grub/util/mkisofs/write.c
Robert Millan 5ce77c6e7e 2009-11-18 Robert Millan <rmh.grub@aybabtu.com>
* util/mkisofs/eltorito.c: Fix minor mistake in license text.
        * util/mkisofs/iso9660.h: Likewise.
        * util/mkisofs/joliet.c: Likewise.
        * util/mkisofs/mkisofs.c: Likewise.
        * util/mkisofs/mkisofs.h: Likewise.
        * util/mkisofs/rock.c: Likewise.
        * util/mkisofs/tree.c: Likewise.
        * util/mkisofs/write.c: Likewise.

        * util/mkisofs/eltorito.c (rcsid): Remove.
        * util/mkisofs/hash.c: Likewise.
        * util/mkisofs/joliet.c: Likewise.
        * util/mkisofs/name.c: Likewise.
        * util/mkisofs/rock.c: Likewise.
        * util/mkisofs/tree.c: Likewise.
        * util/mkisofs/write.c: Likewise.
2009-11-18 22:59:40 +00:00

1461 lines
37 KiB
C

/*
* Program write.c - dump memory structures to file for iso9660 filesystem.
Written by Eric Youngdale (1993).
Copyright 1993 Yggdrasil Computing, Incorporated
Copyright (C) 2009 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdlib.h>
#include "config.h"
#include "mkisofs.h"
#include "iso9660.h"
#include <time.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef __SVR4
extern char * strdup(const char *);
#endif
#ifdef VMS
extern char * strdup(const char *);
#endif
/* Max number of sectors we will write at one time */
#define NSECT 16
/* Counters for statistics */
static int table_size = 0;
static int total_dir_size = 0;
static int rockridge_size = 0;
static struct directory ** pathlist;
static int next_path_index = 1;
static int sort_goof;
struct output_fragment * out_tail;
struct output_fragment * out_list;
struct iso_primary_descriptor vol_desc;
static int root_gen __PR((void));
static int generate_path_tables __PR((void));
static int file_gen __PR((void));
static int dirtree_dump __PR((void));
/* Routines to actually write the disc. We write sequentially so that
we could write a tape, or write the disc directly */
#define FILL_SPACE(X) memset(vol_desc.X, ' ', sizeof(vol_desc.X))
void FDECL2(set_721, char *, pnt, unsigned int, i)
{
pnt[0] = i & 0xff;
pnt[1] = (i >> 8) & 0xff;
}
void FDECL2(set_722, char *, pnt, unsigned int, i)
{
pnt[0] = (i >> 8) & 0xff;
pnt[1] = i & 0xff;
}
void FDECL2(set_723, char *, pnt, unsigned int, i)
{
pnt[3] = pnt[0] = i & 0xff;
pnt[2] = pnt[1] = (i >> 8) & 0xff;
}
void FDECL2(set_731, char *, pnt, unsigned int, i)
{
pnt[0] = i & 0xff;
pnt[1] = (i >> 8) & 0xff;
pnt[2] = (i >> 16) & 0xff;
pnt[3] = (i >> 24) & 0xff;
}
void FDECL2(set_732, char *, pnt, unsigned int, i)
{
pnt[3] = i & 0xff;
pnt[2] = (i >> 8) & 0xff;
pnt[1] = (i >> 16) & 0xff;
pnt[0] = (i >> 24) & 0xff;
}
int FDECL1(get_731, char *, p)
{
return ((p[0] & 0xff)
| ((p[1] & 0xff) << 8)
| ((p[2] & 0xff) << 16)
| ((p[3] & 0xff) << 24));
}
int FDECL1(get_733, char *, p)
{
return ((p[0] & 0xff)
| ((p[1] & 0xff) << 8)
| ((p[2] & 0xff) << 16)
| ((p[3] & 0xff) << 24));
}
void FDECL2(set_733, char *, pnt, unsigned int, i)
{
pnt[7] = pnt[0] = i & 0xff;
pnt[6] = pnt[1] = (i >> 8) & 0xff;
pnt[5] = pnt[2] = (i >> 16) & 0xff;
pnt[4] = pnt[3] = (i >> 24) & 0xff;
}
void FDECL4(xfwrite, void *, buffer, uint64_t, count, uint64_t, size, FILE *, file)
{
/*
* This is a hack that could be made better. XXXIs this the only place?
* It is definitely needed on Operating Systems that do not
* allow to write files that are > 2GB.
* If the system is fast enough to be able to feed 1400 KB/s
* writing speed of a DVD-R drive, use stdout.
* If the system cannot do this reliable, you need to use this
* hacky option.
