/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2010 Free Software Foundation, Inc.
*
* GRUB is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GRUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GRUB. If not, see .
*/
#ifdef TEST
#include
#include
#include
#define xmalloc malloc
#define grub_memset memset
#define grub_memcpy memcpy
#endif
#ifndef STANDALONE
#ifdef TEST
typedef unsigned int grub_size_t;
typedef unsigned char grub_uint8_t;
typedef unsigned short grub_uint16_t;
#else
#include
#include
#include
#include
#endif
#endif
#ifdef STANDALONE
#ifdef TEST
typedef unsigned int grub_size_t;
typedef unsigned char grub_uint8_t;
typedef unsigned short grub_uint16_t;
#else
#include
#include
#endif
void
grub_reed_solomon_recover (void *ptr_, grub_size_t s, grub_size_t rs);
#endif
#define GF_SIZE 8
typedef grub_uint8_t gf_single_t;
typedef grub_uint16_t gf_double_t;
#define GF_POLYNOMIAL 0x1d
#define GF_INVERT2 0x8e
#if defined (STANDALONE) && !defined (TEST)
static char *gf_invert __attribute__ ((section(".text"))) = (void *) 0x100000;
static char *scratch __attribute__ ((section(".text"))) = (void *) 0x100100;
#else
static char *scratch;
static grub_uint8_t gf_invert[256];
#endif
#define SECTOR_SIZE 512
#define MAX_BLOCK_SIZE (200 * SECTOR_SIZE)
static gf_single_t
gf_reduce (gf_double_t a)
{
int i;
for (i = GF_SIZE - 1; i >= 0; i--)
if (a & (1ULL << (i + GF_SIZE)))
a ^= (((gf_double_t) GF_POLYNOMIAL) << i);
return a & ((1ULL << GF_SIZE) - 1);
}
static gf_single_t
gf_mul (gf_single_t a, gf_single_t b)
{
gf_double_t res = 0;
int i;
for (i = 0; i < GF_SIZE; i++)
if (b & (1 << i))
res ^= ((gf_double_t) a) << i;
return gf_reduce (res);
}
static void
init_inverts (void)
{
gf_single_t a = 1, ai = 1;
do
{
a = gf_mul (a, 2);
ai = gf_mul (ai, GF_INVERT2);
gf_invert[a] = ai;
}
while (a != 1);
}
static gf_single_t
pol_evaluate (gf_single_t *pol, grub_size_t degree, gf_single_t x)
{
int i;
gf_single_t xn = 1, s = 0;
for (i = degree; i >= 0; i--)
{
s ^= gf_mul (pol[i], xn);
xn = gf_mul (x, xn);
}
return s;
}
#if !defined (STANDALONE)
static void
rs_encode (gf_single_t *data, grub_size_t s, grub_size_t rs)
{
gf_single_t *rs_polynomial, a = 1;
int i, j;
gf_single_t *m;
m = xmalloc ((s + rs) * sizeof (gf_single_t));
grub_memcpy (m, data, s * sizeof (gf_single_t));
grub_memset (m + s, 0, rs * sizeof (gf_single_t));
rs_polynomial = xmalloc ((rs + 1) * sizeof (gf_single_t));
grub_memset (rs_polynomial, 0, (rs + 1) * sizeof (gf_single_t));
rs_polynomial[rs] = 1;
/* Multiply with X - a^r */
for (j = 0; j < rs; j++)
{
if (a & (1 << (GF_SIZE - 1)))
{
a <<= 1;
a ^= GF_POLYNOMIAL;
}
else
a <<= 1;
for (i = 0; i < rs; i++)
rs_polynomial[i] = rs_polynomial[i + 1] ^ gf_mul (a, rs_polynomial[i]);
rs_polynomial[rs] = gf_mul (a, rs_polynomial[rs]);
}
for (j = 0; j < s; j++)
if (m[j])
{
gf_single_t f = m[j];
for (i = 0; i <= rs; i++)
m[i+j] ^= gf_mul (rs_polynomial[i], f);
}
free (rs_polynomial);
grub_memcpy (data + s, m + s, rs * sizeof (gf_single_t));
free (m);
}
#endif
static void
syndroms (gf_single_t *m, grub_size_t s, grub_size_t rs,
gf_single_t *sy)
{
gf_single_t xn = 1;
unsigned i;
for (i = 0; i < rs; i++)
{
if (xn & (1 << (GF_SIZE - 1)))
{
xn <<= 1;
xn ^= GF_POLYNOMIAL;
}
else
xn <<= 1;
sy[i] = pol_evaluate (m, s + rs - 1, xn);
