/* mm.c - generic EFI memory management */ /* * GRUB -- GRand Unified Bootloader * Copyright (C) 2006,2007 Free Software Foundation, Inc. * * GRUB is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GRUB is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GRUB. If not, see . */ #include #include #include #include //#define DEBUG_MM #define NEXT_MEMORY_DESCRIPTOR(desc, size) \ ((grub_efi_memory_descriptor_t *) ((char *) (desc) + (size))) #define BYTES_TO_PAGES(bytes) ((bytes + 0xfff) >> 12) #define PAGES_TO_BYTES(pages) ((pages) << 12) /* Maintain the list of allocated pages. */ struct allocated_page { grub_efi_physical_address_t addr; grub_efi_uint64_t num_pages; }; #define ALLOCATED_PAGES_SIZE 0x1000 #define MAX_ALLOCATED_PAGES \ (ALLOCATED_PAGES_SIZE / sizeof (struct allocated_page)) static struct allocated_page *allocated_pages = 0; /* The minimum and maximum heap size for GRUB itself. */ #define MIN_HEAP_SIZE 0x100000 #define MAX_HEAP_SIZE (16 * 0x100000) /* Allocate pages. Return the pointer to the first of allocated pages. */ void * grub_efi_allocate_boot_pages (grub_efi_physical_address_t address, grub_efi_uintn_t pages) { grub_efi_allocate_type_t type; grub_efi_status_t status; grub_efi_boot_services_t *b; #if GRUB_CPU_SIZEOF_VOID_P < 8 /* Limit the memory access to less than 4GB for 32-bit platforms. */ if (address > 0xffffffff) return 0; if (address == 0) { type = GRUB_EFI_ALLOCATE_MAX_ADDRESS; address = 0xffffffff; } else type = GRUB_EFI_ALLOCATE_ADDRESS; #else if (address == 0) type = GRUB_EFI_ALLOCATE_ANY_PAGES; else type = GRUB_EFI_ALLOCATE_ADDRESS; #endif b = grub_efi_system_table->boot_services; status = b->allocate_pages (type, GRUB_EFI_LOADER_DATA, pages, &address); if (status != GRUB_EFI_SUCCESS) return 0; if (address == 0) { /* Uggh, the address 0 was allocated... This is too annoying, so reallocate another one. */ status = b->allocate_pages (type, GRUB_EFI_LOADER_DATA, pages, &address); grub_efi_free_boot_pages (0, pages); if (status != GRUB_EFI_SUCCESS) return 0; } return (void *)address; } /* Free pages starting from ADDRESS. */ void grub_efi_free_boot_pages (grub_efi_physical_address_t address, grub_efi_uintn_t pages) { grub_efi_boot_services_t *b; b = grub_efi_system_table->boot_services; b->free_pages (address, pages); } /* Allocate pages. Return the pointer to the first of allocated pages. */ void * grub_efi_allocate_pages (grub_efi_physical_address_t address, grub_efi_uintn_t pages) { address = grub_efi_allocate_boot_pages (address, pages); if (address != 0 && allocated_pages) { unsigned i; for (i = 0; i < MAX_ALLOCATED_PAGES; i++) if (allocated_pages[i].addr == 0) { allocated_pages[i].addr = address; allocated_pages[i].num_pages = pages; break; } if (i == MAX_ALLOCATED_PAGES) grub_fatal ("too many page allocations"); } return (void *) ((grub_addr_t) address); } /* Free pages starting from ADDRESS. */ void grub_efi_free_pages (grub_efi_physical_address_t address, grub_efi_uintn_t pages) { if (allocated_pages && ((grub_efi_physical_address_t) ((grub_addr_t) allocated_pages) != address)) { unsigned i; for (i = 0; i < MAX_ALLOCATED_PAGES; i++) if (allocated_pages[i].addr == address) { allocated_pages[i].addr = 0; break; } } grub_efi_free_boot_pages (address, pages); } /* Get the memory map as defined in the EFI spec. Return 1 if successful, return 0 if partial, or return -1 if an error occurs. */ int grub_efi_get_memory_map (grub_efi_uintn_t *memory_map_size, grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t *map_key, grub_efi_uintn_t *descriptor_size, grub_efi_uint32_t *descriptor_version) { grub_efi_status_t status; grub_efi_boot_services_t *b; grub_efi_uintn_t key; grub_efi_uint32_t version; /* Allow some parameters to be missing. */ if (! map_key) map_key = &key; if (! descriptor_version) descriptor_version = &version; b = grub_efi_system_table->boot_services; status = b->get_memory_map (memory_map_size, memory_map, map_key, descriptor_size, descriptor_version); if (status == GRUB_EFI_SUCCESS) return 1; else if (status == GRUB_EFI_BUFFER_TOO_SMALL) return 0; else return -1; } /* Sort the memory map in place. */ static void sort_memory_map (grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t desc_size, grub_efi_memory_descriptor_t *memory_map_end) { grub_efi_memory_descriptor_t *d1; grub_efi_memory_descriptor_t *d2; for (d1 = memory_map; d1 < memory_map_end; d1 = NEXT_MEMORY_DESCRIPTOR (d1, desc_size)) { grub_efi_memory_descriptor_t *max_desc = d1; for (d2 = NEXT_MEMORY_DESCRIPTOR (d1, desc_size); d2 < memory_map_end; d2 = NEXT_MEMORY_DESCRIPTOR (d2, desc_size)) { if (max_desc->num_pages < d2->num_pages) max_desc = d2; } if (max_desc != d1) { grub_efi_memory_descriptor_t tmp; tmp = *d1; *d1 = *max_desc; *max_desc = tmp; } } } /* Filter the descriptors. GRUB needs only available memory. */ static grub_efi_memory_descriptor_t * filter_memory_map (grub_efi_memory_descriptor_t *memory_map, grub_efi_memory_descriptor_t *filtered_memory_map, grub_efi_uintn_t desc_size, grub_efi_memory_descriptor_t *memory_map_end) { grub_efi_memory_descriptor_t *desc; grub_efi_memory_descriptor_t *filtered_desc; for (desc = memory_map, filtered_desc = filtered_memory_map; desc < memory_map_end; desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) { if (desc->type == GRUB_EFI_CONVENTIONAL_MEMORY #if GRUB_CPU_SIZEOF_VOID_P < 8 && desc->physical_start <= 0xffffffff #endif && desc->physical_start + PAGES_TO_BYTES (desc->num_pages) > 0x100000 && desc->num_pages != 0) { grub_memcpy (filtered_desc, desc, desc_size); /* Avoid less than 1MB, because some loaders seem to be confused. */ if (desc->physical_start < 0x100000) { desc->num_pages -= BYTES_TO_PAGES (0x100000 - desc->physical_start); desc->physical_start = 0x100000; } #if GRUB_CPU_SIZEOF_VOID_P < 8 if (BYTES_TO_PAGES (filtered_desc->physical_start) + filtered_desc->num_pages > BYTES_TO_PAGES (0x100000000LL)) filtered_desc->num_pages = (BYTES_TO_PAGES (0x100000000LL) - BYTES_TO_PAGES (filtered_desc->physical_start)); #endif if (filtered_desc->num_pages == 0) continue; filtered_desc = NEXT_MEMORY_DESCRIPTOR (filtered_desc, desc_size); } } return filtered_desc; } /* Return the total number of pages. */ static grub_efi_uint64_t get_total_pages (grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t desc_size, grub_efi_memory_descriptor_t *memory_map_end) { grub_efi_memory_descriptor_t *desc; grub_efi_uint64_t total = 0; for (desc = memory_map; desc < memory_map_end; desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) total += desc->num_pages; return total; } /* Add memory regions. */ static void add_memory_regions (grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t desc_size, grub_efi_memory_descriptor_t *memory_map_end, grub_efi_uint64_t required_pages) { grub_efi_memory_descriptor_t *desc; #ifdef DEBUG_MM grub_printf ("mm: required_pages=%lu\n", required_pages); #endif for (desc = memory_map; desc < memory_map_end; desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size)) { grub_efi_uint64_t pages; grub_efi_physical_address_t start; void *addr; start = desc->physical_start; pages = desc->num_pages; if (pages > required_pages) { start += PAGES_TO_BYTES (pages - required_pages); pages = required_pages; } addr = grub_efi_allocate_pages (start, pages); if (! addr) grub_fatal ("cannot allocate conventional memory %p with %u pages", (void *) ((grub_addr_t) start), (unsigned) pages); grub_mm_init_region (addr, PAGES_TO_BYTES (pages)); #ifdef DEBUG_MM