*/
static int idx = 0;
if (split_output != 0 &&
(idx == 0 || ftell(file) >= (1024 * 1024 * 1024) )) {
char nbuf[512];
extern char *outfile;
if (idx == 0)
unlink(outfile);
sprintf(nbuf, "%s_%02d", outfile, idx++);
file = freopen(nbuf, "wb", file);
if (file == NULL) {
fprintf(stderr, "Cannot open '%s'.\n", nbuf);
exit(1);
}
}
while(count)
{
size_t got = fwrite (buffer, size, count, file);
if (got != count)
{
fprintf(stderr,"cannot fwrite %llu*%llu\n",size,count);
exit(1);
}
count-=got,*(char**)&buffer+=size*got;
}
}
struct deferred_write
{
struct deferred_write * next;
char * table;
uint64_t extent;
uint64_t size;
char * name;
};
static struct deferred_write * dw_head = NULL, * dw_tail = NULL;
uint64_t last_extent_written = 0;
static unsigned int path_table_index;
static time_t begun;
/* We recursively walk through all of the directories and assign extent
numbers to them. We have already assigned extent numbers to everything that
goes in front of them */
static int FDECL1(assign_directory_addresses, struct directory *, node)
{
int dir_size;
struct directory * dpnt;
dpnt = node;
while (dpnt)
{
/* skip if it's hidden */
if(dpnt->dir_flags & INHIBIT_ISO9660_ENTRY) {
dpnt = dpnt->next;
continue;
}
/*
* If we already have an extent for this (i.e. it came from
* a multisession disc), then don't reassign a new extent.
*/
dpnt->path_index = next_path_index++;
if( dpnt->extent == 0 )
{
dpnt->extent = last_extent;
dir_size = (dpnt->size + (SECTOR_SIZE - 1)) >> 11;
last_extent += dir_size;
/*
* Leave room for the CE entries for this directory. Keep them
* close to the reference directory so that access will be
* quick.
*/
if(dpnt->ce_bytes)
{
last_extent += ROUND_UP(dpnt->ce_bytes) >> 11;
}
}
if(dpnt->subdir)
{
assign_directory_addresses(dpnt->subdir);
}
dpnt = dpnt->next;
}
return 0;
}
static void FDECL3(write_one_file, char *, filename,
uint64_t, size, FILE *, outfile)
{
char buffer[SECTOR_SIZE * NSECT];
FILE * infile;
int64_t remain;
size_t use;
if ((infile = fopen(filename, "rb")) == NULL)
{
#if defined(sun) || defined(_AUX_SOURCE)
fprintf(stderr, "cannot open %s: (%d)\n", filename, errno);
#else
fprintf(stderr, "cannot open %s: %s\n", filename, strerror(errno));
#endif
exit(1);
}
remain = size;
while(remain > 0)
{
use = (remain > SECTOR_SIZE * NSECT - 1 ? NSECT*SECTOR_SIZE : remain);
use = ROUND_UP(use); /* Round up to nearest sector boundary */
memset(buffer, 0, use);
if (fread(buffer, 1, use, infile) == 0)
error (1, errno, "cannot read %llu bytes from %s", use, filename);
xfwrite(buffer, 1, use, outfile);
last_extent_written += use/SECTOR_SIZE;
#if 0
if((last_extent_written % 1000) < use/SECTOR_SIZE)
{
fprintf(stderr,"%d..", last_extent_written);
}
#else
if((last_extent_written % 5000) < use/SECTOR_SIZE)
{
time_t now;
time_t the_end;
double frac;
time(&now);
frac = last_extent_written / (double)last_extent;
the_end = begun + (now - begun) / frac;
fprintf(stderr, "%6.2f%% done, estimate finish %s",
frac * 100., ctime(&the_end));
}
#endif
remain -= use;
}
fclose(infile);
} /* write_one_file(... */
static void FDECL1(write_files, FILE *, outfile)
{
struct deferred_write * dwpnt, *dwnext;
dwpnt = dw_head;
while(dwpnt)
{
if(dwpnt->table)
{
write_one_file (dwpnt->table, dwpnt->size, outfile);
table_size += dwpnt->size;
free (dwpnt->table);
}
else
{
#ifdef VMS
vms_write_one_file(dwpnt->name, dwpnt->size, outfile);
#else
write_one_file(dwpnt->name, dwpnt->size, outfile);
#endif
free(dwpnt->name);
}
dwnext = dwpnt;
dwpnt = dwpnt->next;
free(dwnext);
}
} /* write_files(... */
#if 0
static void dump_filelist()
{
struct deferred_write * dwpnt;
dwpnt = dw_head;
while(dwpnt)
{
fprintf(stderr, "File %s\n",dwpnt->name);
dwpnt = dwpnt->next;
}
fprintf(stderr,"\n");
}
#endif
static int FDECL2(compare_dirs, const void *, rr, const void *, ll)
{
char * rpnt, *lpnt;
struct directory_entry ** r, **l;
r = (struct directory_entry **) rr;
l = (struct directory_entry **) ll;
rpnt = (*r)->isorec.name;
lpnt = (*l)->isorec.name;
/*
* If the entries are the same, this is an error.
*/
if( strcmp(rpnt, lpnt) == 0 )
{
sort_goof++;
}
/*
* Put the '.' and '..' entries on the head of the sorted list.
* For normal ASCII, this always happens to be the case, but out of
* band characters cause this not to be the case sometimes.
*
* FIXME(eric) - these tests seem redundant, in taht the name is
* never assigned these values. It will instead be \000 or \001,
* and thus should always be sorted correctly. I need to figure
* out why I thought I needed this in the first place.