}
}
static void
gauss_eliminate (gf_single_t *eq, int n, int m, int *chosen)
{
int i, j;
for (i = 0 ; i < n; i++)
{
int nzidx;
int k;
gf_single_t r;
for (nzidx = 0; nzidx < m && (eq[i * (m + 1) + nzidx] == 0);
nzidx++);
if (nzidx == m)
continue;
chosen[i] = nzidx;
r = gf_invert [eq[i * (m + 1) + nzidx]];
for (j = 0; j < m + 1; j++)
eq[i * (m + 1) + j] = gf_mul (eq[i * (m + 1) + j], r);
for (j = i + 1; j < n; j++)
{
gf_single_t rr = eq[j * (m + 1) + nzidx];
for (k = 0; k < m + 1; k++)
eq[j * (m + 1) + k] ^= gf_mul (eq[i * (m + 1) + k], rr);
}
}
}
static void
gauss_solve (gf_single_t *eq, int n, int m, gf_single_t *sol)
{
int *chosen;
int i, j;
#ifndef STANDALONE
chosen = xmalloc (n * sizeof (int));
#else
chosen = (void *) scratch;
scratch += n * sizeof (int);
#endif
for (i = 0; i < n; i++)
chosen[i] = -1;
for (i = 0; i < m; i++)
sol[i] = 0;
gauss_eliminate (eq, n, m, chosen);
for (i = n - 1; i >= 0; i--)
{
gf_single_t s = 0;
if (chosen[i] == -1)
continue;
for (j = 0; j < m; j++)
s ^= gf_mul (eq[i * (m + 1) + j], sol[j]);
s ^= eq[i * (m + 1) + m];
sol[chosen[i]] = s;
}
#ifndef STANDALONE
free (chosen);
#else
scratch -= n * sizeof (int);
#endif
}
static void
rs_recover (gf_single_t *m, grub_size_t s, grub_size_t rs)
{
grub_size_t rs2 = rs / 2;
gf_single_t *sigma;
gf_single_t *errpot;
int *errpos;
gf_single_t *sy;
int errnum = 0;
int i, j;
#ifndef STANDALONE
sigma = xmalloc (rs2 * sizeof (gf_single_t));
errpot = xmalloc (rs2 * sizeof (gf_single_t));
errpos = xmalloc (rs2 * sizeof (int));
sy = xmalloc (rs * sizeof (gf_single_t));
#else
sigma = (void *) scratch;
scratch += rs2 * sizeof (gf_single_t);
errpot = (void *) scratch;
scratch += rs2 * sizeof (gf_single_t);
errpos = (void *) scratch;
scratch += rs2 * sizeof (int);
sy = (void *) scratch;
scratch += rs * sizeof (gf_single_t);
#endif
syndroms (m, s, rs, sy);
{
gf_single_t *eq;
#ifndef STANDALONE
eq = xmalloc (rs2 * (rs2 + 1) * sizeof (gf_single_t));
#else
eq = (void *) scratch;
scratch += rs2 * (rs2 + 1) * sizeof (gf_single_t);
#endif
for (i = 0; i < (int) rs; i++)
if (sy[i] != 0)
break;
/* No error detected. */
if (i == (int) rs)
return;
for (i = 0; i < (int) rs2; i++)
for (j = 0; j < (int) rs2 + 1; j++)
eq[i * (rs2 + 1) + j] = sy[i+j];
for (i = 0; i < (int) rs2; i++)
sigma[i] = 0;
gauss_solve (eq, rs2, rs2, sigma);
#ifndef STANDALONE
free (eq);
#else
scratch -= rs2 * (rs2 + 1) * sizeof (gf_single_t);
#endif
}
{
gf_single_t xn = 1, yn = 1;
for (i = 0; i < (int) (rs + s); i++)
{
gf_single_t ev = (gf_mul (pol_evaluate (sigma, rs2 - 1, xn), xn) ^ 1);
if (ev == 0)
{
errpot[errnum] = yn;
errpos[errnum++] = s + rs - i - 1;
}
yn = gf_mul (yn, 2);
xn = gf_mul (xn, GF_INVERT2);
}
}
{
gf_single_t *errvals;
gf_single_t *eq;
#ifndef STANDALONE
eq = xmalloc (rs * (errnum + 1) * sizeof (gf_single_t));
errvals = xmalloc (errnum * sizeof (int));
#else
eq = (void *) scratch;
scratch += rs * (errnum + 1) * sizeof (gf_single_t);
errvals = (void *) scratch;
scratch += errnum * sizeof (int);
#endif
for (j = 0; j < errnum; j++)
eq[j] = errpot[j];
eq[errnum] = sy[0];
for (i = 1; i < (int) rs; i++)
{
for (j = 0; j < (int) errnum; j++)
eq[(errnum + 1) * i + j] = gf_mul (errpot[j],
eq[(errnum + 1) * (i - 1) + j]);
eq[(errnum + 1) * i + errnum] = sy[i];
}