grub_printf ("mm: add %lu pages from %p\n", pages, addr); #endif required_pages -= pages; if (required_pages == 0) break; } if (required_pages > 0) grub_fatal ("too little memory"); } #if 0 /* Print the memory map. */ static void print_memory_map (grub_efi_memory_descriptor_t *memory_map, grub_efi_uintn_t desc_size, grub_efi_memory_descriptor_t *memory_map_end) { grub_efi_memory_descriptor_t *desc; int i; for (desc = memory_map, i = 0; desc < memory_map_end; desc = NEXT_MEMORY_DESCRIPTOR (desc, desc_size), i++) { grub_printf ("MD: t=%x, p=%llx, v=%llx, n=%llx, a=%llx\n", desc->type, desc->physical_start, desc->virtual_start, desc->num_pages, desc->attribute); } } #endif void grub_efi_mm_init (void) { grub_efi_memory_descriptor_t *memory_map; grub_efi_memory_descriptor_t *memory_map_end; grub_efi_memory_descriptor_t *filtered_memory_map; grub_efi_memory_descriptor_t *filtered_memory_map_end; grub_efi_uintn_t map_size; grub_efi_uintn_t desc_size; grub_efi_uint64_t total_pages; grub_efi_uint64_t required_pages; grub_efi_uintn_t memory_map_size; int res; /* First of all, allocate pages to maintain allocations. */ allocated_pages = grub_efi_allocate_pages (0, BYTES_TO_PAGES (ALLOCATED_PAGES_SIZE)); if (! allocated_pages) grub_fatal ("cannot allocate memory"); grub_memset (allocated_pages, 0, ALLOCATED_PAGES_SIZE); /* Prepare a memory region to store two memory maps. */ memory_map_size = 0; res = grub_efi_get_memory_map (&memory_map_size, NULL, 0, &desc_size, 0); if (res != 0) grub_fatal ("cannot get memory map size"); /* Add space for a few more entries as allocating pages can increase memory map size. */ memory_map_size += 4 * desc_size; memory_map = grub_efi_allocate_pages (0, 2 * BYTES_TO_PAGES (memory_map_size)); if (! memory_map) grub_fatal ("cannot allocate memory"); filtered_memory_map = NEXT_MEMORY_DESCRIPTOR (memory_map, memory_map_size); /* Obtain descriptors for available memory. */ map_size = memory_map_size; if (grub_efi_get_memory_map (&map_size, memory_map, 0, &desc_size, 0) <= 0) grub_fatal ("cannot get memory map"); memory_map_end = NEXT_MEMORY_DESCRIPTOR (memory_map, map_size); filtered_memory_map_end = filter_memory_map (memory_map, filtered_memory_map, desc_size, memory_map_end); /* By default, request a quarter of the available memory. */ total_pages = get_total_pages (filtered_memory_map, desc_size, filtered_memory_map_end); required_pages = (total_pages >> 2); if (required_pages < BYTES_TO_PAGES (MIN_HEAP_SIZE)) required_pages = BYTES_TO_PAGES (MIN_HEAP_SIZE); else if (required_pages > BYTES_TO_PAGES (MAX_HEAP_SIZE)) required_pages = BYTES_TO_PAGES (MAX_HEAP_SIZE); /* Sort the filtered descriptors, so that GRUB can allocate pages from smaller regions. */ sort_memory_map (filtered_memory_map, desc_size, filtered_memory_map_end); /* Allocate memory regions for GRUB's memory management. */ add_memory_regions (filtered_memory_map, desc_size, filtered_memory_map_end, required_pages); #if 0 /* For debug. */ map_size = memory_map_size; if (grub_efi_get_memory_map (&map_size, memory_map, 0, &desc_size, 0) < 0) grub_fatal ("cannot get memory map"); grub_printf ("printing memory map\n"); print_memory_map (memory_map, desc_size, NEXT_MEMORY_DESCRIPTOR (memory_map, map_size)); grub_abort (); #endif /* Release the memory maps. */ grub_efi_free_pages ((grub_addr_t) memory_map, 2 * BYTES_TO_PAGES (memory_map_size)); } void grub_efi_mm_fini (void) { if (allocated_pages) { unsigned i; for (i = 0; i < MAX_ALLOCATED_PAGES; i++) { struct allocated_page *p; p = allocated_pages + i; if (p->addr != 0) { grub_efi_free_pages ((grub_addr_t) p->addr, p->num_pages); } } grub_efi_free_pages ((grub_addr_t) allocated_pages, BYTES_TO_PAGES (ALLOCATED_PAGES_SIZE)); allocated_pages = 0; } }