*/
#if 0
if( strcmp(rpnt, ".") == 0 ) return -1;
if( strcmp(lpnt, ".") == 0 ) return 1;
if( strcmp(rpnt, "..") == 0 ) return -1;
if( strcmp(lpnt, "..") == 0 ) return 1;
#else
/*
* The code above is wrong (as explained in Eric's comment), leading to incorrect
* sort order iff the -L option ("allow leading dots") is in effect and a directory
* contains entries that start with a dot.
*
* (TF, Tue Dec 29 13:49:24 CET 1998)
*/
if((*r)->isorec.name_len[0] == 1 && *rpnt == 0) return -1; /* '.' */
if((*l)->isorec.name_len[0] == 1 && *lpnt == 0) return 1;
if((*r)->isorec.name_len[0] == 1 && *rpnt == 1) return -1; /* '..' */
if((*l)->isorec.name_len[0] == 1 && *lpnt == 1) return 1;
#endif
while(*rpnt && *lpnt)
{
if(*rpnt == ';' && *lpnt != ';') return -1;
if(*rpnt != ';' && *lpnt == ';') return 1;
if(*rpnt == ';' && *lpnt == ';') return 0;
if(*rpnt == '.' && *lpnt != '.') return -1;
if(*rpnt != '.' && *lpnt == '.') return 1;
if((unsigned char)*rpnt < (unsigned char)*lpnt) return -1;
if((unsigned char)*rpnt > (unsigned char)*lpnt) return 1;
rpnt++; lpnt++;
}
if(*rpnt) return 1;
if(*lpnt) return -1;
return 0;
}
/*
* Function: sort_directory
*
* Purpose: Sort the directory in the appropriate ISO9660
* order.
*
* Notes: Returns 0 if OK, returns > 0 if an error occurred.
*/
int FDECL1(sort_directory, struct directory_entry **, sort_dir)
{
int dcount = 0;
int xcount = 0;
int j;
int i, len;
struct directory_entry * s_entry;
struct directory_entry ** sortlist;
/* need to keep a count of how many entries are hidden */
s_entry = *sort_dir;
while(s_entry)
{
if (s_entry->de_flags & INHIBIT_ISO9660_ENTRY)
xcount++;
dcount++;
s_entry = s_entry->next;
}
if( dcount == 0 )
{
return 0;
}
/*
* OK, now we know how many there are. Build a vector for sorting.
*/
sortlist = (struct directory_entry **)
e_malloc(sizeof(struct directory_entry *) * dcount);
j = dcount - 1;
dcount = 0;
s_entry = *sort_dir;
while(s_entry)
{
if(s_entry->de_flags & INHIBIT_ISO9660_ENTRY)
{
/* put any hidden entries at the end of the vector */
sortlist[j--] = s_entry;
}
else
{
sortlist[dcount] = s_entry;
dcount++;
}
len = s_entry->isorec.name_len[0];
s_entry->isorec.name[len] = 0;
s_entry = s_entry->next;
}
/*
* Each directory is required to contain at least . and ..
*/
if( dcount < 2 )
{
sort_goof = 1;
}
else
{
/* only sort the non-hidden entries */
sort_goof = 0;
#ifdef __STDC__
qsort(sortlist, dcount, sizeof(struct directory_entry *),
(int (*)(const void *, const void *))compare_dirs);
#else
qsort(sortlist, dcount, sizeof(struct directory_entry *),
compare_dirs);
#endif
/*
* Now reassemble the linked list in the proper sorted order
* We still need the hidden entries, as they may be used in the
* Joliet tree.
*/
for(i=0; i<dcount+xcount-1; i++)
{
sortlist[i]->next = sortlist[i+1];
}
sortlist[dcount+xcount-1]->next = NULL;
*sort_dir = sortlist[0];
}
free(sortlist);
return sort_goof;
}
static int root_gen()
{
init_fstatbuf();
root_record.length[0] = 1 + sizeof(struct iso_directory_record)
- sizeof(root_record.name);
root_record.ext_attr_length[0] = 0;
set_733((char *) root_record.extent, root->extent);
set_733((char *) root_record.size, ROUND_UP(root->size));
iso9660_date(root_record.date, root_statbuf.st_mtime);
root_record.flags[0] = 2;
root_record.file_unit_size[0] = 0;
root_record.interleave[0] = 0;
set_723(root_record.volume_sequence_number, volume_sequence_number);
root_record.name_len[0] = 1;
return 0;
}
static void FDECL1(assign_file_addresses, struct directory *, dpnt)
{
struct directory * finddir;
struct directory_entry * s_entry;
struct file_hash *s_hash;
struct deferred_write * dwpnt;
char whole_path[1024];
while (dpnt)
{
s_entry = dpnt->contents;
for(s_entry = dpnt->contents; s_entry; s_entry = s_entry->next)
{
/*
* If we already have an extent for this entry,
* then don't assign a new one. It must have come
* from a previous session on the disc. Note that
* we don't end up scheduling the thing for writing
* either.
