/* mpi-pow.c - MPI functions for exponentiation * Copyright (C) 1994, 1996, 1998, 2000, 2002 * 2003 Free Software Foundation, Inc. * 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. */ #include #include #include #include #include "mpi-internal.h" #include "longlong.h" /**************** * RES = BASE ^ EXPO mod MOD */ void gcry_mpi_powm (gcry_mpi_t res, gcry_mpi_t base, gcry_mpi_t expo, gcry_mpi_t mod) { /* Pointer to the limbs of the arguments, their size and signs. */ mpi_ptr_t rp, ep, mp, bp; mpi_size_t esize, msize, bsize, rsize; int msign, bsign, rsign; /* Flags telling the secure allocation status of the arguments. */ int esec, msec, bsec; /* Size of the result including space for temporary values. */ mpi_size_t size; /* Helper. */ int mod_shift_cnt; int negative_result; mpi_ptr_t mp_marker = NULL; mpi_ptr_t bp_marker = NULL; mpi_ptr_t ep_marker = NULL; mpi_ptr_t xp_marker = NULL; unsigned int mp_nlimbs = 0; unsigned int bp_nlimbs = 0; unsigned int ep_nlimbs = 0; unsigned int xp_nlimbs = 0; mpi_ptr_t tspace = NULL; mpi_size_t tsize = 0; esize = expo->nlimbs; msize = mod->nlimbs; size = 2 * msize; msign = mod->sign; esec = mpi_is_secure(expo); msec = mpi_is_secure(mod); bsec = mpi_is_secure(base); rp = res->d; ep = expo->d; if (!msize) msize = 1 / msize; /* Provoke a signal. */ if (!esize) { /* Exponent is zero, result is 1 mod MOD, i.e., 1 or 0 depending on if MOD equals 1. */ res->nlimbs = (msize == 1 && mod->d[0] == 1) ? 0 : 1; if (res->nlimbs) { RESIZE_IF_NEEDED (res, 1); rp = res->d; rp[0] = 1; } res->sign = 0; goto leave; } /* Normalize MOD (i.e. make its most significant bit set) as required by mpn_divrem. This will make the intermediate values in the calculation slightly larger, but the correct result is obtained after a final reduction using the original MOD value. */ mp_nlimbs = msec? msize:0; mp = mp_marker = mpi_alloc_limb_space(msize, msec); count_leading_zeros (mod_shift_cnt, mod->d[msize-1]); if (mod_shift_cnt) _gcry_mpih_lshift (mp, mod->d, msize, mod_shift_cnt); else MPN_COPY( mp, mod->d, msize ); bsize = base->nlimbs; bsign = base->sign; if (bsize > msize) { /* The base is larger than the module. Reduce it. Allocate (BSIZE + 1) with space for remainder and quotient. (The quotient is (bsize - msize + 1) limbs.) */ bp_nlimbs = bsec ? (bsize + 1):0; bp = bp_marker = mpi_alloc_limb_space( bsize + 1, bsec ); MPN_COPY ( bp, base->d, bsize ); /* We don't care about the quotient, store it above the * remainder, at BP + MSIZE. */ _gcry_mpih_divrem( bp + msize, 0, bp, bsize, mp, msize ); bsize = msize; /* Canonicalize the base, since we are going to multiply with it quite a few times. */ MPN_NORMALIZE( bp, bsize ); } else bp = base->d; if (!bsize) { res->nlimbs = 0; res->sign = 0; goto leave; } /* Make BASE, EXPO and MOD not overlap with RES. */ if ( rp == bp ) { /* RES and BASE are identical. Allocate temp. space for BASE. */ gcry_assert (!bp_marker); bp_nlimbs = bsec? bsize:0; bp = bp_marker = mpi_alloc_limb_space( bsize, bsec ); MPN_COPY(bp, rp, bsize); } if ( rp == ep ) { /* RES and EXPO are identical. Allocate temp. space for EXPO. */ ep_nlimbs = esec? esize:0; ep = ep_marker = mpi_alloc_limb_space( esize, esec ); MPN_COPY(ep, rp, esize); } if ( rp == mp ) { /* RES and MOD are identical. Allocate temporary space for MOD.