/* ec.c - Elliptic Curve functions Copyright (C) 2007 Free Software Foundation, Inc. This file is part of Libgcrypt. Libgcrypt is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Libgcrypt is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <stdio.h> #include <stdlib.h> #include "mpi-internal.h" #include "longlong.h" #include "g10lib.h" #define point_init(a) _gcry_mpi_ec_point_init ((a)) #define point_free(a) _gcry_mpi_ec_point_free ((a)) /* Object to represent a point in projective coordinates. */ /* Currently defined in mpi.h */ /* This context is used with all our EC functions. */ struct mpi_ec_ctx_s { /* Domain parameters. */ gcry_mpi_t p; /* Prime specifying the field GF(p). */ gcry_mpi_t a; /* First coefficient of the Weierstrass equation. */ int a_is_pminus3; /* True if A = P - 3. */ /* Some often used constants. */ gcry_mpi_t one; gcry_mpi_t two; gcry_mpi_t three; gcry_mpi_t four; gcry_mpi_t eight; gcry_mpi_t two_inv_p; /* Scratch variables. */ gcry_mpi_t scratch[11]; /* Helper for fast reduction. */ /* int nist_nbits; /\* If this is a NIST curve, the number of bits. *\/ */ /* gcry_mpi_t s[10]; */ /* gcry_mpi_t c; */ }; /* Initialized a point object. gcry_mpi_ec_point_free shall be used to release this object. */ void _gcry_mpi_ec_point_init (mpi_point_t *p) { p->x = mpi_new (0); p->y = mpi_new (0); p->z = mpi_new (0); } /* Release a point object. */ void _gcry_mpi_ec_point_free (mpi_point_t *p) { mpi_free (p->x); p->x = NULL; mpi_free (p->y); p->y = NULL; mpi_free (p->z); p->z = NULL; } /* Set the value from S into D. */ static void point_set (mpi_point_t *d, mpi_point_t *s) { mpi_set (d->x, s->x); mpi_set (d->y, s->y); mpi_set (d->z, s->z); } static void ec_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) { mpi_addm (w, u, v, ctx->p); } static void ec_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) { mpi_subm (w, u, v, ctx->p); } static void ec_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx) { #if 0 /* NOTE: This code works only for limb sizes of 32 bit. */ mpi_limb_t *wp, *sp; if (ctx->nist_nbits == 192) { mpi_mul (w, u, v); mpi_resize (w, 12); wp = w->d; sp = ctx->s[0]->d; sp[0*2+0] = wp[0*2+0]; sp[0*2+1] = wp[0*2+1]; sp[1*2+0] = wp[1*2+0]; sp[1*2+1] = wp[1*2+1]; sp[2*2+0] = wp[2*2+0]; sp[2*2+1] = wp[2*2+1]; sp = ctx->s[1]->d; sp[0*2+0] = wp[3*2+0]; sp[0*2+1] = wp[3*2+1]; sp[1*2+0] = wp[3*2+0]; sp[1*2+1] = wp[3*2+1]; sp[2*2+0] = 0; sp[2*2+1] = 0; sp = ctx->s[2]->d; sp[0*2+0] = 0; sp[0*2+1] = 0; sp[1*2+0] = wp[4*2+0]; sp[1*2+1] = wp[4*2+1]; sp[2*2+0] = wp[4*2+0]; sp[2*2+1] = wp[4*2+1]; sp = ctx->s[3]->d; sp[0*2+0] = wp[5*2+0]; sp[0*2+1] = wp[5*2+1]; sp[1*2+0] = wp[5*2+0]; sp[1*2+1] = wp[5*2+1]; sp[2*2+0] = wp[5*2+0]; sp[2*2+1] = wp[5*2+1]; ctx->s[0]->nlimbs = 6; ctx->s[1]->nlimbs = 6; ctx->s[2]->nlimbs = 6; ctx->s[3]->nlimbs = 6; mpi_add (ctx->c, ctx->s[0], ctx->s[1]); mpi_add (ctx->c, ctx->c, ctx->s[2]); mpi_add (ctx->c, ctx->c, ctx->s[3]); while ( mpi_cmp (ctx->c, ctx->p ) >= 0 ) mpi_sub ( ctx->c, ctx->c, ctx->p ); mpi_set (w, ctx->c); } else if (ctx->nist_nbits == 384) { int i; mpi_mul (w, u, v); mpi_resize (w, 24); wp = w->d; #define NEXT(a) do { ctx->s[(a)]->nlimbs = 12; \ sp = ctx->s[(a)]->d; \ i = 0; } while (0) #define X(a) do { sp[i++] = wp[(a)];} while (0) #define X0(a) do { sp[i++] = 0; } while (0) NEXT(0); X(0);X(1);X(2);X(3);X(4);X(5);X(6);X(7);X(8);X(9);X(10);X(11); NEXT(1); X0();X0();X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0(); NEXT(2); X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);X(23); NEXT(3); X(21);X(22);X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20); NEXT(4); X0();X(23);X0();X(20);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19); NEXT(5); X0();X0();X0();X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0(); NEXT(6); X(20);X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();X0(); NEXT(7); X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22); NEXT(8); X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();X0(); NEXT(9); X0();X0();X0();X(23);X(23);X0();X0();X0();X0();X0();X0();X0(); #undef X0 #undef X #undef NEXT mpi_add (ctx->c, ctx->s[0], ctx->s[1]); mpi_add (ctx->c, ctx->c, ctx->s[1]); mpi_add (ctx->c, ctx->c, ctx->s[2]); mpi_add (ctx->c, ctx->c, ctx->s[3]); mpi_add (ctx->c, ctx->c, ctx->s[4]); mpi_add (ctx->c, ctx->c, ctx->s[5]); mpi_add (ctx->c, ctx->c, ctx->s[6]); mpi_sub (ctx->c, ctx->c, ctx->s[7]); mpi_sub (ctx->c, ctx->c, ctx->s[8]); mpi_sub (ctx->c, ctx->c, ctx->s[9]); while ( mpi_cmp (ctx->c, ctx->p ) >= 0 ) mpi_sub ( ctx->c, ctx->c, ctx->p ); while ( ctx->c->sign ) mpi_add ( ctx->c, ctx->c, ctx->p ); mpi_set (w, ctx->c); } else #endif /*0*/ mpi_mulm (w, u, v, ctx->p); } static void ec_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e, mpi_ec_t ctx) { mpi_powm (w, b, e, ctx->p); } static void ec_invm (gcry_mpi_t x, gcry_mpi_t a, mpi_ec_t ctx) { mpi_invm (x, a, ctx->p); } /* This function returns a new context for elliptic curve based on the field GF(p). P is the prime specifying thuis field, A is the first coefficient. This context needs to be released using _gcry_mpi_ec_free. */ mpi_ec_t _gcry_mpi_ec_init (gcry_mpi_t p, gcry_mpi_t a) { int i; mpi_ec_t ctx; gcry_mpi_t tmp; mpi_normalize (p); mpi_normalize (a); /* Fixme: Do we want to check some constraints? e.g. a < p */ ctx = gcry_xcalloc (1, sizeof *ctx); ctx->p = mpi_copy (p); ctx->a = mpi_copy (a); tmp = mpi_alloc_like (ctx->p); mpi_sub_ui (tmp, ctx->p, 3); ctx->a_is_pminus3 = !mpi_cmp (ctx->a, tmp); mpi_free (tmp); /* Allocate constants. */ ctx->one = mpi_alloc_set_ui (1); ctx->two = mpi_alloc_set_ui (2); ctx->three = mpi_alloc_set_ui (3); ctx->four = mpi_alloc_set_ui (4); ctx->eight = mpi_alloc_set_ui (8); ctx->two_inv_p = mpi_alloc (0); ec_invm (ctx->two_inv_p, ctx->two, ctx); /* Allocate scratch variables. */ for (i=0; i< DIM(ctx->scratch); i++) ctx->scratch[i] = mpi_alloc_like (ctx->p); /* Prepare