*/
if( isonum_733((unsigned char *) s_entry->isorec.extent) != 0 )
{
continue;
}
/*
* This saves some space if there are symlinks present
*/
s_hash = find_hash(s_entry->dev, s_entry->inode);
if(s_hash)
{
if(verbose > 2)
{
fprintf(stderr, "Cache hit for %s%s%s\n",s_entry->filedir->de_name,
SPATH_SEPARATOR, s_entry->name);
}
set_733((char *) s_entry->isorec.extent, s_hash->starting_block);
set_733((char *) s_entry->isorec.size, s_hash->size);
continue;
}
/*
* If this is for a directory that is not a . or a .. entry,
* then look up the information for the entry. We have already
* assigned extents for directories, so we just need to
* fill in the blanks here.
*/
if (strcmp(s_entry->name,".") && strcmp(s_entry->name,"..") &&
s_entry->isorec.flags[0] == 2)
{
finddir = dpnt->subdir;
while(1==1)
{
if(finddir->self == s_entry) break;
finddir = finddir->next;
if(!finddir)
{
fprintf(stderr,"Fatal goof\n"); exit(1);
}
}
set_733((char *) s_entry->isorec.extent, finddir->extent);
s_entry->starting_block = finddir->extent;
s_entry->size = ROUND_UP(finddir->size);
total_dir_size += s_entry->size;
add_hash(s_entry);
set_733((char *) s_entry->isorec.size, ROUND_UP(finddir->size));
continue;
}
/*
* If this is . or .., then look up the relevant info from the
* tables.
*/
if(strcmp(s_entry->name,".") == 0)
{
set_733((char *) s_entry->isorec.extent, dpnt->extent);
/*
* Set these so that the hash table has the
* correct information
*/
s_entry->starting_block = dpnt->extent;
s_entry->size = ROUND_UP(dpnt->size);
add_hash(s_entry);
s_entry->starting_block = dpnt->extent;
set_733((char *) s_entry->isorec.size, ROUND_UP(dpnt->size));
continue;
}
if(strcmp(s_entry->name,"..") == 0)
{
if(dpnt == root)
{
total_dir_size += root->size;
}
set_733((char *) s_entry->isorec.extent, dpnt->parent->extent);
/*
* Set these so that the hash table has the
* correct information
*/
s_entry->starting_block = dpnt->parent->extent;
s_entry->size = ROUND_UP(dpnt->parent->size);
add_hash(s_entry);
s_entry->starting_block = dpnt->parent->extent;
set_733((char *) s_entry->isorec.size, ROUND_UP(dpnt->parent->size));
continue;
}
/*
* Some ordinary non-directory file. Just schedule the
* file to be written. This is all quite
* straightforward, just make a list and assign extents
* as we go. Once we get through writing all of the
* directories, we should be ready write out these
* files
*/
if(s_entry->size)
{
dwpnt = (struct deferred_write *)
e_malloc(sizeof(struct deferred_write));
if(dw_tail)
{
dw_tail->next = dwpnt;
dw_tail = dwpnt;
}
else
{
dw_head = dwpnt;
dw_tail = dwpnt;
}
if(s_entry->inode == TABLE_INODE)
{
dwpnt->table = s_entry->table;
dwpnt->name = NULL;
sprintf(whole_path,"%s%sTRANS.TBL",
s_entry->filedir->whole_name, SPATH_SEPARATOR);
}
else
{
dwpnt->table = NULL;
strcpy(whole_path, s_entry->whole_name);
dwpnt->name = strdup(whole_path);
}
dwpnt->next = NULL;
dwpnt->size = s_entry->size;
dwpnt->extent = last_extent;
set_733((char *) s_entry->isorec.extent, last_extent);
s_entry->starting_block = last_extent;
add_hash(s_entry);
last_extent += ROUND_UP(s_entry->size) >> 11;
if(verbose > 2)
{
fprintf(stderr,"%llu %llu %s\n", s_entry->starting_block,
last_extent-1, whole_path);
}
#ifdef DBG_ISO
if((ROUND_UP(s_entry->size) >> 11) > 500)
{
fprintf(stderr,"Warning: large file %s\n", whole_path);
fprintf(stderr,"Starting block is %d\n", s_entry->starting_block);
fprintf(stderr,"Reported file size is %d extents\n", s_entry->size);
}
#endif
#ifdef NOT_NEEDED /* Never use this code if you like to create a DVD */
if(last_extent > (800000000 >> 11))
{
/*
* More than 800Mb? Punt
*/
fprintf(stderr,"Extent overflow processing file %s\n", whole_path);
fprintf(stderr,"Starting block is %d\n", s_entry->starting_block);
fprintf(stderr,"Reported file size is %d extents\n", s_entry->size);
exit(1);
}
#endif
continue;
}
/*
* This is for zero-length files. If we leave the extent 0,
* then we get screwed, because many readers simply drop files
* that have an extent of zero. Thus we leave the size 0,
* and just assign the extent number.
