t blkid, void **buf, grub_zfs_endian_t *endian_out, struct grub_zfs_data *data) { int idx, level; blkptr_t *bp_array = dn->dn.dn_blkptr; int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; blkptr_t *bp, *tmpbuf = 0; grub_zfs_endian_t endian; grub_err_t err = GRUB_ERR_NONE; bp = grub_malloc (sizeof (blkptr_t)); if (!bp) return grub_errno; endian = dn->endian; for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { grub_dprintf ("zfs", "endian = %d\n", endian); idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); *bp = bp_array[idx]; if (bp_array != dn->dn.dn_blkptr) { grub_free (bp_array); bp_array = 0; } if (BP_IS_HOLE (bp)) { grub_size_t size = grub_zfs_to_cpu16 (dn->dn.dn_datablkszsec, dn->endian) << SPA_MINBLOCKSHIFT; *buf = grub_malloc (size); if (*buf) { err = grub_errno; break; } grub_memset (*buf, 0, size); endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1; break; } if (level == 0) { grub_dprintf ("zfs", "endian = %d\n", endian); err = zio_read (bp, endian, buf, 0, data); endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1; break; } grub_dprintf ("zfs", "endian = %d\n", endian); err = zio_read (bp, endian, (void **) &tmpbuf, 0, data); endian = (grub_zfs_to_cpu64 (bp->blk_prop, endian) >> 63) & 1; if (err) break; bp_array = tmpbuf; } if (bp_array != dn->dn.dn_blkptr) grub_free (bp_array); if (endian_out) *endian_out = endian; grub_free (bp); return err; } /* * mzap_lookup: Looks up property described by "name" and returns the value * in "value". */ static grub_err_t mzap_lookup (mzap_phys_t * zapobj, grub_zfs_endian_t endian, int objsize, char *name, grub_uint64_t * value) { int i, chunks; mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; chunks = objsize / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { if (grub_strcmp (mzap_ent[i].mze_name, name) == 0) { *value = grub_zfs_to_cpu64 (mzap_ent[i].mze_value, endian); return GRUB_ERR_NONE; } } return grub_error (GRUB_ERR_FILE_NOT_FOUND, "couldn't find %s", name); } static int mzap_iterate (mzap_phys_t * zapobj, grub_zfs_endian_t endian, int objsize, int NESTED_FUNC_ATTR (*hook) (const char *name, grub_uint64_t val)) { int i, chunks; mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; chunks = objsize / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { grub_dprintf ("zfs", "zap: name = %s, value = %llx, cd = %x\n", mzap_ent[i].mze_name, (long long)mzap_ent[i].mze_value, (int)mzap_ent[i].mze_cd); if (hook (mzap_ent[i].mze_name, grub_zfs_to_cpu64 (mzap_ent[i].mze_value, endian))) return 1; } return 0; } static grub_uint64_t zap_hash (grub_uint64_t salt, const char *name) { static grub_uint64_t table[256]; const grub_uint8_t *cp; grub_uint8_t c; grub_uint64_t crc = salt; if (table[128] == 0) { grub_uint64_t *ct; int i, j; for (i = 0; i < 256; i++) { for (ct = table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); } } for (cp = (const grub_uint8_t *) name; (c = *cp) != '\0'; cp++) crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; /* * Only use 28 bits, since we need 4 bits in the cookie for the * collision differentiator. We MUST use the high bits, since * those are the onces that we first pay attention to when * chosing the bucket. */ crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); return (crc); } /* * Only to be used on 8-bit arrays. * array_len is actual len in bytes (not encoded le_value_length). * buf is null-terminated. */ /* XXX */ static int zap_leaf_array_equal (zap_leaf_phys_t * l, grub_zfs_endian_t endian, int blksft, int chunk, int array_len, const char *buf) { int bseen = 0; while (bseen < array_len) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK (l, blksft, chunk).l_array; int toread = MIN (array_len - bseen, ZAP_LEAF_ARRAY_BYTES); if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft)) return (0); if (grub_memcmp (la->la_array, buf + bseen, toread) != 0) break; chunk = grub_zfs_to_cpu16 (la->la_next, endian); bseen += toread; } return (bseen == array_len); } /* XXX */ static grub_err_t zap_leaf_array_get (zap_leaf_phys_t * l, grub_zfs_endian_t endian, int blksft, int chunk, int array_len, char *buf) { int bseen = 0; while (bseen < array_len) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK (l, blksft, chunk).l_array; int toread = MIN (array_len - bseen, ZAP_LEAF_ARRAY_BYTES); if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft)) /* Don't use grub_error because this error is to be ignored. */ return GRUB_ERR_BAD_FS; grub_memcpy (buf + bseen,la->la_array, toread); chunk = grub_zfs_to_cpu16 (la->la_next, endian); bseen += toread; } return GRUB_ERR_NONE; } /* * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the * value for the property "name". * */ /* XXX */ static grub_err_t zap_leaf_lookup (zap_leaf_phys_t * l, grub_zfs_endian_t endian, int blksft, grub_uint64_t h, const char *name, grub_uint64_t * value) { grub_uint16_t chunk; struct zap_leaf_entry *le; /* Verify if this is a valid leaf block */ if (grub_zfs_to_cpu64 (l->l_hdr.lh_block_type, endian) != ZBT_LEAF) return