/* xz_dec_bcj.c - Branch/Call/Jump (BCJ) filter decoders */ /* * GRUB -- GRand Unified Bootloader * Copyright (C) 2010 Free Software Foundation, Inc. * * GRUB is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GRUB is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GRUB. If not, see <http://www.gnu.org/licenses/>. */ /* * This file is based on code from XZ embedded project * http://tukaani.org/xz/embedded.html */ #include "xz_private.h" struct xz_dec_bcj { /* Type of the BCJ filter being used */ enum { BCJ_X86 = 4, /* x86 or x86-64 */ BCJ_POWERPC = 5, /* Big endian only */ BCJ_IA64 = 6, /* Big or little endian */ BCJ_ARM = 7, /* Little endian only */ BCJ_ARMTHUMB = 8, /* Little endian only */ BCJ_SPARC = 9 /* Big or little endian */ } type; /* * Return value of the next filter in the chain. We need to preserve * this information across calls, because we must not call the next * filter anymore once it has returned XZ_STREAM_END. */ enum xz_ret ret; /* True if we are operating in single-call mode. */ bool single_call; /* * Absolute position relative to the beginning of the uncompressed * data (in a single .xz Block). We care only about the lowest 32 * bits so this doesn't need to be uint64_t even with big files. */ uint32_t pos; /* x86 filter state */ uint32_t x86_prev_mask; /* Temporary space to hold the variables from struct xz_buf */ uint8_t *out; size_t out_pos; size_t out_size; struct { /* Amount of already filtered data in the beginning of buf */ size_t filtered; /* Total amount of data currently stored in buf */ size_t size; /* * Buffer to hold a mix of filtered and unfiltered data. This * needs to be big enough to hold Alignment + 2 * Look-ahead: * * Type Alignment Look-ahead * x86 1 4 * PowerPC 4 0 * IA-64 16 0 * ARM 4 0 * ARM-Thumb 2 2 * SPARC 4 0 */ uint8_t buf[16]; } temp; }; #ifdef XZ_DEC_X86 /* * This is macro used to test the most significant byte of a memory address * in an x86 instruction. */ #define bcj_x86_test_msbyte(b) ((b) == 0x00 || (b) == 0xFF) static noinline_for_stack size_t bcj_x86( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const bool mask_to_allowed_status[8] = { true, true, true, false, true, false, false, false }; static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; size_t i; size_t prev_pos = (size_t)-1; uint32_t prev_mask = s->x86_prev_mask; uint32_t src; uint32_t dest; uint32_t j; uint8_t b; if (size <= 4) return 0; size -= 4; for (i = 0; i < size; ++i) { if ((buf[i] & 0xFE) != 0xE8) continue; prev_pos = i - prev_pos; if (prev_pos > 3) { prev_mask = 0; } else { prev_mask = (prev_mask << (prev_pos - 1)) & 7; if (prev_mask != 0) { b = buf[i + 4 - mask_to_bit_num[prev_mask]]; if (!mask_to_allowed_status[prev_mask] || bcj_x86_test_msbyte(b)) { prev_pos = i; prev_mask = (prev_mask << 1) | 1; continue; } } } prev_pos = i; if (bcj_x86_test_msbyte(buf[i + 4])) { src = get_unaligned_le32(buf + i + 1); while (true) { dest = src - (s->pos + (uint32_t)i + 5); if (prev_mask == 0) break; j = mask_to_bit_num[prev_mask] * 8; b = (uint8_t)(dest >> (24 - j)); if (!bcj_x86_test_msbyte(b)) break; src = dest ^ (((uint32_t)1 << (32 - j)) - 1); } dest &= 0x01FFFFFF; dest |= (uint32_t)0 - (dest & 0x01000000); put_unaligned_le32(dest, buf + i + 1); i += 4; } else { prev_mask = (prev_mask << 1) | 1; } } prev_pos = i - prev_pos; s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); return i; } #endif #ifdef XZ_DEC_POWERPC static noinline_for_stack size_t bcj_powerpc( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 3 < size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr & 0xFC000003) == 0x48000001) { instr &= 0x03FFFFFC; instr -= s->pos + (uint32_t)i; instr &= 0x03FFFFFC; instr |= 0x48000001; put_unaligned_be32(instr, buf + i); } } return i; } #endif #ifdef XZ_DEC_IA64 static noinline_for_stack size_t bcj_ia64( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const uint8_t branch_table[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 7, 7, 4, 4, 0, 0, 4, 4, 0, 0 }; /* * The local variables take a little bit stack