*/
set_733((char *) s_entry->isorec.extent, last_extent);
}
if(dpnt->subdir)
{
assign_file_addresses(dpnt->subdir);
}
dpnt = dpnt->next;
}
} /* assign_file_addresses(... */
static void FDECL1(free_one_directory, struct directory *, dpnt)
{
struct directory_entry * s_entry;
struct directory_entry * s_entry_d;
s_entry = dpnt->contents;
while(s_entry)
{
s_entry_d = s_entry;
s_entry = s_entry->next;
if( s_entry_d->name != NULL )
{
free (s_entry_d->name);
}
if( s_entry_d->whole_name != NULL )
{
free (s_entry_d->whole_name);
}
free (s_entry_d);
}
dpnt->contents = NULL;
} /* free_one_directory(... */
static void FDECL1(free_directories, struct directory *, dpnt)
{
while (dpnt)
{
free_one_directory(dpnt);
if(dpnt->subdir) free_directories(dpnt->subdir);
dpnt = dpnt->next;
}
}
void FDECL2(generate_one_directory, struct directory *, dpnt, FILE *, outfile)
{
unsigned int ce_address = 0;
char * ce_buffer;
unsigned int ce_index = 0;
unsigned int ce_size;
unsigned int dir_index;
char * directory_buffer;
int new_reclen;
struct directory_entry * s_entry;
struct directory_entry * s_entry_d;
unsigned int total_size;
total_size = (dpnt->size + (SECTOR_SIZE - 1)) & ~(SECTOR_SIZE - 1);
directory_buffer = (char *) e_malloc(total_size);
memset(directory_buffer, 0, total_size);
dir_index = 0;
ce_size = (dpnt->ce_bytes + (SECTOR_SIZE - 1)) & ~(SECTOR_SIZE - 1);
ce_buffer = NULL;
if(ce_size)
{
ce_buffer = (char *) e_malloc(ce_size);
memset(ce_buffer, 0, ce_size);
ce_index = 0;
/*
* Absolute byte address of CE entries for this directory
*/
ce_address = last_extent_written + (total_size >> 11);
ce_address = ce_address << 11;
}
s_entry = dpnt->contents;
while(s_entry)
{
/* skip if it's hidden */
if(s_entry->de_flags & INHIBIT_ISO9660_ENTRY) {
s_entry = s_entry->next;
continue;
}
/*
* We do not allow directory entries to cross sector boundaries.
* Simply pad, and then start the next entry at the next sector
*/
new_reclen = s_entry->isorec.length[0];
if( (dir_index & (SECTOR_SIZE - 1)) + new_reclen >= SECTOR_SIZE )
{
dir_index = (dir_index + (SECTOR_SIZE - 1)) &
~(SECTOR_SIZE - 1);
}
memcpy(directory_buffer + dir_index, &s_entry->isorec,
sizeof(struct iso_directory_record) -
sizeof(s_entry->isorec.name) + s_entry->isorec.name_len[0]);
dir_index += sizeof(struct iso_directory_record) -
sizeof (s_entry->isorec.name)+ s_entry->isorec.name_len[0];
/*
* Add the Rock Ridge attributes, if present
*/
if(s_entry->rr_attr_size)
{
if(dir_index & 1)
{
directory_buffer[dir_index++] = 0;
}
/*
* If the RR attributes were too long, then write the
* CE records, as required.
*/
if(s_entry->rr_attr_size != s_entry->total_rr_attr_size)
{
unsigned char * pnt;
int len, nbytes;
/*
* Go through the entire record and fix up the CE entries
* so that the extent and offset are correct
*/
pnt = s_entry->rr_attributes;
len = s_entry->total_rr_attr_size;
while(len > 3)
{
#ifdef DEBUG
if (!ce_size)
{
fprintf(stderr,"Warning: ce_index(%d) && ce_address(%d) not initialized\n",
ce_index, ce_address);
}
#endif
if(pnt[0] == 'C' && pnt[1] == 'E')
{
nbytes = get_733( (char *) pnt+20);
if((ce_index & (SECTOR_SIZE - 1)) + nbytes >=
SECTOR_SIZE)
{
ce_index = ROUND_UP(ce_index);
}
set_733( (char *) pnt+4,
(ce_address + ce_index) >> 11);
set_733( (char *) pnt+12,
(ce_address + ce_index) & (SECTOR_SIZE - 1));
/*
* Now store the block in the ce buffer
*/
memcpy(ce_buffer + ce_index,
pnt + pnt[2], nbytes);
ce_index += nbytes;
if(ce_index & 1)
{
ce_index++;
}
}
len -= pnt[2];
pnt += pnt[2];
}
}
rockridge_size += s_entry->total_rr_attr_size;
memcpy(directory_buffer + dir_index, s_entry->rr_attributes,
s_entry->rr_attr_size);
dir_index += s_entry->rr_attr_size;
}
if(dir_index & 1)
{
directory_buffer[dir_index++] = 0;
}
s_entry_d = s_entry;
s_entry = s_entry->next;
/*
* Joliet doesn't use the Rock Ridge attributes, so we free it here.