grub_error (GRUB_ERR_BAD_FS, "invalid leaf type"); if (grub_zfs_to_cpu32 (l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) return grub_error (GRUB_ERR_BAD_FS, "invalid leaf magic"); for (chunk = grub_zfs_to_cpu16 (l->l_hash[LEAF_HASH (blksft, h)], endian); chunk != CHAIN_END; chunk = grub_zfs_to_cpu16 (le->le_next, endian)) { if (chunk >= ZAP_LEAF_NUMCHUNKS (blksft)) return grub_error (GRUB_ERR_BAD_FS, "invalid chunk number"); le = ZAP_LEAF_ENTRY (l, blksft, chunk); /* Verify the chunk entry */ if (le->le_type != ZAP_CHUNK_ENTRY) return grub_error (GRUB_ERR_BAD_FS, "invalid chunk entry"); if (grub_zfs_to_cpu64 (le->le_hash,endian) != h) continue; grub_dprintf ("zfs", "fzap: length %d\n", (int) le->le_name_length); if (zap_leaf_array_equal (l, endian, blksft, grub_zfs_to_cpu16 (le->le_name_chunk,endian), grub_zfs_to_cpu16 (le->le_name_length, endian), name)) { struct zap_leaf_array *la; grub_uint8_t *ip; if (le->le_int_size != 8 || grub_zfs_to_cpu16 (le->le_value_length, endian) != 1) return grub_error (GRUB_ERR_BAD_FS, "invalid leaf chunk entry"); /* get the uint64_t property value */ la = &ZAP_LEAF_CHUNK (l, blksft, le->le_value_chunk).l_array; ip = la->la_array; *value = grub_be_to_cpu64 (la->la_array64); return GRUB_ERR_NONE; } } return grub_error (GRUB_ERR_FILE_NOT_FOUND, "couldn't find %s", name); } /* Verify if this is a fat zap header block */ static grub_err_t zap_verify (zap_phys_t *zap, grub_zfs_endian_t endian) { if (grub_zfs_to_cpu64 (zap->zap_magic, endian) != (grub_uint64_t) ZAP_MAGIC) return grub_error (GRUB_ERR_BAD_FS, "bad ZAP magic"); if (zap->zap_flags != 0) return grub_error (GRUB_ERR_BAD_FS, "bad ZAP flags"); if (zap->zap_salt == 0) return grub_error (GRUB_ERR_BAD_FS, "bad ZAP salt"); return GRUB_ERR_NONE; } /* * Fat ZAP lookup * */ /* XXX */ static grub_err_t fzap_lookup (dnode_end_t * zap_dnode, zap_phys_t * zap, char *name, grub_uint64_t * value, struct grub_zfs_data *data) { zap_leaf_phys_t *l; grub_uint64_t hash, idx, blkid; int blksft = zfs_log2 (grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << DNODE_SHIFT); grub_err_t err; grub_zfs_endian_t leafendian; err = zap_verify (zap, zap_dnode->endian); if (err) return err; hash = zap_hash (zap->zap_salt, name); /* get block id from index */ if (zap->zap_ptrtbl.zt_numblks != 0) return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "external pointer tables not supported"); idx = ZAP_HASH_IDX (hash, zap->zap_ptrtbl.zt_shift); blkid = grub_zfs_to_cpu64 (((grub_uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))], zap_dnode->endian); /* Get the leaf block */ if ((1U << blksft) < sizeof (zap_leaf_phys_t)) return grub_error (GRUB_ERR_BAD_FS, "ZAP leaf is too small"); err = dmu_read (zap_dnode, blkid, (void **) &l, &leafendian, data); if (err) return err; err = zap_leaf_lookup (l, leafendian, blksft, hash, name, value); grub_free (l); return err; } /* XXX */ static int fzap_iterate (dnode_end_t * zap_dnode, zap_phys_t * zap, int NESTED_FUNC_ATTR (*hook) (const char *name, grub_uint64_t val), struct grub_zfs_data *data) { zap_leaf_phys_t *l; grub_uint64_t idx, blkid; grub_uint16_t chunk; int blksft = zfs_log2 (grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << DNODE_SHIFT); grub_err_t err; grub_zfs_endian_t endian; if (zap_verify (zap, zap_dnode->endian)) return 0; /* get block id from index */ if (zap->zap_ptrtbl.zt_numblks != 0) { grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "external pointer tables not supported"); return 0; } /* Get the leaf block */ if ((1U << blksft) < sizeof (zap_leaf_phys_t)) { grub_error (GRUB_ERR_BAD_FS, "ZAP leaf is too small"); return 0; } for (idx = 0; idx < grub_zfs_to_cpu64 (zap->zap_num_leafs, zap_dnode->endian); idx++) { blkid = grub_zfs_to_cpu64 (((grub_uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))], zap_dnode->endian); err = dmu_read (zap_dnode, blkid, (void **) &l, &endian, data); if (err) { grub_errno = GRUB_ERR_NONE; continue; } /* Verify if this is a valid leaf block */ if (grub_zfs_to_cpu64 (l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { grub_free (l); continue; } if (grub_zfs_to_cpu32 (l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { grub_free (l); continue; } for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS (blksft); chunk++) { char *buf; struct zap_leaf_array *la; struct zap_leaf_entry *le; grub_uint64_t val; le = ZAP_LEAF_ENTRY (l, blksft, chunk); /* Verify the chunk entry */ if (le->le_type != ZAP_CHUNK_ENTRY) continue; buf = grub_malloc (grub_zfs_to_cpu16 (le->le_name_length, endian) + 1); if (zap_leaf_array_get (l, endian, blksft, grub_zfs_to_cpu16 (le->le_name_chunk, endian), grub_zfs_to_cpu16 (le->le_name_length, endian), buf)) { grub_free (buf); continue; } buf[le->le_name_length] = 0; if (le->le_int_size != 8 || grub_zfs_to_cpu16 (le->le_value_length, endian) != 1) continue; /* get the uint64_t property value */ la = &ZAP_LEAF_CHUNK (l, blksft, grub_zfs_to_cpu16 (le->le_value_chunk, endian)).l_array; val = grub_be_to_cpu64 (la->la_array64); if (hook (buf, val)) return 1; grub_free (buf); } } return 0; } /* * Read in the data of a zap object and find the value for a matching * property name. * */ static grub_err_t zap_lookup (dnode_end_t * zap_dnode, char *name, grub_uint64_t * val, struct grub_zfs_data *data) { grub_uint64_t block_type; int size; void *zapbuf; grub_err_t err; grub_zfs_endian_t endian; grub_dprintf ("zfs", "looking for '%s'\n", name); /* Read in the first block of the zap object data. */ size = grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; err = dmu_read (zap_dnode, 0, &zapbuf, &endian, data); if (err) return err; block_type = grub_zfs_to_cpu64 (*((grub_uint64_t *) zapbuf), endian); grub_dprintf ("zfs", "zap read\n"); if (block_type == ZBT_MICRO) { grub_dprintf ("zfs", "micro zap\n"); err = (mzap_lookup (zapbuf, endian, size, name, val)); grub_dprintf ("zfs", "returned %d\n", err); grub_free (zapbuf); return err; } else if (block_type == ZBT_HEADER) { grub_dprintf ("zfs", "fat zap\n"); /* this is a fat zap */ err = (fzap_lookup (zap_dnode, zapbuf, name, val, data)); grub_dprintf ("zfs", "returned %d\n", err); grub_free (zapbuf); return err; } return grub_error (GRUB_ERR_BAD_FS, "unknown ZAP type"); } static int zap_iterate (dnode_end_t * zap_dnode, int NESTED_FUNC_ATTR (*hook) (const char *name, grub_uint64_t val), struct grub_zfs_data *data) { grub_uint64_t block_type; int size; void *zapbuf; grub_err_t err; int ret; grub_zfs_endian_t endian; /* Read in the first block of the zap object data. */ size = grub_zfs_to_cpu16 (zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; err = dmu_read (zap_dnode, 0, &zapbuf, &endian, data); if (err) return 0; block_type = grub_zfs_to_cpu64 (*((grub_uint64_t *) zapbuf), endian); grub_dprintf ("zfs", "zap read\n"); if (block_type == ZBT_MICRO) { grub_dprintf ("zfs", "micro zap\n"); ret = mzap_iterate (zapbuf, endian, size, hook); grub_free (zapbuf); return ret; } else if (block_type == ZBT_HEADER) { grub_dprintf ("zfs", "fat zap\n"); /* this is a fat zap */ ret = fzap_iterate (zap_dnode, zapbuf, hook, data); grub_free (zapbuf); return ret; } grub_error (GRUB_ERR_BAD_FS, "unknown ZAP type"); return 0; } /* * Get the dnode of an object number from the metadnode of an object set. * * Input * mdn - metadnode to get the object dnode * objnum - object number for the object dnode * buf - data buffer that holds the returning dnode */ static grub_err_t dnode_get (dnode_end_t * mdn, grub_uint64_t objnum, grub_uint8_t type, dnode_end_t * buf, struct grub_zfs_data *data) { grub_uint64_t blkid, blksz; /* the block id this object dnode is in */ int epbs; /* shift of number of dnodes in a block */ int idx; /* index within a block */ dnode_phys_t *dnbuf; grub_err_t err; grub_zfs_endian_t endian; blksz = grub_zfs_to_cpu16 (mdn->dn.dn_datablkszsec, mdn->endian) << SPA_MINBLOCKSHIFT; epbs = zfs_log2 (blksz) - DNODE_SHIFT; blkid = objnum >> epbs; idx = objnum & ((1 << epbs) - 1); if (data->dnode_buf != NULL && grub_memcmp (data->dnode_mdn, mdn, sizeof (*mdn)) == 0 && objnum >= data->dnode_start && objnum < data->dnode_end) { grub_memmove (&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); buf->endian = data->dnode_endian; if (type && buf->dn.dn_type != type) return grub_error(GRUB_ERR_BAD_FS, "incorrect dnode type"); return GRUB_ERR_NONE; } grub_dprintf ("zfs", "endian = %d, blkid=%llx\n", mdn->endian, (unsigned long long) blkid); err = dmu_read (mdn, blkid, (void **) &dnbuf, &endian, data); if (err) return err; grub_dprintf ("zfs", "alive\n"); grub_free (data->dnode_buf); grub_free (data->dnode_mdn); data->dnode_mdn = grub_malloc (sizeof (*mdn)); if (! data->dnode_mdn) { grub_errno = GRUB_ERR_NONE; data->dnode_buf = 0; } else { grub_memcpy (data->dnode_mdn, mdn, sizeof (*mdn)); data->dnode_buf = dnbuf; data->dnode_start = blkid << epbs; data->dnode_end = (blkid + 1) << epbs; data->dnode_endian = endian; } grub_memmove (&(buf->dn), &dnbuf[idx], DNODE_SIZE); buf->endian = endian; if (type && buf->dn.dn_type != type) return grub_error(GRUB_ERR_BAD_FS, "incorrect dnode type"); return GRUB_ERR_NONE; } /* * Get the file dnode for a given file name where mdn is the meta dnode * for this ZFS object set. When found, place the file dnode in dn. * The 'path' argument will be mangled. * */ static grub_err_t dnode_get_path (dnode_end_t * mdn, const char *path_in, dnode_end_t * dn, struct grub_zfs_data *data) { grub_uint64_t objnum, version; char *cname, ch; grub_err_t err = GRUB_ERR_NONE; char *path, *path_buf; struct dnode_chain { struct dnode_chain *next; dnode_end_t dn; }; struct dnode_chain *dnode_path = 0, *dn_new, *root; dn_new = grub_malloc (sizeof (*dn_new)); if (! dn_new) return grub_errno; dn_new->next = 0; dnode_path = root = dn_new; err = dnode_get (mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, &(dnode_path->dn), data); if (err) { grub_free (dn_new); return err; } err = zap_lookup (&(dnode_path->dn), ZPL_VERSION_STR, &version, data); if (err) { grub_free (dn_new); return err; } if (version > ZPL_VERSION) { grub_free (dn_new); return grub_error (GRUB_ERR_NOT_IMPLEMENTED_YET, "too new ZPL version"); } err = zap_lookup (&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); if (err) { grub_free (dn_new); return err; } err = dnode_get (mdn, objnum, 0, &(dnode_path->dn), data); if (err) { grub_free (dn_new); return err; } path = path_buf = grub_strdup (path_in); if (!path_buf) { grub_free (dn_new); return grub_errno; } while (1) { /* skip leading slashes */ while (*path == '/') path++; if (!