space, but it's less * than what LZMA2 decoder takes, so it doesn't make sense to reduce * stack usage here without doing that for the LZMA2 decoder too. */ /* Loop counters */ size_t i; size_t j; /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ uint32_t slot; /* Bitwise offset of the instruction indicated by slot */ uint32_t bit_pos; /* bit_pos split into byte and bit parts */ uint32_t byte_pos; uint32_t bit_res; /* Address part of an instruction */ uint32_t addr; /* Mask used to detect which instructions to convert */ uint32_t mask; /* 41-bit instruction stored somewhere in the lowest 48 bits */ uint64_t instr; /* Instruction normalized with bit_res for easier manipulation */ uint64_t norm; for (i = 0; i + 16 <= size; i += 16) { mask = branch_table[buf[i] & 0x1F]; for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { if (((mask >> slot) & 1) == 0) continue; byte_pos = bit_pos >> 3; bit_res = bit_pos & 7; instr = 0; for (j = 0; j < 6; ++j) instr |= (uint64_t)(buf[i + j + byte_pos]) << (8 * j); norm = instr >> bit_res; if (((norm >> 37) & 0x0F) == 0x05 && ((norm >> 9) & 0x07) == 0) { addr = (norm >> 13) & 0x0FFFFF; addr |= ((uint32_t)(norm >> 36) & 1) << 20; addr <<= 4; addr -= s->pos + (uint32_t)i; addr >>= 4; norm &= ~((uint64_t)0x8FFFFF << 13); norm |= (uint64_t)(addr & 0x0FFFFF) << 13; norm |= (uint64_t)(addr & 0x100000) << (36 - 20); instr &= (1 << bit_res) - 1; instr |= norm << bit_res; for (j = 0; j < 6; j++) buf[i + j + byte_pos] = (uint8_t)(instr >> (8 * j)); } } } return i; } #endif #ifdef XZ_DEC_ARM static noinline_for_stack size_t bcj_arm( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 4) { if (buf[i + 3] == 0xEB) { addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | ((uint32_t)buf[i + 2] << 16); addr <<= 2; addr -= s->pos + (uint32_t)i + 8; addr >>= 2; buf[i] = (uint8_t)addr; buf[i + 1] = (uint8_t)(addr >> 8); buf[i + 2] = (uint8_t)(addr >> 16); } } return i; } #endif #ifdef XZ_DEC_ARMTHUMB static noinline_for_stack size_t bcj_armthumb( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 2) { if ((buf[i + 1] & 0xF8) == 0xF0 && (buf[i + 3] & 0xF8) == 0xF8) { addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | ((uint32_t)buf[i] << 11) | (((uint32_t)buf[i + 3] & 0x07) << 8) | (uint32_t)buf[i + 2]; addr <<= 1; addr -= s->pos + (uint32_t)i + 4; addr >>= 1; buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); buf[i] = (uint8_t)(addr >> 11); buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); buf[i + 2] = (uint8_t)addr; i += 2; } } return i; } #endif #ifdef XZ_DEC_SPARC static noinline_for_stack size_t bcj_sparc( struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 4 <= size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { instr <<= 2; instr -= s->pos + (uint32_t)i; instr >>= 2; instr = ((uint32_t)0x40000000 - (instr & 0x400000)) | 0x40000000 | (instr & 0x3FFFFF); put_unaligned_be32(instr, buf + i); } } return i; } #endif /* * Apply the selected BCJ filter. Update *pos and s->pos to match the amount * of data that got filtered. * * NOTE: This is implemented as a switch statement to avoid using function * pointers, which could be problematic in the kernel boot code, which must * avoid pointers to static data (at least on x86). */ static void bcj_apply(struct xz_dec_bcj *s, uint8_t *buf, size_t *pos, size_t size) { size_t filtered; buf += *pos; size -= *pos; switch (s->type) { #ifdef XZ_DEC_X86 case BCJ_X86: filtered = bcj_x86(s, buf, size); break; #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: filtered = bcj_powerpc(s, buf, size); break; #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: filtered = bcj_ia64(s, buf, size); break; #endif #ifdef XZ_DEC_ARM case BCJ_ARM: filtered = bcj_arm(s, buf, size); break; #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: filtered = bcj_armthumb(s, buf, size); break; #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: filtered = bcj_sparc(s, buf, size); break; #endif default: /* Never reached but silence compiler warnings. */ filtered = 0; break; } *pos += filtered; s->pos += filtered; } /* * Flush pending filtered data from temp to the output buffer. * Move the remaining mixture of possibly filtered and unfiltered * data to the beginning of temp. */ static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) { size_t copy_size; copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos); memcpy(b->out + b->out_pos, s->temp.buf, copy_size); b->out_pos += copy_size; s->temp.filtered -= copy_size; s->temp.size -= copy_size; memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); } /* * The BCJ filter functions are primitive in sense that they process the * data in chunks of 1-16 bytes. To hide this issue, this function does * some buffering. */ enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2, struct xz_buf *b) { size_t out_start; /* * Flush pending already filtered data to the output buffer. Return * immediatelly if we couldn't flush everything, or if the next * filter in the chain had already returned XZ_STREAM_END. */ if (s->temp.filtered > 0) { bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; } /* * If we have more output space than what is currently pending in * temp, copy the unfiltered data from temp to the output buffer * and try to fill the output buffer by decoding more data from the * next filter in the chain. Apply the BCJ filter on the new data * in the output buffer. If everything cannot be filtered, copy it * to temp and rewind the output buffer position accordingly. */ if (s->temp.size < b->out_size - b->out_pos) { out_start = b->out_pos; memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); b->out_pos += s->temp.size; s->ret = xz_dec_lzma2_run(lzma2, b); if (s->ret != XZ_STREAM_END && (s->ret != XZ_OK || s->single_call)) return s->ret; bcj_apply(s, b->out, &out_start, b->out_pos); /* * As an exception, if the next filter returned XZ_STREAM_END, * we can do that too, since the last few bytes that remain * unfiltered are meant to remain unfiltered. */ if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; s->temp.size = b->out_pos - out_start; b->out_pos -= s->temp.size; memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); } /* * If we have unfiltered data in temp, try to fill by decoding more * data from the next filter. Apply the BCJ filter on temp. Then we * hopefully can fill the actual output buffer by copying filtered * data from temp. A mix of filtered and unfiltered data may be left * in temp; it will be taken care on the next call to this function. */ if (s->temp.size > 0) { /* Make b->out{,_pos,_size} temporarily point to s->temp. */ s->out = b->out; s->out_pos = b->out_pos; s->out_size = b->out_size; b->out = s->temp.buf; b->out_pos = s->temp.size; b->out_size = sizeof(s->temp.buf); s->ret = xz_dec_lzma2_run(lzma2, b); s->temp.size = b->out_pos; b->out = s->out; b->out_pos = s->out_pos; b->out_size = s->out_size; if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) return s->ret; bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); /* * If the next filter returned XZ_STREAM_END, we mark that * everything is filtered, since the last unfiltered bytes * of the stream are meant to be left as is. */ if (s->ret == XZ_STREAM_END) s->temp.filtered = s->temp.size; bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; } return s->ret; } #ifdef GRUB_EMBED_DECOMPRESSOR struct xz_dec_bcj bcj; #endif struct xz_dec_bcj * xz_dec_bcj_create(bool single_call) { struct xz_dec_bcj *s; #ifdef GRUB_EMBED_DECOMPRESSOR s = &bcj; #else s = kmalloc(sizeof(*s), GFP_KERNEL); #endif if (s != NULL) s->single_call = single_call; return s; } enum xz_ret xz_dec_bcj_reset( struct xz_dec_bcj *s, uint8_t id) { switch (id) { #ifdef XZ_DEC_X86 case BCJ_X86: #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: #endif #ifdef XZ_DEC_ARM case BCJ_ARM: #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: #endif break; default: /* Unsupported Filter ID */ return XZ_OPTIONS_ERROR; } s->type = id; s->ret = XZ_OK; s->pos = 0; s->x86_prev_mask = 0; s->temp.filtered = 0; s->temp.size = 0; return XZ_OK; }