*/
if (s_entry_d->rr_attributes)
{
free(s_entry_d->rr_attributes);
s_entry_d->rr_attributes = NULL;
}
}
if(dpnt->size != dir_index)
{
fprintf(stderr,"Unexpected directory length %d %d %s\n",dpnt->size,
dir_index, dpnt->de_name);
}
xfwrite(directory_buffer, 1, total_size, outfile);
last_extent_written += total_size >> 11;
free(directory_buffer);
if(ce_size)
{
if(ce_index != dpnt->ce_bytes)
{
fprintf(stderr,"Continuation entry record length mismatch (%d %d).\n",
ce_index, dpnt->ce_bytes);
}
xfwrite(ce_buffer, 1, ce_size, outfile);
last_extent_written += ce_size >> 11;
free(ce_buffer);
}
} /* generate_one_directory(... */
static
void FDECL1(build_pathlist, struct directory *, node)
{
struct directory * dpnt;
dpnt = node;
while (dpnt)
{
/* skip if it's hidden */
if( (dpnt->dir_flags & INHIBIT_ISO9660_ENTRY) == 0 )
pathlist[dpnt->path_index] = dpnt;
if(dpnt->subdir) build_pathlist(dpnt->subdir);
dpnt = dpnt->next;
}
} /* build_pathlist(... */
static int FDECL2(compare_paths, void const *, r, void const *, l)
{
struct directory const *ll = *(struct directory * const *)l;
struct directory const *rr = *(struct directory * const *)r;
if (rr->parent->path_index < ll->parent->path_index)
{
return -1;
}
if (rr->parent->path_index > ll->parent->path_index)
{
return 1;
}
return strcmp(rr->self->isorec.name, ll->self->isorec.name);
} /* compare_paths(... */
static int generate_path_tables()
{
struct directory_entry * de;
struct directory * dpnt;
int fix;
int i;
int j;
int namelen;
char * npnt;
char * npnt1;
int tablesize;
/*
* First allocate memory for the tables and initialize the memory
*/
tablesize = path_blocks << 11;
path_table_m = (char *) e_malloc(tablesize);
path_table_l = (char *) e_malloc(tablesize);
memset(path_table_l, 0, tablesize);
memset(path_table_m, 0, tablesize);
/*
* Now start filling in the path tables. Start with root directory
*/
if( next_path_index > 0xffff )
{
fprintf(stderr, "Unable to generate sane path tables - too many directories (%d)\n",
next_path_index);
exit(1);
}
path_table_index = 0;
pathlist = (struct directory **) e_malloc(sizeof(struct directory *)
* next_path_index);
memset(pathlist, 0, sizeof(struct directory *) * next_path_index);
build_pathlist(root);
do
{
fix = 0;
#ifdef __STDC__
qsort(&pathlist[1], next_path_index-1, sizeof(struct directory *),
(int (*)(const void *, const void *))compare_paths);
#else
qsort(&pathlist[1], next_path_index-1, sizeof(struct directory *),
compare_paths);
#endif
for(j=1; j<next_path_index; j++)
{
if(pathlist[j]->path_index != j)
{
pathlist[j]->path_index = j;
fix++;
}
}
} while(fix);
for(j=1; j<next_path_index; j++)
{
dpnt = pathlist[j];
if(!dpnt)
{
fprintf(stderr,"Entry %d not in path tables\n", j);
exit(1);
}
npnt = dpnt->de_name;
/*
* So the root comes out OK
*/
if( (*npnt == 0) || (dpnt == root) )
{
npnt = ".";
}
npnt1 = strrchr(npnt, PATH_SEPARATOR);
if(npnt1)
{
npnt = npnt1 + 1;
}
de = dpnt->self;
if(!de)
{
fprintf(stderr,"Fatal goof\n");
exit(1);
}
namelen = de->isorec.name_len[0];
path_table_l[path_table_index] = namelen;
path_table_m[path_table_index] = namelen;
path_table_index += 2;
set_731(path_table_l + path_table_index, dpnt->extent);
set_732(path_table_m + path_table_index, dpnt->extent);
path_table_index += 4;
set_721(path_table_l + path_table_index,
dpnt->parent->path_index);
set_722(path_table_m + path_table_index,
dpnt->parent->path_index);
path_table_index += 2;
for(i =0; i<namelen; i++)
{
path_table_l[path_table_index] = de->isorec.name[i];
path_table_m[path_table_index] = de->isorec.name[i];
path_table_index++;
}
if(path_table_index & 1)
{
path_table_index++; /* For odd lengths we pad */
}
}
free(pathlist);
if(path_table_index != path_table_size)
{
fprintf(stderr,"Path table lengths do not match %d %d\n",
path_table_index,
path_table_size);
}
return 0;
} /* generate_path_tables(... */
void
FDECL3(memcpy_max, char *, to, char *, from, int, max)
{
int n = strlen(from);
if (n > max)
{
n = max;
}
memcpy(to, from, n);
} /* memcpy_max(... */
void FDECL1(outputlist_insert, struct output_fragment *, frag)
{
if( out_tail == NULL )
{
out_list = out_tail = frag;
}
else
{
out_tail->of_next = frag;
out_tail = frag;
}
}
static int FDECL1(file_write, FILE *, outfile)
{
int should_write;
/*
* OK, all done with that crap. Now write out the directories.