*path) break; /* get the next component name */ cname = path; while (*path && *path != '/') path++; /* Skip dot. */ if (cname + 1 == path && cname[0] == '.') continue; /* Handle double dot. */ if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { if (dn_new->next) { dn_new = dnode_path; dnode_path = dn_new->next; grub_free (dn_new); } else { err = grub_error (GRUB_ERR_FILE_NOT_FOUND, "can't resolve .."); break; } continue; } ch = *path; *path = 0; /* ensure null termination */ if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { grub_free (path_buf); return grub_error (GRUB_ERR_BAD_FILE_TYPE, "not a directory"); } err = zap_lookup (&(dnode_path->dn), cname, &objnum, data); if (err) break; dn_new = grub_malloc (sizeof (*dn_new)); if (! dn_new) { err = grub_errno; break; } dn_new->next = dnode_path; dnode_path = dn_new; objnum = ZFS_DIRENT_OBJ (objnum); err = dnode_get (mdn, objnum, 0, &(dnode_path->dn), data); if (err) break; *path = ch; if (((grub_zfs_to_cpu64(((znode_phys_t *) DN_BONUS (&dnode_path->dn.dn))->zp_mode, dnode_path->dn.endian) >> 12) & 0xf) == 0xa) { char *oldpath = path, *oldpathbuf = path_buf; grub_size_t bonuslen; bonuslen = (grub_uint8_t *) (&dnode_path->dn.dn + 1) - (grub_uint8_t *) DN_BONUS (&dnode_path->dn.dn); if (bonuslen <= sizeof (znode_phys_t)) err = grub_error (GRUB_ERR_BAD_FS, "incorrect or unsupported symlink"); if (dnode_path->dn.dn.dn_flags & 1) { void *sbuf; grub_size_t ssize; err = zio_read (dnode_path->dn.dn.dn_blkptr, dnode_path->dn.endian, &sbuf, &ssize, data); if (err) { grub_free (oldpathbuf); return err; } path = path_buf = grub_malloc (ssize+ grub_strlen (oldpath) + 1); if (!path_buf) { grub_free (oldpathbuf); grub_free (sbuf); return grub_errno; } grub_memcpy (path, sbuf, ssize); path[ssize] = 0; grub_free (sbuf); } else { path = path_buf = grub_malloc (bonuslen - sizeof (znode_phys_t) + grub_strlen (oldpath) + 1); if (!path_buf) { grub_free (oldpathbuf); return grub_errno; } grub_memcpy (path, (char *) DN_BONUS(&dnode_path->dn.dn) + sizeof (znode_phys_t), bonuslen - sizeof (znode_phys_t)); path[bonuslen - sizeof (znode_phys_t)] = 0; } grub_memcpy (path + grub_strlen (path), oldpath, grub_strlen (oldpath) + 1); grub_free (oldpathbuf); if (path[0] != '/') { dn_new = dnode_path; dnode_path = dn_new->next; grub_free (dn_new); } else while (dnode_path != root) { dn_new = dnode_path; dnode_path = dn_new->next; grub_free (dn_new); } } } if (!err) grub_memcpy (dn, &(dnode_path->dn), sizeof (*dn)); while (dnode_path) { dn_new = dnode_path->next; grub_free (dnode_path); dnode_path = dn_new; } grub_free (path_buf); return err; } #if 0 /* * Get the default 'bootfs' property value from the rootpool. * */ static grub_err_t get_default_bootfsobj (dnode_phys_t * mosmdn, grub_uint64_t * obj, struct grub_zfs_data *data) { grub_uint64_t objnum = 0; dnode_phys_t *dn; if (!dn) return grub_errno; if ((grub_errno = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT, DMU_OT_OBJECT_DIRECTORY, dn, data))) { grub_free (dn); return (grub_errno); } /* * find the object number for 'pool_props', and get the dnode * of the 'pool_props'. */ if (zap_lookup (dn, DMU_POOL_PROPS, &objnum, data)) { grub_free (dn); return (GRUB_ERR_BAD_FS); } if ((grub_errno = dnode_get (mosmdn, objnum, DMU_OT_POOL_PROPS, dn, data))) { grub_free (dn); return (grub_errno); } if (zap_lookup (dn, ZPOOL_PROP_BOOTFS, &objnum, data)) { grub_free (dn); return (GRUB_ERR_BAD_FS); } if (!objnum) { grub_free (dn); return (GRUB_ERR_BAD_FS); } *obj = objnum; return (0); } #endif /* * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), * e.g. pool/rootfs, or a given object number (obj), e.g. the object number * of pool/rootfs. * * If no fsname and no obj are given, return the DSL_DIR metadnode. * If fsname is given, return its metadnode and its matching object number. * If only obj is given, return the metadnode for this object number. * */ static grub_err_t get_filesystem_dnode (dnode_end_t * mosmdn, char *fsname, dnode_end_t * mdn, struct grub_zfs_data *data) { grub_uint64_t objnum; grub_err_t err; grub_dprintf ("zfs", "endian = %d\n", mosmdn->endian); err = dnode_get (mosmdn, DMU_POOL_DIRECTORY_OBJECT, DMU_OT_OBJECT_DIRECTORY, mdn, data); if (err) return err; grub_dprintf ("zfs", "alive\n"); err = zap_lookup (mdn, DMU_POOL_ROOT_DATASET, &objnum, data); if (err) return err; grub_dprintf ("zfs", "alive\n"); err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); if (err) return err; grub_dprintf ("zfs", "alive\n"); while (*fsname) { grub_uint64_t childobj; char *cname, ch; while (*fsname == '/') fsname++; if (! *fsname || *fsname == '@') break; cname = fsname; while (*fsname && !grub_isspace (*fsname) && *fsname != '/') fsname++; ch = *fsname; *fsname = 0; childobj = grub_zfs_to_cpu64 ((((dsl_dir_phys_t *) DN_BONUS (&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); err = dnode_get (mosmdn, childobj, DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); if (err) return err; err = zap_lookup (mdn, cname, &objnum, data); if (err) return err; err = dnode_get (mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); if (err) return err; *fsname = ch; } return GRUB_ERR_NONE; } static grub_err_t make_mdn (dnode_end_t * mdn, struct grub_zfs_data *data) { objset_phys_t *osp; blkptr_t *bp; grub_size_t ospsize; grub_err_t err; grub_dprintf ("zfs", "endian = %d\n", mdn->endian); bp = &(((dsl_dataset_phys_t *) DN_BONUS (&mdn->dn))->ds_bp); err = zio_read (bp, mdn->endian, (void **) &osp, &ospsize, data); if (err) return err; if (ospsize < OBJSET_PHYS_SIZE_V14) { grub_free (osp); return grub_error (GRUB_ERR_BAD_FS, "too small osp"); } mdn->endian = (grub_zfs_to_cpu64 (bp->blk_prop, mdn->endian)>>63) & 1; grub_memmove ((char *) &(mdn->dn), (char *) &osp->os_meta_dnode, DNODE_SIZE); grub_free (osp); return GRUB_ERR_NONE; } static grub_err_t dnode_get_fullpath (const char *fullpath, dnode_end_t * mdn, grub_uint64_t *mdnobj, dnode_end_t * dn, int *isfs, struct grub_zfs_data *data) { char *fsname, *snapname; const char *ptr_at, *filename; grub_uint64_t headobj; grub_err_t err; ptr_at = grub_strchr (fullpath, '@'); if (! ptr_at) { *isfs = 1; filename = 0; snapname = 0; fsname = grub_strdup (fullpath); } else { const char *ptr_slash = grub_strchr (ptr_at, '/'); *isfs = 0; fsname = grub_malloc (ptr_at - fullpath + 1); if (!fsname) return grub_errno; grub_memcpy (fsname, fullpath, ptr_at - fullpath); fsname[ptr_at - fullpath] = 0; if (ptr_at[1] && ptr_at[1] != '/') { snapname = grub_malloc (ptr_slash - ptr_at); if (!snapname) { grub_free (fsname); return grub_errno; } grub_memcpy (snapname, ptr_at + 1, ptr_slash - ptr_at - 1); snapname[ptr_slash - ptr_at - 1] = 0; } else snapname = 0; if (ptr_slash) filename = ptr_slash; else filename = "/"; grub_dprintf ("zfs", "fsname = '%s' snapname='%s' filename = '%s'\n", fsname, snapname, filename); } grub_dprintf ("zfs", "alive\n"); err = get_filesystem_dnode (&(data->mos), fsname, dn, data); if (err) { grub_free (fsname); grub_free (snapname); return err; } grub_dprintf ("zfs", "alive\n"); headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&dn->dn))->dd_head_dataset_obj, dn->endian); grub_dprintf ("zfs", "endian = %d\n", mdn->endian); err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); if (err) { grub_free (fsname); grub_free (snapname); return err; } grub_dprintf ("zfs", "endian = %d\n", mdn->endian); if (snapname) { grub_uint64_t snapobj; snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&mdn->dn))->ds_snapnames_zapobj, mdn->endian); err = dnode_get (&(data->mos), snapobj, DMU_OT_DSL_DS_SNAP_MAP, mdn, data); if (!err) err = zap_lookup (mdn, snapname, &headobj, data); if (!err) err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); if (err) { grub_free (fsname); grub_free (snapname); return err; } } if (mdnobj) *mdnobj = headobj; make_mdn (mdn, data); grub_dprintf ("zfs", "endian = %d\n", mdn->endian); if (*isfs) { grub_free (fsname); grub_free (snapname); return GRUB_ERR_NONE; } err = dnode_get_path (mdn, filename, dn, data); grub_free (fsname); grub_free (snapname); return err; } /* * For a given XDR packed nvlist, verify the first 4 bytes and move on. * * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : * * encoding method/host endian (4 bytes) * nvl_version (4 bytes) * nvl_nvflag (4 bytes) * encoded nvpairs: * encoded size of the nvpair (4 bytes) * decoded size of the nvpair (4 bytes) * name string size (4 bytes) * name string data (sizeof(NV_ALIGN4(string)) * data type (4 bytes) * # of elements in the nvpair (4 bytes) * data * 2 zero's for the last nvpair * (end of the entire list) (8 bytes) * */ static int nvlist_find_value (const char *nvlist, const char *name, int valtype, char **val, grub_size_t *size_out, grub_size_t *nelm_out) { int name_len, type, encode_size; const char *nvpair, *nvp_name; /* Verify if the 1st and 2nd byte in the nvlist are valid. */ /* NOTE: independently of what endianness header announces all subsequent values are big-endian. */ if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN && nvlist[1] != NV_BIG_ENDIAN)) { grub_dprintf ("zfs", "incorrect nvlist header\n"); grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist"); return 0; } /* skip the header, nvl_version, and nvl_nvflag */ nvlist = nvlist + 4 * 3; /* * Loop thru the nvpair list * The XDR representation of an integer is in big-endian byte order. */ while ((encode_size = grub_be_to_cpu32 (*(grub_uint32_t *) nvlist))) { int