for fast reduction. */ /* FIXME: need a test for NIST values. However it does not gain us any real advantage, for 384 bits it is actually slower than using mpi_mulm. */ /* ctx->nist_nbits = mpi_get_nbits (ctx->p); */ /* if (ctx->nist_nbits == 192) */ /* { */ /* for (i=0; i < 4; i++) */ /* ctx->s[i] = mpi_new (192); */ /* ctx->c = mpi_new (192*2); */ /* } */ /* else if (ctx->nist_nbits == 384) */ /* { */ /* for (i=0; i < 10; i++) */ /* ctx->s[i] = mpi_new (384); */ /* ctx->c = mpi_new (384*2); */ /* } */ return ctx; } void _gcry_mpi_ec_free (mpi_ec_t ctx) { int i; if (!ctx) return; mpi_free (ctx->p); mpi_free (ctx->a); mpi_free (ctx->one); mpi_free (ctx->two); mpi_free (ctx->three); mpi_free (ctx->four); mpi_free (ctx->eight); mpi_free (ctx->two_inv_p); for (i=0; i< DIM(ctx->scratch); i++) mpi_free (ctx->scratch[i]); /* if (ctx->nist_nbits == 192) */ /* { */ /* for (i=0; i < 4; i++) */ /* mpi_free (ctx->s[i]); */ /* mpi_free (ctx->c); */ /* } */ /* else if (ctx->nist_nbits == 384) */ /* { */ /* for (i=0; i < 10; i++) */ /* mpi_free (ctx->s[i]); */ /* mpi_free (ctx->c); */ /* } */ gcry_free (ctx); } /* Compute the affine coordinates from the projective coordinates in POINT. Set them into X and Y. If one coordinate is not required, X or Y may be passed as NULL. CTX is the usual context. Returns: 0 on success or !0 if POINT is at infinity. */ int _gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, mpi_point_t *point, mpi_ec_t ctx) { gcry_mpi_t z1, z2, z3; if (!mpi_cmp_ui (point->z, 0)) return -1; z1 = mpi_new (0); z2 = mpi_new (0); ec_invm (z1, point->z, ctx); /* z1 = z^(-1) mod p */ ec_mulm (z2, z1, z1, ctx); /* z2 = z^(-2) mod p */ if (x) ec_mulm (x, point->x, z2, ctx); if (y) { z3 = mpi_new (0); ec_mulm (z3, z2, z1, ctx); /* z3 = z^(-3) mod p */ ec_mulm (y, point->y, z3, ctx); mpi_free (z3); } mpi_free (z2); mpi_free (z1); return 0; } /* RESULT = 2 * POINT */ void _gcry_mpi_ec_dup_point (mpi_point_t *result, mpi_point_t *point, mpi_ec_t ctx) { #define x3 (result->x) #define y3 (result->y) #define z3 (result->z) #define t1 (ctx->scratch[0]) #define t2 (ctx->scratch[1]) #define t3 (ctx->scratch[2]) #define l1 (ctx->scratch[3]) #define l2 (ctx->scratch[4]) #define l3 (ctx->scratch[5]) if (!mpi_cmp_ui (point->y, 0) || !mpi_cmp_ui (point->z, 0)) { /* P_y == 0 || P_z == 0 => [1:1:0] */ mpi_set_ui (x3, 1); mpi_set_ui (y3, 1); mpi_set_ui (z3, 0); } else { if (ctx->a_is_pminus3) /* Use the faster case. */ { /* L1 = 3(X - Z^2)(X + Z^2) */ /* T1: used for Z^2. */ /* T2: used for the right term. */ ec_powm (t1, point->z, ctx->two, ctx); ec_subm (l1, point->x, t1, ctx); ec_mulm (l1, l1, ctx->three, ctx); ec_addm (t2, point->x, t1, ctx); ec_mulm (l1, l1, t2, ctx); } else /* Standard case. */ { /* L1 = 3X^2 + aZ^4 */ /* T1: used for aZ^4. */ ec_powm (l1, point->x, ctx->two, ctx); ec_mulm (l1, l1, ctx->three, ctx); ec_powm (t1, point->z, ctx->four, ctx); ec_mulm (t1, t1, ctx->a, ctx); ec_addm (l1, l1, t1, ctx); } /* Z3 = 2YZ */ ec_mulm (z3, point->y, point->z, ctx); ec_mulm (z3, z3, ctx->two, ctx); /* L2 = 4XY^2 */ /* T2: used for Y2; required later. */ ec_powm (t2, point->y, ctx->two, ctx); ec_mulm (l2, t2, point->x, ctx); ec_mulm (l2, l2, ctx->four, ctx); /* X3 = L1^2 - 2L2 */ /* T1: used for L2^2. */ ec_powm (x3, l1, ctx->two, ctx); ec_mulm (t1, l2, ctx->two, ctx); ec_subm (x3, x3, t1, ctx); /* L3 = 8Y^4 */ /* T2: taken from above. */ ec_powm (t2, t2, ctx->two, ctx); ec_mulm (l3, t2, ctx->eight, ctx); /* Y3 = L1(L2 - X3) - L3 */ ec_subm (y3, l2, x3, ctx); ec_mulm (y3, y3, l1, ctx); ec_subm (y3, y3, l3, ctx); } #undef x3 #undef y3 #undef z3 #undef t1 #undef t2 #undef t3 #undef l1 #undef l2 #undef l3 } /* RESULT = P1 + P2 */ void _gcry_mpi_ec_add_points (mpi_point_t *result, mpi_point_t *p1, mpi_point_t *p2, mpi_ec_t ctx) { #define x1 (p1->x ) #define y1 (p1->y ) #define z1 (p1->z ) #define x2 (p2->x ) #define y2 (p2->y ) #define z2 (p2->z ) #define x3 (result->x) #define y3 (result->y) #define z3 (result->z) #define l1 (ctx->scratch[0]) #define l2 (ctx->scratch[1]) #define l3 (ctx->scratch[2]) #define l4 (ctx->scratch[3]) #define l5 (ctx->scratch[4]) #define l6 (ctx->scratch[5]) #define l7 (ctx->scratch[6]) #define l8 (ctx->scratch[7]) #define l9 (ctx->scratch[8]) #define t1 (ctx->scratch[9]) #define t2 (ctx->scratch[10]) if ( (!mpi_cmp (x1, x2)) && (!mpi_cmp (y1, y2)) && (!mpi_cmp (z1, z2)) ) { /* Same point; need to call the duplicate function. */ _gcry_mpi_ec_dup_point (result, p1, ctx); } else if (!mpi_cmp_ui (z1, 0)) { /* P1 is at infinity. */ mpi_set (x3, p2->x); mpi_set (y3, p2->y); mpi_set (z3, p2->z); } else if (!mpi_cmp_ui (z2, 0)) { /* P2 is at infinity. */ mpi_set (x3, p1->x); mpi_set (y3, p1->y); mpi_set (z3, p1->z); } else { int z1_is_one = !mpi_cmp_ui (z1, 1); int z2_is_one = !mpi_cmp_ui (z2, 1); /* l1 = x1 z2^2 */ /* l2 = x2 z1^2 */ if (z2_is_one) mpi_set (l1, x1); else { ec_powm (l1, z2, ctx->two, ctx); ec_mulm (l1, l1, x1, ctx); } if (z1_is_one) mpi_set (l2, x2); else { ec_powm (l2, z1, ctx->two, ctx); ec_mulm (l2, l2, x2, ctx); } /* l3 = l1 - l2 */ ec_subm (l3, l1, l2, ctx); /* l4 = y1 z2^3 */ ec_powm (l4, z2, ctx->three, ctx); ec_mulm (l4, l4, y1, ctx); /* l5 = y2 z1^3 */ ec_powm (l5, z1, ctx->three, ctx); ec_mulm (l5, l5, y2, ctx); /* l6 = l4 - l5 */ ec_subm (l6, l4, l5, ctx); if (!mpi_cmp_ui (l3, 0)) { if (!mpi_cmp_ui (l6, 0)) { /* P1 and P2 are the same - use duplicate function. */ _gcry_mpi_ec_dup_point (result, p1, ctx); } else { /* P1 is the inverse of P2. */ mpi_set_ui (x3, 1); mpi_set_ui (y3, 1); mpi_set_ui (z3, 0); } } else { /* l7 = l1 + l2 */ ec_addm (l7, l1, l2, ctx); /* l8 = l4 + l5 */ ec_addm (l8, l4, l5, ctx); /* z3 = z1 z2 l3 */ ec_mulm (z3, z1, z2, ctx); ec_mulm (z3, z3, l3, ctx); /* x3 = l6^2 - l7 l3^2 */ ec_powm (t1, l6, ctx->two, ctx); ec_powm (t2, l3, ctx->two, ctx); ec_mulm (t2, t2, l7, ctx); ec_subm (x3, t1, t2, ctx); /* l9 = l7 l3^2 - 2 x3 */ ec_mulm (t1, x3, ctx->two, ctx); ec_subm (l9, t2, t1, ctx); /* y3 = (l9 l6 - l8 l3^3)/2 */ ec_mulm (l9, l9, l6, ctx); ec_powm (t1, l3, ctx->three, ctx); /* fixme: Use saved value*/ ec_mulm (t1, t1, l8, ctx); ec_subm (y3, l9, t1, ctx); ec_mulm (y3, y3, ctx->two_inv_p, ctx); } } #undef x1 #undef y1 #undef z1 #undef x2 #undef y2 #undef z2 #undef x3 #undef y3 #undef z3 #undef l1 #undef l2 #undef l3 #undef l4 #undef l5 #undef l6 #undef l7 #undef l8 #undef l9 #undef t1 #undef t2 } /* Scalar point multiplication - the main function for ECC. If takes an integer SCALAR and a POINT as well as the usual context CTX. RESULT will be set to the resulting point. */ void _gcry_mpi_ec_mul_point (mpi_point_t *result, gcry_mpi_t scalar, mpi_point_t *point, mpi_ec_t ctx) { #if 0 /* Simple left to right binary method. GECC Algorithm 3.27 */ unsigned int nbits; int i; nbits = mpi_get_nbits (scalar); mpi_set_ui (result->x, 1); mpi_set_ui (result->y, 1); mpi_set_ui (result->z, 0); for (i=nbits-1; i >= 0; i--) { _gcry_mpi_ec_dup_point (result, result, ctx); if (mpi_test_bit (scalar, i) == 1) _gcry_mpi_ec_add_points (result, result, point, ctx); } #else gcry_mpi_t x1, y1, z1, k, h, yy; unsigned int i, loops; mpi_point_t p1, p2, p1inv; x1 = mpi_alloc_like (ctx->p); y1 = mpi_alloc_like (ctx->p); h = mpi_alloc_like (ctx->p); k = mpi_copy (scalar); yy = mpi_copy (point->y); if ( mpi_is_neg (k) ) { k->sign = 0; ec_invm (yy, yy, ctx); } if (!mpi_cmp_ui (point->z, 1)) { mpi_set (x1, point->x); mpi_set (y1, yy); } else { gcry_mpi_t z2, z3; z2 = mpi_alloc_like (ctx->p); z3 = mpi_alloc_like (ctx->p); ec_mulm (z2, point->z, point->z, ctx); ec_mulm (z3, point->z, z2, ctx); ec_invm (z2, z2, ctx); ec_mulm (x1, point->x, z2, ctx); ec_invm (z3, z3, ctx); ec_mulm (y1, yy, z3, ctx); mpi_free (z2); mpi_free (z3); } z1 = mpi_copy (ctx->one); mpi_mul (h, k, ctx->three); /* h = 3k */ loops = mpi_get_nbits (h); if (loops < 2) { /* If SCALAR is zero, the above mpi_mul sets H to zero and thus LOOPs will be zero. To avoid an underflow of I in the main loop we set LOOP to 2 and the result to (0,0,0). */ loops = 2; mpi_clear (result->x); mpi_clear (result->y); mpi_clear (result->z); } else { mpi_set (result->x, point->x); mpi_set (result->y, yy); mpi_set (result->z, point->z); } mpi_free (yy); yy = NULL; p1.x = x1; x1 = NULL; p1.y = y1; y1 = NULL; p1.z = z1; z1 = NULL; point_init (&p2); point_init (&p1inv); for (i=loops-2; i > 0; i--) { _gcry_mpi_ec_dup_point (result, result, ctx); if (mpi_test_bit (h, i) == 1 && mpi_test_bit (k, i) == 0) { point_set (&p2, result); _gcry_mpi_ec_add_points (result, &p2, &p1, ctx); } if (mpi_test_bit (h, i) == 0 && mpi_test_bit (k, i) == 1) { point_set (&p2, result); /* Invert point: y = p - y mod p */ point_set (&p1inv, &p1); ec_subm (p1inv.y, ctx->p, p1inv.y, ctx); _gcry_mpi_ec_add_points (result, &p2, &p1inv, ctx); } } point_free (&p1); point_free (&p2); point_free (&p1inv); mpi_free (h); mpi_free (k); #endif }