*/ gcry_assert (!mp_marker); mp_nlimbs = msec?msize:0; mp = mp_marker = mpi_alloc_limb_space( msize, msec ); MPN_COPY(mp, rp, msize); } /* Copy base to the result. */ if (res->alloced < size) { mpi_resize (res, size); rp = res->d; } MPN_COPY ( rp, bp, bsize ); rsize = bsize; rsign = bsign; /* Main processing. */ { mpi_size_t i; mpi_ptr_t xp; int c; mpi_limb_t e; mpi_limb_t carry_limb; struct karatsuba_ctx karactx; xp_nlimbs = msec? (2 * (msize + 1)):0; xp = xp_marker = mpi_alloc_limb_space( 2 * (msize + 1), msec ); memset( &karactx, 0, sizeof karactx ); negative_result = (ep[0] & 1) && base->sign; i = esize - 1; e = ep[i]; count_leading_zeros (c, e); e = (e << c) << 1; /* Shift the expo bits to the left, lose msb. */ c = BITS_PER_MPI_LIMB - 1 - c; /* Main loop. Make the result be pointed to alternately by XP and RP. This helps us avoid block copying, which would otherwise be necessary with the overlap restrictions of _gcry_mpih_divmod. With 50% probability the result after this loop will be in the area originally pointed by RP (==RES->d), and with 50% probability in the area originally pointed to by XP. */ for (;;) { while (c) { mpi_ptr_t tp; mpi_size_t xsize; /*mpih_mul_n(xp, rp, rp, rsize);*/ if ( rsize < KARATSUBA_THRESHOLD ) _gcry_mpih_sqr_n_basecase( xp, rp, rsize ); else { if ( !tspace ) { tsize = 2 * rsize; tspace = mpi_alloc_limb_space( tsize, 0 ); } else if ( tsize < (2*rsize) ) { _gcry_mpi_free_limb_space (tspace, 0); tsize = 2 * rsize; tspace = mpi_alloc_limb_space (tsize, 0 ); } _gcry_mpih_sqr_n (xp, rp, rsize, tspace); } xsize = 2 * rsize; if ( xsize > msize ) { _gcry_mpih_divrem(xp + msize, 0, xp, xsize, mp, msize); xsize = msize; } tp = rp; rp = xp; xp = tp; rsize = xsize; /* To mitigate the Yarom/Falkner flush+reload cache * side-channel attack on the RSA secret exponent, we do * the multiplication regardless of the value of the * high-bit of E. But to avoid this performance penalty * we do it only if the exponent has been stored in secure * memory and we can thus assume it is a secret exponent. */ if (esec || (mpi_limb_signed_t)e < 0) { /*mpih_mul( xp, rp, rsize, bp, bsize );*/ if( bsize < KARATSUBA_THRESHOLD ) _gcry_mpih_mul ( xp, rp, rsize, bp, bsize ); else _gcry_mpih_mul_karatsuba_case (xp, rp, rsize, bp, bsize, &karactx); xsize = rsize + bsize; if ( xsize > msize ) { _gcry_mpih_divrem(xp + msize, 0, xp, xsize, mp, msize); xsize = msize; } } if ( (mpi_limb_signed_t)e < 0 ) { tp = rp; rp = xp; xp = tp; rsize = xsize; } e <<= 1; c--; } i--; if ( i < 0 ) break; e = ep[i]; c = BITS_PER_MPI_LIMB; } /* We shifted MOD, the modulo reduction argument, left MOD_SHIFT_CNT steps. Adjust the result by reducing it with the original MOD. Also make sure the result is put in RES->d (where it already might be, see above). */ if ( mod_shift_cnt ) { carry_limb = _gcry_mpih_lshift( res->d, rp, rsize, mod_shift_cnt); rp = res->d; if ( carry_limb ) { rp[rsize] = carry_limb; rsize++; } } else if (res->d != rp) { MPN_COPY (res->d, rp, rsize); rp = res->d; } if ( rsize >= msize ) { _gcry_mpih_divrem(rp + msize, 0, rp, rsize, mp, msize); rsize = msize; } /* Remove any leading zero words from the result. */ if ( mod_shift_cnt ) _gcry_mpih_rshift( rp, rp, rsize, mod_shift_cnt); MPN_NORMALIZE (rp, rsize); _gcry_mpih_release_karatsuba_ctx (&karactx ); } /* Fixup for negative results. */ if ( negative_result && rsize ) { if ( mod_shift_cnt ) _gcry_mpih_rshift( mp, mp, msize, mod_shift_cnt); _gcry_mpih_sub( rp, mp, msize, rp, rsize); rsize = msize; rsign = msign; MPN_NORMALIZE(rp, rsize); } gcry_assert (res->d == rp); res->nlimbs = rsize; res->sign = rsign; leave: if (mp_marker) _gcry_mpi_free_limb_space( mp_marker, mp_nlimbs ); if (bp_marker) _gcry_mpi_free_limb_space( bp_marker, bp_nlimbs ); if (ep_marker) _gcry_mpi_free_limb_space( ep_marker, ep_nlimbs ); if (xp_marker) _gcry_mpi_free_limb_space( xp_marker, xp_nlimbs ); if (tspace) _gcry_mpi_free_limb_space( tspace, 0 ); }