nelm; nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ name_len = grub_be_to_cpu32 (*(grub_uint32_t *) nvpair); nvpair += 4; nvp_name = nvpair; nvpair = nvpair + ((name_len + 3) & ~3); /* align */ type = grub_be_to_cpu32 (*(grub_uint32_t *) nvpair); nvpair += 4; nelm = grub_be_to_cpu32 (*(grub_uint32_t *) nvpair); if (nelm < 1) return grub_error (GRUB_ERR_BAD_FS, "empty nvpair"); nvpair += 4; if ((grub_strncmp (nvp_name, name, name_len) == 0) && type == valtype) { *val = (char *) nvpair; *size_out = encode_size; if (nelm_out) *nelm_out = nelm; return 1; } nvlist += encode_size; /* goto the next nvpair */ } return 0; } int grub_zfs_nvlist_lookup_uint64 (const char *nvlist, const char *name, grub_uint64_t * out) { char *nvpair; grub_size_t size; int found; found = nvlist_find_value (nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); if (!found) return 0; if (size < sizeof (grub_uint64_t)) { grub_error (GRUB_ERR_BAD_FS, "invalid uint64"); return 0; } *out = grub_be_to_cpu64 (*(grub_uint64_t *) nvpair); return 1; } char * grub_zfs_nvlist_lookup_string (const char *nvlist, const char *name) { char *nvpair; char *ret; grub_size_t slen; grub_size_t size; int found; found = nvlist_find_value (nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); if (!found) return 0; if (size < 4) { grub_error (GRUB_ERR_BAD_FS, "invalid string"); return 0; } slen = grub_be_to_cpu32 (*(grub_uint32_t *) nvpair); if (slen > size - 4) slen = size - 4; ret = grub_malloc (slen + 1); if (!ret) return 0; grub_memcpy (ret, nvpair + 4, slen); ret[slen] = 0; return ret; } char * grub_zfs_nvlist_lookup_nvlist (const char *nvlist, const char *name) { char *nvpair; char *ret; grub_size_t size; int found; found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST, &nvpair, &size, 0); if (!found) return 0; ret = grub_zalloc (size + 3 * sizeof (grub_uint32_t)); if (!ret) return 0; grub_memcpy (ret, nvlist, sizeof (grub_uint32_t)); grub_memcpy (ret + sizeof (grub_uint32_t), nvpair, size); return ret; } int grub_zfs_nvlist_lookup_nvlist_array_get_nelm (const char *nvlist, const char *name) { char *nvpair; grub_size_t nelm, size; int found; found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair, &size, &nelm); if (! found) return -1; return nelm; } static int get_nvlist_size (const char *beg, const char *limit) { const char *ptr; grub_uint32_t encode_size; ptr = beg + 8; while (ptr < limit && (encode_size = grub_be_to_cpu32 (*(grub_uint32_t *) ptr))) ptr += encode_size; /* goto the next nvpair */ ptr += 8; return (ptr > limit) ? -1 : (ptr - beg); } char * grub_zfs_nvlist_lookup_nvlist_array (const char *nvlist, const char *name, grub_size_t index) { char *nvpair, *nvpairptr; int found; char *ret; grub_size_t size; unsigned i; grub_size_t nelm; int elemsize = 0; found = nvlist_find_value (nvlist, name, DATA_TYPE_NVLIST_ARRAY, &nvpair, &size, &nelm); if (!found) return 0; if (index >= nelm) { grub_error (GRUB_ERR_OUT_OF_RANGE, "trying to lookup past nvlist array"); return 0; } nvpairptr = nvpair; for (i = 0; i < index; i++) { int r; r = get_nvlist_size (nvpairptr, nvpair + size); if (r < 0) { grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array"); return NULL; } nvpairptr += r; } elemsize = get_nvlist_size (nvpairptr, nvpair + size); if (elemsize < 0) { grub_error (GRUB_ERR_BAD_FS, "incorrect nvlist array"); return 0; } ret = grub_zalloc (elemsize + sizeof (grub_uint32_t)); if (!ret) return 0; grub_memcpy (ret, nvlist, sizeof (grub_uint32_t)); grub_memcpy (ret + sizeof (grub_uint32_t), nvpairptr, elemsize); return ret; } static void unmount_device (struct grub_zfs_device_desc *desc) { unsigned i; switch (desc->type) { case DEVICE_LEAF: if (!desc->original && desc->dev) grub_device_close (desc->dev); return; case DEVICE_MIRROR: for (i = 0; i < desc->n_children; i++) unmount_device (&desc->children[i]); return; } } static void zfs_unmount (struct grub_zfs_data *data) { unsigned i; for (i = 0; i < data->n_devices_attached; i++) unmount_device (&data->devices_attached[i]); grub_free (data->dnode_buf); grub_free (data->dnode_mdn); grub_free (data->file_buf); grub_free (data); } /* * zfs_mount() locates a valid uberblock of the root pool and read in its MOS * to the memory address MOS. * */ static struct grub_zfs_data * zfs_mount (grub_device_t dev) { struct grub_zfs_data *data = 0; grub_err_t err; objset_phys_t *osp = 0; grub_size_t ospsize; grub_zfs_endian_t ub_endian = UNKNOWN_ENDIAN; uberblock_t *ub; if (! dev->disk) { grub_error (GRUB_ERR_BAD_DEVICE, "not a disk"); return 0; } data = grub_zalloc (sizeof (*data)); if (!data) return 0; #if 0 /* if it's our first time here, zero the best uberblock out */ if (data->best_drive == 0 && data->best_part == 0 && find_best_root) grub_memset (¤t_uberblock, 0, sizeof (uberblock_t)); #endif data->n_devices_allocated = 16; data->devices_attached = grub_malloc (sizeof (data->devices_attached[0]) * data->n_devices_allocated); data->n_devices_attached = 0; err = scan_disk (dev, data, 1); if (err) { zfs_unmount (data); return NULL; } ub = &(data->current_uberblock); ub_endian = (grub_zfs_to_cpu64 (ub->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC ? LITTLE_ENDIAN : BIG_ENDIAN); err = zio_read (&ub->ub_rootbp, ub_endian, (void **) &osp, &ospsize, data); if (err) { zfs_unmount (data); return NULL; } if (ospsize < OBJSET_PHYS_SIZE_V14) { grub_error (GRUB_ERR_BAD_FS, "OSP too small"); grub_free (osp); zfs_unmount (data); return NULL; } /* Got the MOS. Save it at the memory addr MOS. */ grub_memmove (&(data->mos.dn), &osp->os_meta_dnode, DNODE_SIZE); data->mos.endian = (grub_zfs_to_cpu64 (ub->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; grub_free (osp); data->mounted = 1; return data; } grub_err_t grub_zfs_fetch_nvlist (grub_device_t dev, char **nvlist) { struct grub_zfs_data *zfs; grub_err_t err; zfs = zfs_mount (dev); if (!zfs) return grub_errno; err = zfs_fetch_nvlist (&zfs->devices_attached[0], nvlist); zfs_unmount (zfs); return err; } static grub_err_t zfs_label (grub_device_t device, char **label) { char *nvlist; grub_err_t err; struct grub_zfs_data *data; data = zfs_mount (device); if (! data) return grub_errno; err = zfs_fetch_nvlist (data->devices_attached, &nvlist); if (err) { zfs_unmount (data); return err; } *label = grub_zfs_nvlist_lookup_string (nvlist, ZPOOL_CONFIG_POOL_NAME); grub_free (nvlist); zfs_unmount (data); return grub_errno; } static grub_err_t zfs_uuid (grub_device_t device, char **uuid) { struct grub_zfs_data *data; *uuid = 0; data = zfs_mount (device); if (! data) return grub_errno; *uuid = grub_xasprintf ("%016llx", (long long unsigned) data->guid); zfs_unmount (data); if (! *uuid) return grub_errno; return GRUB_ERR_NONE; } /* * zfs_open() locates a file in the rootpool by following the * MOS and places the dnode of the file in the memory address DNODE. */ static grub_err_t grub_zfs_open (struct grub_file *file, const char *fsfilename) { struct grub_zfs_data *data; grub_err_t err; int isfs; data = zfs_mount (file->device); if (! data) return grub_errno; err = dnode_get_fullpath (fsfilename, &(data->mdn), 0, &(data->dnode), &isfs, data); if (err) { zfs_unmount (data); return err; } if (isfs) { zfs_unmount (data); return grub_error (GRUB_ERR_FILE_NOT_FOUND, "Missing @ or / separator"); } /* We found the dnode for this file. Verify if it is a plain file. */ if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { zfs_unmount (data); return grub_error (GRUB_ERR_BAD_FILE_TYPE, "not a file"); } /* get the file size and set the file position to 0 */ /* * For DMU_OT_SA we will need to locate the SIZE attribute * attribute, which could be either in the bonus buffer * or the "spill" block. */ if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { sa_hdr_phys_t *sahdrp; int hdrsize; if (data->dnode.dn.dn_bonuslen != 0) { sahdrp = (sa_hdr_phys_t *) DN_BONUS (&data->dnode.dn); } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { blkptr_t *bp = &data->dnode.dn.dn_spill; err = zio_read (bp, data->dnode.endian, (void **) &sahdrp, NULL, data); if (err) return err; } else { return grub_error (GRUB_ERR_BAD_FS, "filesystem is corrupt"); } hdrsize = SA_HDR_SIZE (sahdrp); file->size = *(grub_uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); } else { file->size = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&data->dnode.dn))->zp_size, data->dnode.endian); } file->data = data; file->offset = 0; #ifndef GRUB_UTIL grub_dl_ref (my_mod); #endif return GRUB_ERR_NONE; } static grub_ssize_t grub_zfs_read (grub_file_t file, char *buf, grub_size_t len) { struct grub_zfs_data *data = (struct grub_zfs_data *) file->data; int blksz, movesize; grub_size_t length; grub_size_t read; grub_err_t err; if (data->file_buf == NULL) { data->file_buf = grub_malloc (SPA_MAXBLOCKSIZE); if (!data->file_buf) return -1; data->file_start = data->file_end = 0; } /* * If offset is in memory, move it into the buffer provided and return. */ if (file->offset >= data->file_start && file->offset + len <= data->file_end) { grub_memmove (buf, data->file_buf + file->offset - data->file_start, len); return len; } blksz = grub_zfs_to_cpu16 (data->dnode.dn.dn_datablkszsec, data->dnode.endian) << SPA_MINBLOCKSHIFT; /* * Entire Dnode is too big to fit into the space available. We * will need to read it in chunks. This could be optimized to * read in as large a chunk as there is space available, but for * now, this only reads in one data block at a time. */ length = len; read = 0; while (length) { /* * Find requested blkid and the offset within that block. */ grub_uint64_t blkid = grub_divmod64 (file->offset + read, blksz, 0); grub_free (data->file_buf); data->file_buf = 0; err = dmu_read (&(data->dnode), blkid, (void **) &(data->file_buf), 0, data); if (err) return -1; data->file_start = blkid * blksz; data->file_end = data->file_start + blksz; movesize = MIN (length, data->file_end - (int) file->offset - read); grub_memmove (buf, data->file_buf + file->offset + read - data->file_start, movesize); buf += movesize; length -= movesize; read += movesize; } return len; } static grub_err_t grub_zfs_close (grub_file_t file) { zfs_unmount ((struct grub_zfs_data *) file->data); #ifndef GRUB_UTIL grub_dl_unref (my_mod); #endif return GRUB_ERR_NONE; } grub_err_t grub_zfs_getmdnobj (grub_device_t dev, const char *fsfilename, grub_uint64_t *mdnobj) { struct grub_zfs_data *data; grub_err_t err; int isfs; data = zfs_mount (dev); if (! data) return grub_errno; err = dnode_get_fullpath (fsfilename, &(data->mdn), mdnobj, &(data->dnode), &isfs, data); zfs_unmount (data); return err; } static void fill_fs_info (struct grub_dirhook_info *info, dnode_end_t mdn, struct grub_zfs_data *data) { grub_err_t err; dnode_end_t dn; grub_uint64_t objnum; grub_uint64_t headobj; grub_memset (info, 0, sizeof (*info)); info->dir = 1; if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&mdn.dn))->dd_head_dataset_obj, mdn.endian); err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); if (err) { grub_dprintf ("zfs", "failed here\n"); return; } } make_mdn (&mdn, data); err = dnode_get (&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, &dn, data); if (err) { grub_dprintf ("zfs", "failed here\n"); return; } err = zap_lookup (&dn, ZFS_ROOT_OBJ, &objnum, data); if (err) { grub_dprintf ("zfs", "failed here\n"); return; } err = dnode_get (&mdn, objnum, 0, &dn, data); if (err) { grub_dprintf ("zfs", "failed here\n"); return; } info->mtimeset = 1; info->mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp_mtime[0], dn.endian); return; } static grub_err_t grub_zfs_dir (grub_device_t device, const char *path, int (*hook) (const char *, const struct grub_dirhook_info *)) { struct grub_zfs_data *data; grub_err_t err; int isfs; auto int NESTED_FUNC_ATTR iterate_zap (const char *name, grub_uint64_t val); auto int NESTED_FUNC_ATTR iterate_zap_fs (const char *name, grub_uint64_t val); auto int NESTED_FUNC_ATTR iterate_zap_snap (const char *name, grub_uint64_t val); int NESTED_FUNC_ATTR iterate_zap (const char *name, grub_uint64_t val) { struct grub_dirhook_info info; dnode_end_t dn; grub_memset (&info, 0, sizeof (info)); dnode_get (&(data->mdn), val, 0, &dn, data); info.mtimeset = 1; info.mtime = grub_zfs_to_cpu64 (((znode_phys_t *) DN_BONUS (&dn.dn))->zp_mtime[0], dn.endian); info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); grub_dprintf ("zfs", "type=%d, name=%s\n", (int)dn.dn.dn_type, (char *)name); return hook (name, &info); } int NESTED_FUNC_ATTR iterate_zap_fs (const char *name, grub_uint64_t val) { struct grub_dirhook_info info; dnode_end_t mdn; err = dnode_get (&(data->mos), val, 0, &mdn, data); if (err) return 0; if (mdn.dn.dn_type != DMU_OT_DSL_DIR) return 0; fill_fs_info (&info, mdn, data); return hook (name, &info); } int NESTED_FUNC_ATTR iterate_zap_snap (const char *name, grub_uint64_t val) { struct grub_dirhook_info info; char *name2; int ret; dnode_end_t mdn; err = dnode_get (&(data->mos), val, 0, &mdn, data); if (err) return 0; if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) return 0; fill_fs_info (&info, mdn, data); name2 = grub_malloc (grub_strlen (name) + 2); name2[0] = '@'; grub_memcpy (name2 + 1, name, grub_strlen (name) + 1); ret = hook (name2, &info); grub_free (name2); return ret; } data = zfs_mount (device); if (! data) return grub_errno; err = dnode_get_fullpath (path, &(data->mdn), 0, &(data->dnode), &isfs, data); if (err) { zfs_unmount (data); return err; } if (isfs) { grub_uint64_t childobj, headobj; grub_uint64_t snapobj; dnode_end_t dn; struct grub_dirhook_info info; fill_fs_info (&info, data->dnode, data); hook ("@", &info); childobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); headobj = grub_zfs_to_cpu64 (((dsl_dir_phys_t *) DN_BONUS (&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); err = dnode_get (&(data->mos), childobj, DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); if (err) { zfs_unmount (data); return err; } zap_iterate (&dn, iterate_zap_fs, data); err = dnode_get (&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); if (err) { zfs_unmount (data); return err; } snapobj = grub_zfs_to_cpu64 (((dsl_dataset_phys_t *) DN_BONUS (&dn.dn))->ds_snapnames_zapobj, dn.endian); err = dnode_get (&(data->mos), snapobj, DMU_OT_DSL_DS_SNAP_MAP, &dn, data); if (err) { zfs_unmount (data); return err; } zap_iterate (&dn, iterate_zap_snap, data); } else { if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { zfs_unmount (data); return grub_error (GRUB_ERR_BAD_FILE_TYPE, "not a directory"); } zap_iterate (&(data->dnode), iterate_zap, data); } zfs_unmount (data); return grub_errno; } static struct grub_fs grub_zfs_fs = { .name = "zfs", .dir = grub_zfs_dir, .open = grub_zfs_open, .read = grub_zfs_read, .close = grub_zfs_close, .label = zfs_label, .uuid = zfs_uuid, .mtime = 0, .next = 0 }; GRUB_MOD_INIT (zfs) { COMPILE_TIME_ASSERT (sizeof (zap_leaf_chunk_t) == ZAP_LEAF_CHUNKSIZE); grub_fs_register (&grub_zfs_fs); #ifndef GRUB_UTIL my_mod = mod; #endif } GRUB_MOD_FINI (zfs) { grub_fs_unregister (&grub_zfs_fs); }