* This is where the fur starts to fly, because we need to keep track of
* each file as we find it and keep track of where we put it.
*/
should_write = last_extent - session_start;
if( print_size > 0 )
{
fprintf(stderr,"Total extents scheduled to be written = %llu\n",
last_extent - session_start);
exit(0);
}
if( verbose > 2 )
{
#ifdef DBG_ISO
fprintf(stderr,"Total directory extents being written = %llu\n", last_extent);
#endif
fprintf(stderr,"Total extents scheduled to be written = %llu\n",
last_extent - session_start);
}
/*
* Now write all of the files that we need.
*/
write_files(outfile);
/*
* The rest is just fluff.
*/
if( verbose == 0 )
{
return 0;
}
fprintf(stderr,"Total extents actually written = %llu\n",
last_extent_written - session_start);
/*
* Hard links throw us off here
*/
assert (last_extent > session_start);
if(should_write + session_start != last_extent)
{
fprintf(stderr,"Number of extents written not what was predicted. Please fix.\n");
fprintf(stderr,"Predicted = %d, written = %llu\n", should_write, last_extent);
}
fprintf(stderr,"Total translation table size: %d\n", table_size);
fprintf(stderr,"Total rockridge attributes bytes: %d\n", rockridge_size);
fprintf(stderr,"Total directory bytes: %d\n", total_dir_size);
fprintf(stderr,"Path table size(bytes): %d\n", path_table_size);
#ifdef DEBUG
fprintf(stderr, "next extent, last_extent, last_extent_written %d %d %d\n",
next_extent, last_extent, last_extent_written);
#endif
return 0;
} /* iso_write(... */
char *creation_date = NULL;
char *modification_date = NULL;
char *expiration_date = NULL;
char *effective_date = NULL;
/*
* Function to write the PVD for the disc.
*/
static int FDECL1(pvd_write, FILE *, outfile)
{
char iso_time[17];
int should_write;
struct tm local;
struct tm gmt;
time(&begun);
local = *localtime(&begun);
gmt = *gmtime(&begun);
/*
* This will break in the year 2000, I supose, but there is no good way
* to get the top two digits of the year.
*/
sprintf(iso_time, "%4.4d%2.2d%2.2d%2.2d%2.2d%2.2d00", 1900 + local.tm_year,
local.tm_mon+1, local.tm_mday,
local.tm_hour, local.tm_min, local.tm_sec);
local.tm_min -= gmt.tm_min;
local.tm_hour -= gmt.tm_hour;
local.tm_yday -= gmt.tm_yday;
iso_time[16] = (local.tm_min + 60*(local.tm_hour + 24*local.tm_yday)) / 15;
/*
* Next we write out the primary descriptor for the disc
*/
memset(&vol_desc, 0, sizeof(vol_desc));
vol_desc.type[0] = ISO_VD_PRIMARY;
memcpy(vol_desc.id, ISO_STANDARD_ID, sizeof(ISO_STANDARD_ID));
vol_desc.version[0] = 1;
memset(vol_desc.system_id, ' ', sizeof(vol_desc.system_id));
memcpy_max(vol_desc.system_id, system_id, strlen(system_id));
memset(vol_desc.volume_id, ' ', sizeof(vol_desc.volume_id));
memcpy_max(vol_desc.volume_id, volume_id, strlen(volume_id));
should_write = last_extent - session_start;
set_733((char *) vol_desc.volume_space_size, should_write);
set_723(vol_desc.volume_set_size, volume_set_size);
set_723(vol_desc.volume_sequence_number, volume_sequence_number);
set_723(vol_desc.logical_block_size, 2048);
/*
* The path tables are used by DOS based machines to cache directory
* locations
*/
set_733((char *) vol_desc.path_table_size, path_table_size);
set_731(vol_desc.type_l_path_table, path_table[0]);
set_731(vol_desc.opt_type_l_path_table, path_table[1]);
set_732(vol_desc.type_m_path_table, path_table[2]);
set_732(vol_desc.opt_type_m_path_table, path_table[3]);
/*
* Now we copy the actual root directory record
*/
memcpy(vol_desc.root_directory_record, &root_record,
sizeof(struct iso_directory_record) + 1);
/*
* The rest is just fluff. It looks nice to fill in many of these fields,
* though.