gauss_solve (eq, rs, errnum, errvals);
for (i = 0; i < (int) errnum; i++)
m[errpos[i]] ^= errvals[i];
#ifndef STANDALONE
free (eq);
free (errvals);
#else
scratch -= rs * (errnum + 1) * sizeof (gf_single_t);
scratch -= errnum * sizeof (int);
#endif
}
#ifndef STANDALONE
free (sigma);
free (errpot);
free (errpos);
free (sy);
#else
scratch -= rs2 * sizeof (gf_single_t);
scratch -= rs2 * sizeof (gf_single_t);
scratch -= rs2 * sizeof (int);
scratch -= rs * sizeof (gf_single_t);
#endif
}
static void
decode_block (gf_single_t *ptr, grub_size_t s,
gf_single_t *rptr, grub_size_t rs)
{
int i, j;
for (i = 0; i < SECTOR_SIZE; i++)
{
grub_size_t ds = (s + SECTOR_SIZE - 1 - i) / SECTOR_SIZE;
grub_size_t rr = (rs + SECTOR_SIZE - 1 - i) / SECTOR_SIZE;
gf_single_t m[ds + rr];
for (j = 0; j < (int) ds; j++)
m[j] = ptr[SECTOR_SIZE * j + i];
for (j = 0; j < (int) rr; j++)
m[j + ds] = rptr[SECTOR_SIZE * j + i];
rs_recover (m, ds, rr);
for (j = 0; j < (int) ds; j++)
ptr[SECTOR_SIZE * j + i] = m[j];
}
}
#if !defined (STANDALONE)
static void
encode_block (gf_single_t *ptr, grub_size_t s,
gf_single_t *rptr, grub_size_t rs)
{
int i, j;
for (i = 0; i < SECTOR_SIZE; i++)
{
grub_size_t ds = (s + SECTOR_SIZE - 1 - i) / SECTOR_SIZE;
grub_size_t rr = (rs + SECTOR_SIZE - 1 - i) / SECTOR_SIZE;
gf_single_t m[ds + rr];
for (j = 0; j < ds; j++)
m[j] = ptr[SECTOR_SIZE * j + i];
rs_encode (m, ds, rr);
for (j = 0; j < rr; j++)
rptr[SECTOR_SIZE * j + i] = m[j + ds];
}
}
#endif
#if !defined (STANDALONE)
void
grub_reed_solomon_add_redundancy (void *buffer, grub_size_t data_size,
grub_size_t redundancy)
{
grub_size_t s = data_size;
grub_size_t rs = redundancy;
gf_single_t *ptr = buffer;
gf_single_t *rptr = ptr + s;
while (s > 0)
{
grub_size_t tt;
grub_size_t cs, crs;
cs = s;
crs = rs;
tt = cs + crs;
if (tt > MAX_BLOCK_SIZE)
{
cs = (cs * MAX_BLOCK_SIZE) / tt;
crs = (crs * MAX_BLOCK_SIZE) / tt;
}
encode_block (ptr, cs, rptr, crs);
ptr += cs;
rptr += crs;
s -= cs;
rs -= crs;
}
}
#endif
void
grub_reed_solomon_recover (void *ptr_, grub_size_t s, grub_size_t rs)
{
gf_single_t *ptr = ptr_;
gf_single_t *rptr = ptr + s;
#if defined (STANDALONE)
init_inverts ();
#endif
while (s > 0)
{
grub_size_t tt;
grub_size_t cs, crs;
cs = s;
crs = rs;
tt = cs + crs;
if (tt > MAX_BLOCK_SIZE)
{
cs = cs * MAX_BLOCK_SIZE / tt;
crs = crs * MAX_BLOCK_SIZE / tt;
}
decode_block (ptr, cs, rptr, crs);
ptr += cs;
rptr += crs;
s -= cs;
rs -= crs;
}
}
#ifdef TEST
int
main (int argc, char **argv)
{
FILE *in, *out;
grub_size_t s, rs;
char *buf;
#ifdef STANDALONE
scratch = xmalloc (1048576);
#endif
#ifndef STANDALONE
init_inverts ();
#endif
in = fopen ("tst.bin", "rb");
if (!in)
return 1;
fseek (in, 0, SEEK_END);
s = ftell (in);
fseek (in, 0, SEEK_SET);
rs = 1024 * ((s + MAX_BLOCK_SIZE - 1) / (MAX_BLOCK_SIZE - 1024));
buf = xmalloc (s + rs + SECTOR_SIZE);
fread (buf, 1, s, in);
s = 0x5fbb;
rs = 0x6af9;
#if 0
grub_reed_solomon_add_redundancy (buf, s, rs);
out = fopen ("tst_rs.bin", "wb");
fwrite (buf, 1, s + rs, out);
fclose (out);
grub_memset (buf + 512 * 15, 0, 512);
out = fopen ("tst_dam.bin", "wb");
fwrite (buf, 1, s + rs, out);
fclose (out);
#endif
s = 0x5fbb;
rs = 0x6af9;
grub_reed_solomon_recover (buf, s, rs);
out = fopen ("tst_rec.bin", "wb");
fwrite (buf, 1, s, out);
fclose (out);
return 0;
}
#endif