*/
FILL_SPACE(volume_set_id);
if(volset_id) memcpy_max(vol_desc.volume_set_id, volset_id, strlen(volset_id));
FILL_SPACE(publisher_id);
if(publisher) memcpy_max(vol_desc.publisher_id, publisher, strlen(publisher));
FILL_SPACE(preparer_id);
if(preparer) memcpy_max(vol_desc.preparer_id, preparer, strlen(preparer));
FILL_SPACE(application_id);
if(appid) memcpy_max(vol_desc.application_id, appid, strlen(appid));
FILL_SPACE(copyright_file_id);
if(copyright) memcpy_max(vol_desc.copyright_file_id, copyright,
strlen(copyright));
FILL_SPACE(abstract_file_id);
if(abstract) memcpy_max(vol_desc.abstract_file_id, abstract,
strlen(abstract));
FILL_SPACE(bibliographic_file_id);
if(biblio) memcpy_max(vol_desc.bibliographic_file_id, biblio,
strlen(biblio));
FILL_SPACE(creation_date);
FILL_SPACE(modification_date);
FILL_SPACE(expiration_date);
FILL_SPACE(effective_date);
vol_desc.file_structure_version[0] = 1;
FILL_SPACE(application_data);
memcpy(vol_desc.creation_date, creation_date ? creation_date : iso_time, 17);
memcpy(vol_desc.modification_date, modification_date ? modification_date : iso_time, 17);
memcpy(vol_desc.expiration_date, expiration_date ? expiration_date : "0000000000000000", 17);
memcpy(vol_desc.effective_date, effective_date ? effective_date : iso_time, 17);
/*
* if not a bootable cd do it the old way
*/
xfwrite(&vol_desc, 1, 2048, outfile);
last_extent_written++;
return 0;
}
/*
* Function to write the EVD for the disc.
*/
static int FDECL1(evd_write, FILE *, outfile)
{
struct iso_primary_descriptor evol_desc;
/*
* Now write the end volume descriptor. Much simpler than the other one
*/
memset(&evol_desc, 0, sizeof(evol_desc));
evol_desc.type[0] = ISO_VD_END;
memcpy(evol_desc.id, ISO_STANDARD_ID, sizeof(ISO_STANDARD_ID));
evol_desc.version[0] = 1;
xfwrite(&evol_desc, 1, 2048, outfile);
last_extent_written += 1;
return 0;
}
/*
* Function to write the EVD for the disc.
*/
static int FDECL1(pathtab_write, FILE *, outfile)
{
/*
* Next we write the path tables
*/
xfwrite(path_table_l, 1, path_blocks << 11, outfile);
xfwrite(path_table_m, 1, path_blocks << 11, outfile);
last_extent_written += 2*path_blocks;
free(path_table_l);
free(path_table_m);
path_table_l = NULL;
path_table_m = NULL;
return 0;
}
static int FDECL1(exten_write, FILE *, outfile)
{
xfwrite(extension_record, 1, SECTOR_SIZE, outfile);
last_extent_written++;
return 0;
}
/*
* Functions to describe padding block at the start of the disc.
*/
int FDECL1(oneblock_size, int, starting_extent)
{
last_extent++;
return 0;
}
/*
* Functions to describe padding block at the start of the disc.
*/
static int FDECL1(pathtab_size, int, starting_extent)
{
path_table[0] = starting_extent;
path_table[1] = 0;
path_table[2] = path_table[0] + path_blocks;
path_table[3] = 0;
last_extent += 2*path_blocks;
return 0;
}
static int FDECL1(padblock_size, int, starting_extent)
{
last_extent += 16;
return 0;
}
static int file_gen()
{
assign_file_addresses(root);
return 0;
}
static int dirtree_dump()
{
if (verbose > 2)
{
dump_tree(root);
}
return 0;
}
static int FDECL1(dirtree_fixup, int, starting_extent)
{
if (use_RockRidge && reloc_dir)
finish_cl_pl_entries();
if (use_RockRidge )
update_nlink_field(root);
return 0;
}
static int FDECL1(dirtree_size, int, starting_extent)
{
assign_directory_addresses(root);
return 0;
}
static int FDECL1(ext_size, int, starting_extent)
{
extern int extension_record_size;
struct directory_entry * s_entry;
extension_record_extent = starting_extent;
s_entry = root->contents;
set_733((char *) s_entry->rr_attributes + s_entry->rr_attr_size - 24,
extension_record_extent);
set_733((char *) s_entry->rr_attributes + s_entry->rr_attr_size - 8,
extension_record_size);
last_extent++;
return 0;
}
static int FDECL1(dirtree_write, FILE *, outfile)
{
generate_iso9660_directories(root, outfile);
return 0;
}
static int FDECL1(dirtree_cleanup, FILE *, outfile)
{
free_directories(root);
return 0;
}
static int FDECL1(padblock_write, FILE *, outfile)
{
char buffer[2048];
int i;
memset(buffer, 0, sizeof(buffer));
for(i=0; i<16; i++)
{
xfwrite(buffer, 1, sizeof(buffer), outfile);
}
last_extent_written += 16;
return 0;
}
struct output_fragment padblock_desc = {NULL, padblock_size, NULL, padblock_write};
struct output_fragment voldesc_desc = {NULL, oneblock_size, root_gen, pvd_write};
struct output_fragment end_vol = {NULL, oneblock_size, NULL, evd_write};
struct output_fragment pathtable_desc = {NULL, pathtab_size, generate_path_tables, pathtab_write};
struct output_fragment dirtree_desc = {NULL, dirtree_size, NULL, dirtree_write};
struct output_fragment dirtree_clean = {NULL, dirtree_fixup, dirtree_dump, dirtree_cleanup};
struct output_fragment extension_desc = {NULL, ext_size, NULL, exten_write};
struct output_fragment files_desc = {NULL, NULL, file_gen, file_write};